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Highlights

• Heterogeneous aerial access networks (AANs) enhance GTs’ service in
remote areas.

• Aerial edge caching meets on-demand content request challenges for
GTs.

• HierFL-PCC enhances cache efficiency, ensures privacy, and reduces
delays in AANs.

• HierFL-PCC reduces communication overhead in model training.



Abstract

Heterogeneous aerial access networks (AANs), comprising a hierarchical model
of a low Earth orbit (LEO) satellite constellation and multiple high-altitude
platforms (HAPs), provide a radio access medium from the sky to enhance
the service experience of ground terminals (GTs) in remote areas. In this
scenario, aerial edge caching addresses the challenge of delivering on-demand
content requests to GTs. Although existing caching schemes for AANs have
improved caching efficiency, they often overlook important concerns related
to privacy preservation and overhead. This paper proposes an intelligent,
proactive content-caching scheme to maximize cache efficiency while ensur-
ing privacy preservation for GTs. The proposed caching scheme employs
hierarchical federated learning (HierFL) that involves GTs, HAPs, and LEO
satellites in heterogeneous AANs. In particular, the proposed HierFL-based
proactive content-caching (HierFL-PCC) scheme leverages a deep neural net-
work employing multiple linear regression to predict the dynamically chang-
ing content popularity of GTs, maximizing the cache efficiency. The HierFL-
PCC also reduces the delay and overhead associated with content deliv-
ery. Additionally, the proposed HierFL-PCC scheme reduces communication
overhead in model training owing to the hierarchical learning architecture.
Simulation results demonstrate that the proposed HierFL-PCC scheme ex-
hibits improvement of about 13%, 43%, 178%, and 457% in cache efficiency,
and reduces average content delivery delay by approximately 10%, 20%, 31%,
and 37%, along with an improvement of around 89% in training overhead,
respectively, compared to the cloud-based FAVG, LFU, LRU, and Random
caching schemes.

Keywords:
Aerial access network (AAN), privacy-preserving caching, aerial edge
caching, hierarchical federated learning (HierFL), proactive content-caching

1. Introduction

Video traffic currently dominates approximately 70% of all mobile data
traffic, which is expected to increase to 80% by 2028 (Ericsson, 2023). The
surge in video content has increased the demand for a higher quality of service
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in content requests. While existing ground-based mobile access networks,
characterized by high throughput, low latency, and high capacity, have played
a crucial role in delivering on-demand contents to ground terminals (GTs),
challenges persist in extending this service to rural communities in remote
areas, where deploying ground base stations (BSs, e.g., gNBs and eNBs) is
impractical.

In response to this challenge, we explore the capabilities of heterogeneous
aerial access networks (AANs) (Dao et al., 2021). Heterogeneous aerial access
platforms, including multiple high-altitude platforms (HAPs), and low Earth
orbit (LEO) satellites, emerge as a complementary solution to overcome the
limitations of existing ground-based mobile access networks in remote areas.
HAPs, deployed at the stratosphere for line of sight access, play a vital role
in providing wireless access to GTs Qiu et al. (2019). Simultaneously, LEO
satellites have been exploited to provide global Internet access to serve rural
communities in such areas. However, direct communication links between
satellites and GTs are intermittent due to their long distances and high-
speed movement. To address this, HAPs act as aerial BSs, providing closer
and stable Internet access to GTs, thereby improving communication links
between satellites and GTs with enhanced channel gain and reduced path
loss (Kurt et al., 2021; Jia et al., 2020). In addition to wireless access, these
aerial platforms offer edge computing and storage resources, functioning as
aerial caching servers (ACSs). Aerial edge caching realized by these ACSs
provides new opportunities to cache popular contents at the HAPs so that
the requested content can be directly delivered from HAPs, instead of remote
servers, reducing the end-to-end delay in content delivery.

However, proactively caching popular contents in the ACSs requires accu-
rate predictions of content popularity. Although it has recently been widely
researched, a notable gap exists in learning-based solutions for proactive
content-caching within an integrated aerial and terrestrial networks (Bera
et al., 2020; Wang et al., 2020; Zhang et al., 2020; Kang et al., 2020; Yu
et al., 2018; Fadlullah and Kato, 2020; Yu et al., 2020; Cui et al., 2020).
Specifically, few studies (Chen et al., 2017; Kang et al., 2020; Chen et al.,
2019) have explored learning models trained on centralized collected data,
where GTs upload data to a central server. Nonetheless, data are generated
and distributed on mobile devices, and sending data to a central server poses
security and privacy risks. While some studies have applied FL for privacy-
preserving content-caching (Yu et al., 2018; Fadlullah and Kato, 2020; Yu
et al., 2020; Cui et al., 2020), they often focus on a central parameter server,

2



either at the edge or in the cloud. Edge-based FL enables efficient communi-
cation with GTs, but suffers from limited data access, resulting in suboptimal
training performance. On the other hand, FL in the cloud accesses the nu-
merous data required for model training, but costly communication with the
cloud reduces training efficiency. Therefore, it is beneficial to combine edge-
based and cloud-based FL approaches, ensuring efficient communication and
training while providing access to many data for optimal training perfor-
mance. To this end, a hierarchical FL (HierFL) framework was proposed by
extending the federated averaging (FAVG) algorithm to a hierarchical config-
uration of a cloud parameter server and multiple edge parameter servers for
model aggregations (Liu et al., 2020). This approach combined the strengths
of edge- and cloud-based FL systems, allowing the cloud parameter server to
access massive data samples and enabling edge parameter servers to facilitate
efficient communications with GTs (Liu et al., 2020).

Thus, motivated by the advantages of heterogeneous AANs in extend-
ing network coverage to remote areas, we address the challenge of proactive
content-caching in aerial access platforms to minimize content delivery de-
lays. Additionally, by harnessing the privacy-preserving features of FL for
decision-making problems, we apply FL to the content-caching challenge,
ensuring secure model training without compromising the privacy of GTs.
Specifically, we leverage the HierFL framework for proactive content-caching
in heterogeneous AANs and propose a HierFL-based proactive content-caching
(HierFL-PCC) scheme for heterogeneous AANs. The proposed HierFL-PCC
scheme not only improves communication-computation tradeoffs by reducing
costly communications with LEO satellites and substituting efficient com-
munications with HAPs, it also ensures privacy of GTs, improves cache effi-
ciency, and reduces content delivery delays.

In particular, the proposed HierFL-PCC scheme utilizes a deep neural
network (DNN)-based multiple linear regression (MLR) approach to predict
content popularity. GTs download a global model from LEO satellite via
HAPs, train the DNN-MLR model with local data and upload updates to
the HAP. The FAVG algorithm aggregates model updates at HAPs, and the
aggregated models are sent to the LEO satellite for further aggregation. This
HierFL training process continues until the model achieves desired accuracy.
The proposed HierFL-PCC scheme predicts content popularity by leveraging
DNN-MLR to learn contextual information between GTs and contents. It
strategically caches the most popular contents in the ACSs, maximizing cache
efficiency for frequently requested contents. This allows direct access from

3



HAPs, reducing delays and overhead associated with content delivery via the
LEO satellite. In addition, the proposed HierFL-PCC scheme maintains the
privacy of the GTs because the GT requests on the content preferences are
preserved locally, and only the updates to the model parameters are uploaded
to the HAPs and LEO satellite for model training. Moreover, the proposed
HierFL-PCC scheme reduces communication overhead in model training due
to its hierarchical architecture. The primary contributions of the paper are
as follows.

• We investigated heterogeneous AANs scenario comprising a hierarchi-
cal model of LEO satellites and multiple HAPs to provide on-demand
content requests in remote areas. The system was analyzed from multi-
ple perspectives, such as the transmission model, caching model, delay
model, privacy-preservation, and overhead calculation. Finally, a prob-
lem formulation was derived from these analyses.

• To address the proactive content-caching problem, we proposed the
HierFL-PCC scheme to achieve a better communication-computation
trade-off by reducing costly LEO-HAP communications and supple-
menting efficient HAP-GT communications in the model training. This
method reduces the communication overhead involved in model train-
ing. In contrast, the HierFL-PCC scheme ensures that private data
related to content requests and preferences of GTs are preserved lo-
cally, maintaining the privacy of the GTs.

• By improving the accuracy of content popularity prediction at the
HAPs, the proposed HierFL-PCC scheme maximizes the cache effi-
ciency, allowing the frequently requested content to be directly accessed
from the HAPs, reducing the content delivery delay of the GTs and
overhead of the HAPs.

• The simulation results demonstrate that the proposed HierFL-PCC
scheme improves approximately 13%, 43%, 178%, and 457% in terms
of cache efficiency, reduces average content delivery delay by approxi-
mately 10%, 20%, 31%, and 37%, and improves training overhead by
around 89%, respectively, compared to the cloud-based FAVG, LFU,
LRU, and Random caching schemes.

To the best of our knowledge, the proposed HierFL-PCC scheme is the first
proactive content-caching scheme that considers privacy-preserving caching
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to maximize cache efficiency and reduce content delivery delay and overhead
at the level of HAPs under the LEO satellite constellation in remote areas
within heterogeneous AANs.

The remainder of this paper is organized as follows. A review of the
related studies is provided in Section 2. The system model and problem
formulation are discussed in Section 3. Next, Section 4 details the proposed
HierFL-based proactive content-caching scheme and the corresponding al-
gorithm. The experimental results are presented in Section 5. Finally, the
conclusions are summarized in Section 6.

2. Related Work

This section reviews recent and relevant studies related to this work on
content-caching. These studies can be classified into two approaches: con-
ventional optimization schemes and learning-based schemes. Studies dealing
with conventional caching optimization methods for cache-enabling single
and multiple uncrewed aerial vehicle (UAV) networks are described in Jiang
et al. (2018); Xu et al. (2018); Zhang et al. (2020); Wang et al. (2020);
Bera et al. (2020). Moreover, studies dealing with learning-based solutions
are described in Chen et al. (2017); Kang et al. (2020); Chen et al. (2019);
Ndikumana et al. (2020); Masood et al. (2021a); Zhao et al. (2021); Wang
et al. (2023); Qiao et al. (2019); Yu et al. (2018, 2020); Fadlullah and Kato
(2020); Cui et al. (2020); Maale et al. (2023); Masood et al. (2021b); Feng
et al. (2023).

Under the conventional caching optimization schemes, Jiang et al. (2018),
considered a cache-enabled UAV in the Internet of Things network and op-
timized the UAV height and content placement to maximize throughput. In
Xu et al. (2018), content-centric UAV communication was considered, where
a UAV is deployed to serve a group of ground nodes (GNs) by proactively
transmitting the files to selected GNs. The selected GNs collaboratively
cache all files, allowing each GN to retrieve a requested file from its local
cache or nearest neighbor through device-to-device communication. In addi-
tion, Zhang et al. (2020); Wang et al. (2020), investigated a joint optimiza-
tion problem of UAV deployment, caching placement, and user association in
cache-enabling UAV-assisted cellular networks and proposed a joint iterative
algorithm to solve the optimization problem Further, Bera et al. (2020), stud-
ied the quality of experience analysis in cache-enabled multi-UAV networks.
They formulated a linear programming problem to maximize the average con-
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tent delay index, where the optimized 2D position of each UAV is determined
using the K-means algorithm, and optimized cache policies are found using
linear regression and the Zipf distribution. While previous studies (Jiang
et al., 2018; Xu et al., 2018; Zhang et al., 2020; Wang et al., 2020; Bera
et al., 2020) have primarily focused on the content-caching problem using
single and multiple UAVs, and have overlooked the practicality of using var-
ious aerial platforms. In our work, we consider HAPs to be the edge caching
servers that provide wide coverage and high payload capabilities, primarily
remaining at one point for a long time. Hence, they can provide long-term,
continuous wireless access to GTs in remote areas. Furthermore, these exist-
ing studies considered a fixed UAV deployment scenario, and the popularity
of contents followed the Zipf distribution. In contrast, we introduce an intel-
ligent proactive content caching solution that leverages advanced algorithms
to learn content popularities based on contextual information from GTs and
content characteristics.

Recently, machine learning (ML) approaches, such as deep learning (DL)
and reinforcement learning, have been widely researched to solve complex
decision-making problems in dynamic and uncertain environments (Masood
et al., 2020, 2023). For instance, Chen et al. (2017), introduced a conceptor-
based echo state network that predicts the content request distribution and
mobility patterns of users. Afterward, they deployed cache-enabled UAVs to
deliver the requested content to the predicted locations. Kang et al. (2020)
proposed a DL-based UAV deployment and content-caching scheme where
users are grouped using the K-means clustering algorithm. They proposed
a long short-term memory-based caching scheme to cache popular content
on UAVs. Chen et al. (2019), investigated joint caching and a resource al-
location scheme for cache-enabled UAVs. They proposed a distributed algo-
rithm based on liquid state machines to predict content popularity and self-
organizing resource allocation. Ndikumana et al. (2020) proposed a content-
caching scheme for self- driving cars considering passenger features obtained
using convolutional neural networks. Moreover, Masood et al. (2021a), pro-
posed a deep regression-based video popularity estimation for proactive video
caching in multi-access edge computing networks. In addition, Zhao et al.
(2021), proposed caching at the vehicle and small BSs by employing the
upper confidence bound algorithm to learn the special interests and request
preferences of all users. Further, Wang et al. (2023) considered the timeliness
index as a measure of content freshness and explored caching placement using
proximal policy optimization with deep reinforcement learning. Furthermore,
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Qiao et al. (2019) proposed cooperative edge caching as a double time-scale
Markov decision process to jointly optimize the content placement and deliv-
ery in vehicular edge computing networks. These researches in Masood et al.
(2020); Chen et al. (2017); Kang et al. (2020); Chen et al. (2019); Ndikumana
et al. (2020); Masood et al. (2021a); Zhao et al. (2021); Wang et al. (2023);
Qiao et al. (2019) focused on deep and reinforcement learning-based solutions
for the content-caching problem, heavily relying on centralized learning mod-
els where GTs must upload data to the central server, posing data privacy
issues. In addition, as the number of GTs increases, such existing approaches
cannot handle the large volume of data due to the high computation and com-
munication costs. In contrast, our approach leverages distributed training of
the ML model and focuses on privacy-preservation of GTs, enabling efficient
scalability to manage data volume as the number of GTs increases.

Recently, FL has emerged as a solution to address these concerns by en-
abling distributed training without the need to collect private data and has
been employed in a few content-caching studies (Yu et al., 2018, 2020; Fad-
lullah and Kato, 2020; Cui et al., 2020; Maale et al., 2023; Masood et al.,
2021b; Feng et al., 2023). For instance, Yu et al. (2018) proposed an edge-
based FL content-caching scheme for multi-access edge computing networks
that estimated content popularity using hybrid filtering based on the sim-
ilarity of users and files, where the latent features were extracted using an
autoencoder. Yu et al. (2020), introduced an FL-based mobility-aware proac-
tive edge caching scheme called MPCF for urban vehicular networks. The
scheme uses an adversarial autoencoder to estimate content popularity. In
addition, Fadlullah and Kato (2020) explored a heterogeneous computing
platform for joint computation, communication, and collaborative caching
in an integrated aerial-terrestrial network with ultra-dense tiny cells. The
heterogeneous computing platform controller trains a global model using a
two-stage FL approach with asynchronous parameter updates, whereas local
updates are conducted using convolutional neural networks. Additionally,
Cui et al. (2020) designed a blockchain-assisted compressed algorithm of FL
for content-caching, called CREAT, to improve the cache hit rate in edge
computing. Similarly, Maale et al. (2023), proposed a deep federated echo
state learning content-caching scheme to predict popular content requests
and mobility patterns, using the context information from the user equip-
ment, such as the device type, location, and other data on the device.

However, some studies (Yu et al., 2018, 2020; Fadlullah and Kato, 2020;
Cui et al., 2020; Maale et al., 2023) have primarily focused on using a central

7



HAP

HAP-LEO  
Backhaul

LEO

Ground
Station

Core 
Network

LEO 
Feeder
link

LEO orbit ISL

GTsGTs

Figure 1: Heterogeneous aerial access network (AAN) model consisting of multiple high-
altitude platforms (HAPs) under the coverage of a low Earth orbit (LEO) satellite con-
stellation to provide content requests to ground terminals (GTs) in remote areas.

parameter server, either at the edge or in the cloud, for FL in dense urban sce-
narios, which faces challenges due to the limited access to data or the signifi-
cant communication overhead when communicating with the cloud. Masood
et al. (2021b), leveraged the HierFL framework based on one cloud parameter
server and multiple edge parameter servers in HAP-assisted multi-UAV net-
works . Similarly, Feng et al. (2023) proposed a HierFL-based cooperative
caching network architecture for vehicle trajectory and content popularity
prediction in urban vehicular networks. In contrast, we consider a heteroge-
neous AANs comprising a hierarchical model of LEO satellite constellation
and HAPs, and propose a HierFL-PCC scheme to provide on-demand content
requests to GTs in remote areas. The proposed HierFL-PCC scheme aims to
maximize cache efficiency and reduces content delivery delay and overhead.
Additionally, our proposed HierFL-PCC scheme based on the HierFL model
reduces communication overhead in training the model.
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Table 1: Key Notation Descriptions

Notation Description

I Set of all GTs in the heterogeneous AAN
system

H Set of HAPs in the heterogeneous AAN
system

V Set of LEO satellites in the heterogeneous
AAN system

Ith
Set of GTs associated with HAP h at time
slot t

N Set of available content
Ch Set of content cached in HAP h
λt Rate parameter of the Poisson process

ai,h
Association indicator of the GT with HAP
h

bi,h Indicator if GT i places a content request
Bh Downlink bandwidth of HAP h

Gh,i
Channel power gain between HAP h and
GT i

gh, gi
Antenna power gains of HAP h and GT i,
respectively

dh,i[t] Distance between HAP h and GT i

Rh,i
Transmission rate between HAP h and GT
i

Ph,i Transmission power of HAP h

bh,v
Association indicator of HAP with LEO
satellite

Rv,h Transmission rate of the LEO satellite
Pv,h Transmission power of the LEO satellite
Mh Cache capacity of HAP h
si Size of the content requested by GT i

Ph,c
Probability of caching c popular content in
HAP h

ρc Predicted popularity of c
Ph Set of caching policies
ζi Delay during content delivery to GT i
δtavg Average delay for each GT i at time slot t

OFL Overhead of model training
Ot

cache Overhead of cache inefficiency
D′ Dataset distributed across I GTs

D
′

i Dataset of GT i

li(w) Local loss function with weight w
L(w) Loss function
w Weight value
β Batch size
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3. Problem Statement

This section analyzes the heterogeneous AAN model from the commu-
nication, caching, delay, and overhead perspectives. Table 1 lists the main
notation used in this study.

3.1. System Model

We considered a heterogeneous AAN comprising several LEO satellites,
multiple HAPs, and several GTs, as depicted in Fig. 1. We assumed no terres-
trial BS is available for the GTs, as in remote areas. Although LEO satellites
can directly provide content to the GTs, the severe path loss between GTs
and LEO satellites poses challenges in providing high throughput Internet
access for latency-sensitive applications. In contrast, HAPs deployed at the
stratosphere at an altitude, AH , of 20 to 50 Km, can provide line-of-sight
communication and wide coverage with a radius of 50 to 500 KmKurt et al.
(2021). Hence, using HAPs is considered a potential solution to improve the
quality of service in remote areas. Thus, the GTs are directly connected to
HAPs, which are directly connected to LEO satellite constellations.

On the ground, at an arbitrary time slot, I GTs are denoted as i ∈
I = {1, 2, . . . , I}, which are randomly distributed. Additionally, H HAPs
denoted as h ∈ H = {1, 2, . . . , H} are deployed as aerial BSs under the
coverage of the LEO satellite constellation V . In this system model, one
GT, i, can only be associated with one HAP, h, but one HAP, h can be
associated with several GTs. We defined the set of I th GTs connected with
HAP h at time slot t as Ith = {1, 2, . . . , I th}. We let N = {1, 2, . . . , N}
denote the index set of available content. Each HAP, h, is equipped with an
onboard content-caching capability of limited storage resources, which can
be used as an ACS to cache popular content that the GTs request. The
set of C cached content in the ACS of HAP h is denoted by Ch, where
C ≤ N and h ∈ H. Moreover, the LEO satellite constellation V (denoted by
V = {1, 2, . . . , V }), which is equipped with enhanced computing and storage
resources, is placed at an orbital altitude, Av, of 500 kmJia et al. (2017).
Without loss of generality, we assumed that the software-defined networking
(SDN) technology is used to virtually expose a central satellite access point
to cache set N for all N available contents and facilitate communication and
coordination of the limited caching resources (i.e., the ACSs on the HAPs).
Furthermore, when a direct connection between a HAP and the central LEO
satellite is lost, our SDN controller dynamically reroutes data transmission
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through other available LEO satellites within the constellation through inter-
satellite links. This proactive approach minimizes the delay caused by the
loss of direct connection. In this model, LEO satellites provide backhaul
services for HAPs. The LEO satellite operates in the Ku band and is also
connected to a terrestrial gateway via a feeder link, providing access to the
core network and the Internet. The ACS on the HAPs obtains content from
the LEO satellite, v ∈ V , and proactively caches Ch popular content so that
large transmission delays can be reduced as each HAP h can directly transmit
its cached content to the GTs. We let bi,h = 1 indicate whether a GT i places
a content request to HAP h for time slot t; otherwise, bi,h = 0.

The downlink bandwidth of HAP h is Bh Hz and the bandwidth of the
LEO satellite v backhaul link is Bv Hz. As LEO satellites move at high speed
along their orbits and have very limited contact time with the HAP (h), they
may not be able to learn the global model training during its contact time
with the HAP (h). As mentioned, SDN technology is leveraged to create a
virtual LEO satellite for model training. This virtualization allows HAPs
to logically connect to a central LEO satellite, even though the HAPs may
be physically connected to different LEO satellites within a constellation.
Hence, SDN-based virtualization enables coordination and communication
between HAPs and the central LEO satellite, hierarchically facilitating the
distributed learning process.

3.2. Transmission Model

This section introduces the transmission models between GTs and HAPs
and HAPs and LEO satellites in the heterogeneous AAN.

3.2.1. HAP-GT Transmission Model

We only consider remote areas where terrestrial BSs do not exist; there-
fore, line-of-sight communication links can be made between HAPs and GTs.
For the HAP-GT (air-to-ground) link, all HAPs operate in the Ku band and
that the spectrum allocation for all HAPs is managed to avoid any possi-
ble intercell interference, whereas GTs were assigned to different orthogonal
sub channels without significant interchannel interference. Consequently, the
propagation channel of HAPs and GTs is modeled using the free space path
loss model. Each GT is associated with only one HAP in a time slot t, which
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can be expressed as follows:

H∑
h=1

ai,h[t] = 1,∀i ∈ I (1)

where ai,h = {0, 1},∀h ∈ H is the association indicator for GT i, where
ai,h = 1 indicates GT i is associated with HAP h, and ai,h = 0 otherwise. In
addition, the capacity of each HAP is limited and should satisfy the following:

I∑
i=1

ai,h[t] ·Bi
h[t] ≤ Bh, ∀h ∈ H, (2)

where Bh is the available bandwidth of HAP h, and Bi
h indicates the allocated

bandwidth for GT i by HAP h. Then, (2) ensures that the total bandwidth
used by the associated GTs does not exceed the available bandwidth Bh of
HAP h. We considered a line-of-sight communication link between HAP and
GT; thus, the channel power gain between HAP h and GT i in time slot t
can be obtained as follows:

Gh,i[t] = νd−γ1
h,i [t] =

ν

(A2
H+ ∥ κ − φ ∥2) 0.5γ

,∀i ∈ I, (3)

where ν = ghgi(
Λ

4πd0
) 2 is the channel power gain at the reference distance

d0 = 1 m. In addition, Λ denotes the wavelength, and gh and gi represent the
antenna power gains of the HAP h and GT i, respectively. dh,i[t] denotes the
distance between HAP h and GT i, and γ1 ≥ 2 is the path loss exponent. A2

H

represents the square of the altitude difference that accounts for the vertical
distance between the HAP h and the GT i. The horizontal locations of
HAP h ∈ H and GT i ∈ I are denoted as κ and φ, respectively, and the
horizontal distance between HAP h and GT i is represented as ∥ κ − φ ∥2.
Then the achievable transmission rate between HAP h and GT i for each
content transmission can be obtained as follow:

Rh,i[t] = Bi
h[t] · log2( 1 +

Ph,i[t]Gh,i[t]
σ2
i

) (4)

where Ph,i[t] is the transmission power of HAP h to GT i in time slot t, and
σ2
i is the variance of the Gaussian noise.
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3.2.2. LEO-HAP Transmission Model

For the LEO-HAP (space-to-air) transmission, each HAP can only asso-
ciate with one LEO satellite, but the LEO satellite can serve multiple Hv

HAPs at a time slot, which can be expressed as follows:

V∑
v=1

bh,v[t] = 1,∀h ∈ H, (5)

H∑
h=1

bh,v[t] ·Bh
v [t] ≤ Bv, ∀v ∈ V , (6)

where bh,v = {0, 1},∀v ∈ V is the association indicator for HAP h (i.e.,
bh,v = 1 indicates HAP h is associated with LEO satellite v, and bi,h = 0
otherwise). In addition, Bh

v is the allocated bandwidth for HAP h, and Bv is
the available bandwidth of the LEO satellite. Unlike the HAP-GT propaga-
tion channel, the LEO-HAP (space-to-air) channel can be modeled using the
Rician fading channel model with the additive white Gaussian noise, where
the channel fading coefficient is modeled as a circular symmetric complex
Gaussian random variable (i.e., Sv = X1 +X2i), where X1 ∼ N (µ1,

σ2

2
) and

X2 ∼ N (µ2,
σ2

2
) . Then, the achievable transmission rate of LEO satellite v

for the backhaul data transmission at time slot t is expressed as

Rv,h[t] = Bh
v [t] · log2( 1 +

Pv,h[t]|Sv|2d−γ2
v,h [t]

σ2
h

) (7)

where Bh
v is the allocated bandwidth for HAP h, Pv,h denotes the transmis-

sion power of LEO satellite v to HAP h, dv,h represents the distance from
the LEO satellite to HAP h, and σ2

h indicates the variance of the additive
white Gaussian noise at HAP h.

3.3. Caching Model

This section describes the caching model in the heterogeneous AAN. In
the considered heterogeneous AAN, Ith GTs are connected to each HAP,
h ∈ H. These GTs are interested in a set of popular content and send
content requests to the connected HAP, h. We assume that the number of
such content requests that arrive in a time slot t follows a Poisson distribution
with the parameter λt. Each HAP, h, proactively caches Ch content in its
ACS locally. If the requested content is cached (i.e., a cache hit), the HAP
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can directly transmit the content to the GT. Otherwise, the HAP must fetch
the requested content from the LEO satellite (i.e., a cache miss).

Without loss of generality, HAP h has a limited caching capacity of Mh.
Due to the limited cache space, a HAP cannot store all popular contents.
This necessitates to develop a policy for content placement in the cache.
The probability of caching popular content c in HAP h can be defined as
follows:

Ph,c =
ρc∑

c∈Ch ρc
, 0 ≤ Ph,c ≤ 1, (8)

where ρc denotes the predicted popularity value of c ∈ Ch. Content
popularity is influenced by contextual information, such as age, gender, and
occupation. The popularity of content c, denoted as, ρc, is computed using
our DNN-MLR approach within a HierFL framework, which allows to learn
the contextual information between GTs and contents. Then, for each HAP
h, the set of cache policies, Ph, can be expressed as follows:

Ph = Ph,1, Ph,2, . . . , Ph,Ch
, (9)

where Ph,c represents the probability of caching popular content c in HAP h.
Employing predicted content popularity for probabilistic caching is advan-
tageous over the conventional popularity-based methods because it caches
contents according to the GTs’ preferences and enhances cache efficiency by
avoiding excessive caching of popular contents Bera et al. (2020). High cache
hit rates, which reduce content delivery delays, are crucial for enhancing
cache performance, especially by caching popular content in the HAPs.

3.4. Delay Model

Once a content request is generated in a time slot t, the delay during
content delivery may occur for one of two reasons. First, the time to transmit
the content from HAP h is delayed if the content is cached in the cache of
HAP h. Second, if the content is not cached, the delay includes the time
required to transmit the content from LEO satellite v to HAP h, followed by
the transmission of the requested content from HAP h to GT i. Therefore,
we can calculate the delay during the delivery of the requested content from
HAP h to GT i as follows Bera et al. (2020):

ζi =
si
Rh,i

+ (1− Ph,c)
si
Rv,h

. (10)
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Then, the average delay for each GT i in a time slot t can be calculated
as follows:

δtavg =

∑H
h=1

∑Ith
i=1 bi,h · ζi∑H

h=1

∑Ith
i=1 bi,h

. (11)

where bi,h = 1 if the GT i generates a content request; otherwise, bi,h = 0,
and ζi indicates a delay during the delivery of requested content from HAP
h to GT i.

3.5. Privacy Preservation and Overhead

As discussed in Section 2, most existing ML-based approaches have ne-
glected the privacy concerns associated with GT data. In particular, cen-
tralized ML-based approaches involve transmitting GT data to the central
server over the network, neglecting privacy protection and infringing upon
GT privacy. Moreover, the overhead for model training is proportional to
the volume of data required for training the DL model at the central server.
In other words, all required data must be delivered throughout the networks
and consume significant communication resources.

In contrast, distributed ML approaches, such as FL, allow distributed
training of the shared global model across multiple GTs. Specifically, GTs
train DL models using their local data and share their model updates with
a central server. The central server aggregates these updates and returns an
updated global model. This approach ensures that sensitive GT data remain
on local devices and that only model updates are shared with the central
server. The communication overhead can be determined by the two key
factors 1) the size of model updates (Q) transmitted between GT i and HAP
h or between HAP h and LEO satellite v, and 2) the total communication
rounds required to achieve the desired accuracy or convergence. Accordingly,
the training overhead for model updates OFL is calculated as follows:

OFL =

 H∑
h=1

It
h∑

i=1

2K

κ1

+
V∑

v=1

H∑
i=1

2K

κ1κ2

Q, (12)

where K denotes the total number of training epochs, and κ1 and κ2

represent the number of epochs executed locally at the GT before updat-
ing the model to the HAP and at the HAP before updating the model to
the central LEO satellite, respectively. To elaborate further, the first term
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accounts for the overhead associated with each GT and HAP communica-
tion for model updates and the second term represents the overhead between
HAPs and LEO satellites in the HierFL process. Specifically 2K

κ1
corresponds

to the number of times HAPs aggregate local updates from GTs and 2K
κ1κ2

represents the aggregation of models by LEO satellites. The multiplication
by 2 in these terms accounts for bidirectional communication between GT
and HAP as well as HAP and LEO satellite.

In terms of the caching operation, the overhead due to caching inefficiency
Ot

cache can be defined as the volume of data that must be directly delivered
from LEO satellites to respond to GT requests as the requested content has
not been cached at the HAPs yet. Accordingly, Ot

cache can be calculated as
follows:

Ot
cache = Ph,csi. (13)

Then, the average overhead due to caching inefficiency over all GTs in a
time slot t can be calculated as follows:

Ot
avg =

∑H
h=1

∑It
h

i=1 bi,h · Ot
cache∑H

h=1

∑Ith
i=1 bi,h

. (14)

where bi,h = 1 if the GT i generates a content request; otherwise, bi,h = 0,
and Ot

cache denotes the caching inefficiency overhead.

3.6. Problem Formulation

In the considered heterogeneous AANs, GTs generate content requests.
Afterward, HAPs deliver this content (i.e., a cache hit), and the LEO satel-
lite serves as a backhaul for the HAPs (i.e., a cache miss). This study aims
to predict content popularity and proactively cache popular contents op-
timizing cache efficiency while preserving privacy in heterogeneous AANs.
This objective is achieved by learning the contextual information between
GTs and contents using a DNN-MLR approach within a HierFL framework.
Cache efficiency and content delivery delay and caching inefficiency overhead
are inversely proportional; thus, we aim to minimize content delivery delay
and caching inefficiency overhead while optimizing the cache policy, Ph, to
achieve this goal. Therefore, the cache policy, Ph, should be optimized to
obtain the minimum value of content delivery delay, δtavg, and the minimum
value of caching inefficiency overhead, Ot

avg, for time slot t. In addition, the
training overhead, OFL, for model updates can be independently reduced by
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applying an appropriate Hier-FL model. Hence, we involved, δtavg, and, Ot
avg,

in the objective function and formulate the optimization problem as follows:

min
Ph

γdδ
t
avg + γoOt

avg (15)

s.t (1), (2), (5), (6), (8),

where γd and γo denote the weights assigned to the average content deliv-
ery delay and caching inefficiency overhead, respectively. To address this
problem, we employ a DNN-MLR-based HierFL approach, enhancing con-
tent popularity prediction accuracy and, consequently, optimizing the cache
policy, Ph. This optimized cache policy influences both content delivery de-
lay and caching inefficiency overhead, aligning with the objectives defined
in the optimization problem. Thus, the proposed DNN-MLR-based HierFL
approach and the formulated optimization problem are intertwined, jointly
dedicated to minimizing average content delivery delay and caching ineffi-
ciency overhead while optimizing the cache policy to enhance overall network
performance.

4. Hierarchical Federated Learning-Based Proactive Content-Caching
Scheme

This section elaborates on the proposed HierFL-PCC scheme in heteroge-
neous AANs. We first describe federated DL based on DNN-MLR and then
introduce the HierFL-PCC. The proposed HierFL-PCC scheme aims to en-
hance cache efficiency by improving the accuracy of the content popularity
prediction with privacy preservation while reducing the training overhead,
caching inefficiency overhead, and content delivery delay. Determining the
optimal value of cache policy Ph for the optimization problem (15) can be di-
rectly translated to finding an accurate prediction of the popularity of cached
content at HAP h Fadlullah and Kato (2020); Bera et al. (2020).

Recently, DL has gained popularity in predicting content popularity in
edge caching networks. However, traditional DL models are trained using
centralized data collection, which poses privacy concerns. Therefore, FL was
introduced to enable distributed training without centralizing the data to
address this issue. However, most FL-based solutions rely on a single param-
eter server on the cloud or edge, leading to poor training efficiency or per-
formance loss. HierFL-based approaches have been introduced to overcome
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these limitations, comprising a hierarchical model with a cloud parameter
server and multiple edge parameter servers. This approach achieves a better
computation-communication training trade-off and preserves data privacy by
preserving sensitive data at the GTs, while the cloud parameter server and
multiple edge parameter servers are trained on aggregated data. Similar
to FL, the goal of HierFL is to minimize the loss function for an accurate
prediction of the content popularity:

min
w

L(w) =
I∑

i=1

|D′
i|

|D′|
li(w), (16)

li(w) =
1

|D′
i|
∑
j∈D′

i

lj(w), (17)

where D′ = {xj, yj}|J |j=1 is the dataset distributed across I GTs, xj denotes
the jth data sample, yj represents the corresponding label, and |J | indicates
the total number of data samples. Moreover, D

′
i is the local dataset of GT i,

and li(w) is the loss of the prediction on the D
′
i dataset with the parameter

w. Minimizing the weighted average of the local loss function optimizes the
loss function L(w) on FL.

Thus, we use the FL approach to solve the problem in this study. In
particular, we propose a proactive content-caching scheme based on HierFL.
In the proposed scheme, multiple GTs train a DNN-MLR model, where each
HAP is treated as an edge parameter server, and the LEO satellite is consid-
ered a cloud parameter server for HierFL model aggregations. The proposed
scheme is HierFL-PCC, described in detail in the following section.

4.1. Federated Deep Learning

Federated learning (FL) is a distributed training algorithm that involves
two main steps: a local model update based on the dataset stored on the
GTs and a global model aggregation at the cloud or edge. In FL, the cloud
or edge server acts as the central parameter server, and GTs within its com-
munication range collaborate to train a DL model. To predict the content
popularity for proactive content-caching, we trained a DNN-MLR model. A
MLR model for GT i with k predictor variables x1

i , x
2
i , · · · , xk

i and a depen-
dent variable Pyi can be defined as follows:

Pyi = w0 + x1w1 + x2w2 + · · ·+ xkwk + ϵ, (18)
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where w1, w2, · · · , wk represent the coefficients of the predictor variables, and
ϵ is a random experimental error. The application of MLR, in our model pro-
vides a computationally efficient way to account for the influence of multiple
predictor variables on content popularity. Furthermore, the addition of a
DNN enhances the model’s ability to capture complex and non-linear rela-
tionships, thereby improving the prediction accuracy. The DNN is trained
with the Adam optimization algorithm and allowed the weights to be ad-
justed to minimize loss during subsequent evaluations. The proposed DNN-
MLR method employs the mean squared error (MSE) as the loss function,
measuring the difference between predicted and actual values for each data
sample. Specifically, the loss function is defined as follows:

L(w, ϵ) =
1

|J |

J∑
j=1

(Pyj − yj)
2, (19)

where L(w, ϵ) captures the prediction error of the model for the jth data
sample. The step-by-step procedure of DNN-MLR is given in Algorithm 1.
The training dataset is distributed across I GTs in the FL setting. Thus,
we computed the loss on local datasets distributed among I GTs, which can
be computed in the form of a weighted average of the local loss function:

li(w, ϵ) =
1

|D′
i|
∑
j∈D′

i

lj(w, ϵ), (20)

min
w

L(w, ϵ) =
I∑

i=1

|D′
i|

|D′|
li(w, ϵ). (21)

The FL algorithm communicates and aggregates local models every k step
of the optimization algorithm (e.g., Adam) performed on the local dataset at
each GT i to minimize the communication overhead (McMahan et al., 2017).
Specifically, the model is trained locally on GTs for k steps until k ̸= 0.
Then, each central parameter server aggregates local models from its GTs
when k = 0. The parameters of the local model on GT i are denoted as wi(k),
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Algorithm 1 Deep neural network multiple linear regression (DNN-MLR)
execution on a ground terminal

1: procedure DNN-MLR(D
′

i, w, ϵ)
2: X ←− Features
3: Y ←− Labels
4: Initialize α
5: for each epoch k = 1, . . ., K do
6: for each batch β do
7: xj ←− Features (β)
8: yj ←− Label (β)
9: Pyj

←− Model(xj)
10: Calculate loss lj(Pyj , yj)
11: end for
12: end for
13: end procedure

and the evolution of wi(k) in FL is described by the following equation:

wi(k) =


wi(k − 1)− ηk▽li(wi(k − 1)) k|κ ̸= 0

∑I
i=1 |D

′
i |[wi(k−1)−ηk▽li(wi(k−1))]

|D′ | k|κ = 0.

, (22)

where ηk denotes the fixed learning rate (LR). Aggregating global models at
the central parameter server can be considered a method of sharing informa-
tion between GTs. In particular, model aggregation at the cloud parameter
server can involve numerous GTs, but it incurs high communication costs.
Conversely, model aggregation at the edge parameter server involves only a
small number of GTs, and the communication cost is much lower. Therefore,
the cloud-based and edge-based FL techniques are similar in architecture but
differ in communication costs and the number of participants. A trade-off
exists between communication efficiency and the convergence rate for cloud-
based FL, where less communication requires more local computation (Li
et al., 2019). In contrast, edge-based FL provides computation latency com-
parable to communication to the edge server. However, one drawback of this
approach is that only a limited number of GTs can be accessed by each edge
parameter server, reducing training performance. Thus, combining cloud and
edge-based FL can be beneficial, allowing access to numerous training sam-
ples from cloud-based FL while benefiting from efficient model updates with
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Figure 2: HierFL-PCC architecture for heterogeneous AANs.

the GTs through the edge server. To address these problems of the exist-
ing FL and combine the advantages of cloud-based and edge-based FL into
one system, researchers introduced a HierFL framework that enhances the
training performance by accessing large data samples from the cloud while
reducing costly communications with the cloud, supplementing efficient GT-
edge updates (Liu et al., 2020). Hence, we leveraged the proposed HierFL
algorithm for proactive content-caching in a heterogeneous AAN. The details
of the proposed HierFL-PCC scheme are explained in the following section.

4.2. Hierarchical FL-based Proactive Content-Caching

We considered a heterogeneous AAN comprising a hierarchical model of
the LEO satellite, multiple HAPs, and several GTs. The GTs send content
requests to the connected HAPs. In the proposed caching scheme, each HAP
actively stores a set of content within its ACS. Upon receiving a content
request, the HAP checks the content in its local cache and directly delivers it
to the GT if it was cached. In the event of a cache miss, the HAP fetches the
requested content from the LEO satellite and delivers it to the GT, increasing
the content delivery delay. Thus, to maximize the cache efficiency on HAPs,
we introduced the HierFL-PCC scheme that predicts content popularity and
proactively caches the most frequently requested content in the HAPs.
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Algorithm 2 Hierarchical federated learning proactive content-caching pre-
diction in heterogeneous aerial access networks

1: procedure hierarchical federated averaging
2: Initialized all GTs with parameters: w
3: for epochs k = 1, . . ., K do
4: for each GT i = 1, . . ., I do
5: Update wh

i ←− wh
i (k − 1)− ηk▽lhi (w

h
i (k − 1))

6: if k|k1 = 0 then
7: for each HAP h = 1, . . ., H do
8: wh(k)←− HAPAggregation(wh

i (k))i∈It
h

9: if k|k1k2 ̸= 0 then
10: for each GT i ∈ Ith do
11: Update wh

i (k)←− wh(k)
12: end for
13: end if
14: end for
15: end if
16: if k|k1k2 = 0 then
17: w(k)←− LEOAggregation(wh(k))Hh=1

18: for each GT i = 1, . . ., I do
19: Update wh

i (k)←− w(k)
20: end for
21: end if
22: end for
23: end for
24: end procedure
25: function HAPAggregation(h,wh

i (k))i∈It
h
)

26: wh(k)←−
∑

i∈It
h
|D

′h
i |[wh

i (k)]

|D′h|
27: return wi(k)
28: end function
29: function LEOAggregation(h,wh(k))

H

h=1)

30: w(k)←−
∑H

h=1 |D
′h[wi(k)]

|D′|
31: return w(k)
32: end function

The proposed HierFL-PCC architecture consists of a virtual central LEO
satellite (enabled by SDN technology), v, acting as a cloud, H HAP servers
with disjoint GTs set {Ith}Hh=1 as edge devices, and Ith GTs with distributed

datasets {D′h
i }

It
h

i=1, as depicted in Fig. 2. Each edge parameter server, h,
aggregates model updates from its GTs, where the aggregated dataset under
HAP h is denoted by D

′h. The proposed HierFL-PCC architecture extends
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the hierarchical FAVG algorithm at two levels (i.e., edge parameter server at
HAP and cloud parameter server at LEO satellite) (Liu et al., 2020). In the
hierarchical FAVG learning algorithm, each edge parameter server aggregates
its GT models after every κ1 local updates on each GT. Then, after every κ2

HAP aggregation instances, the cloud parameter server at LEO aggregates
all HAP models; thus, the communication with the LEO happens every κ1κ2

local updates on GTs and HAPs. For instance, HAP h aggregates local
models from Ith GTs every κ1 local updates on each GT (e.g., k|κ1 = 0
and k|κ1κ2 ̸= 0), resulting in a partially updated model. In the next step,
the partially aggregated model is sent back to the GTs, where GTs perform
local model training until k|κ1 ̸= 0. This GT-HAP training process continues
until k|κ1κ2 = 0; therefore, after every κ2 edge model aggregation instances
at each HAP h, the cloud parameter server located at the LEO aggregates all
partially updated HAP models. Thus, communication with the LEO occurs
every κ1κ2 local updates. Compared to cloud-based FL, HierFL reduces
communication costs with the LEO satellite cloud while still accessing more
training data. The parameters of the local model updates for HAPs with a
disjoint set of GTs {Ith}Hh=1 at the LEO satellite are denoted by wh

i (k). Then,
the evolution of wh

i (k) in HierFL is described below (Liu et al., 2020):

wh
i (k) =



wh
i (k − 1)− ηt▽lhi (w

h
i (k − 1)) k|κ1 ̸= 0

∑
i∈Ih

|D′h
i |[wh

i (k−1)−ηk▽Lh
i (w

h
i (k−1))]

|D′h|
k|κ1 = 0

k|κ1κ2 ̸= 0

∑I
i=1 |D

′h|[wh
i (k−1)−ηk▽Lh

i (w
h
i (k−1))]

|D′| k|κ1κ2 = 0

(23)

where wh
i (k − 1) − ηt▽lhi (w

h
i (k − 1)) represents the HierFL parameter of

the GT,
∑

i∈Ih
|D′h

i |[wh
i (k−1)−ηk▽Lh

i (w
h
i (k−1))]

|D′h| indicates the HierFL parameter of

the GT at the edge parameter server h, and
∑I

i=1 |D
′h|[wh

i (k−1)−ηk▽Lh
i (w

h
i (k−1))]

|D′|
represents the HierFL parameter of the GT at the LEO satellite, v. The
training process repeats until the model reaches the desired accuracy.

We formally present the proposed HierFL-PCC scheme for a heteroge-
neous AAN in Algorithm 2. First, the algorithm randomly initializes the
GTs with the parameters (w0). Next, the local model updates at the GTs
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are computed in parallel using the DNN-MLR method (Lines 4 and 5), and
the updated parameters are uploaded to the HAPs. The more frequent com-
munications with the edge parameter server located at HAP h (i.e., fewer
local updates κ1) can accelerate the training process when the communica-
tion frequency with the cloud parameter server at the LEO satellite is fixed
(i.e., κ1κ2 is fixed). Then, the edge parameter servers aggregate uploaded
models at the HAP h using the hierarchical FAVG algorithm (Lines 7 and
8). After the edge aggregation, an updated (partial) model is transmitted
to the GTs and then used by each GT in the coverage area of h to perform
local updates (i.e., k|κ1 ̸= 0) (lines 10–11). After the number of edge ag-
gregations (i.e., κ1κ2 = 0), the model is aggregated globally at the cloud
parameter server in Lines 17 to 19. Finally, Lines 25 to 32 describe the
HAP aggregation and LEO aggregation methods, respectively. The process
repeats until the model reaches the desired accuracy. The HierFL algorithm
can be deployed in a distributed computing environment consisting of GTs,
HAPs, and the LEO satellite cloud in this study. It is a hierarchical model
comprising GTs, HAPs, and the LEO satellite that combines the advantages
of cloud-based and edge-based FL systems. Specifically, GTs perform local
updates on their devices, edge parameter servers at HAPs aggregate GTs
models, and the LEO satellite cloud aggregates the HAP models. As soon
as the learning process completes, the predicted popular contents are cached
based on the caching policy Ph in HAP h.

4.3. Complexity Analysis

The time complexity of the HierFL-PCC algorithm primarily depends
on the computational complexity of training the DNN-MLR model, which
serves as a function approximator. During the DNN-MLR model training,
data is organized into batches, and the time complexity per data sample is
influenced by the number of layers in the model denoted as hL, and the num-
ber of neurons within each layer, represented as nL. The number of training
iterations required for the neural network training depends on the maximum
number of training epochs, denoted as K, and the batch size, referred to as
β, as shown in Algorithm 1. Thus, according to Yu et al. (2020), the time
complexity for updating the model parameters at the GT i can be estimated
as O(K( β · hL · n2

L ) ), which directly characterizes the model parameters,
denoted as MP , for the GT i. Furthermore, the time complexity for updating
the model parameters across all GTs in I can be estimated as O( I ·MP ).
In the proposed HierFL-PCC scheme, the computational complexity transi-
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Table 2: Simulation Parameters

Parameters Value

Number of GTs, |It| 33

Number of GTs under one HAP,
|Ith|

32

Number of HAPs, |Ht| 31

HAP altitude, AH 20 km
Coverage radius of the HAP 46 km
LEO satellite height, Av 500 km
Distance between the HAP and
GT, dh,i[t]

[20, 50]

Transmission power, Ph,i[t] 2 W
Downlink frequency, fh,i[t] 12 GHz
Bandwidth, Bh 10 MHz
Antenna power gain at the HAP
and GT, gh, gi

30 dBi

Transmission power, Pv,h[t] 2 W
Downlink frequency, fv,h[t] 15 GHz
Bandwidth, Bv 20 MGz
Training epochs, K 5x102

Hidden layers 3
Neurons per hidden layer 32,24,16
Activation function for the hid-
den layer

ReLU

Activation function for the out-
put layer

ReLU

Optimizer Adam
Learning rate α 1e− 3
Batch size, β 104

Update frequencies, κ1, κ2 10, 5
Size of the content, s 1 Mb

tions beyond GTs’ local updates as the HierFL-PCC algorithm introduces
two aggregation levels: edge parameter server at HAP h and cloud parame-
ter server at a LEO satellite v. Specifically, each HAP h aggregates its GT
model parameters after every κ1 local updates on each GT and after every
κ2 HAP aggregations, the LEO satellite v aggregates all HAP models. The
time complexity for model aggregations at HAPs and LEO satellite can be
estimated respectively as O( K

κ1
(H ·Ith ·MP ) ) and O( K

κ1κ2
(H ·MP ) ). Thus,

the time complexity of the proposed HierFL-PCC algorithm can be expressed
as O( I ·MP ) + O( K

κ1
(H · Ith ·MP ) ) + O( K

κ1κ2
(H ·MP ) ).

In terms of considering the potential deployment scenarios, we envision
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that HierFL-PCC can be seamlessly integrated into existing networks. Due
to its hierarchical structure, it can accommodate different network sizes and
architectures, making it suitable for real-world applications such as content
delivery networks, edge networks, and satellite communications. These dis-
tinctive characteristics enable HierFL-PCC as an effective solution for en-
hancing cache efficiency across different network environments.

5. Numerical Simulations

This section evaluates the proposed HierFL-PCC scheme based on the Hi-
erFL model among the GTs, HAPs, and the LEO satellite to collaboratively
predict the popular content for GTs with privacy preservation. First, the
simulation setup and dataset are described. Subsequently, the performance
evaluation of the HierFL model is explained. We then compared the pro-
posed HierFL-PCC scheme with baseline caching schemes regarding caching
efficiency, delivery delay, and training overhead.

5.1. Simulation Setup and Dataset

We simulated a heterogeneous AAN in remote areas consisting of an LEO
satellite, three HAPs (H = 3) under the coverage of an LEO satellite, and
several GTs distributed within the coverage area of the HAPs and request
contents. The number of GTs under the coverage of each HAP varies from
one to nine. The LEO satellite, deployed at an altitude of 500 km is moving
periodically and may depart from the connections with HAPs under coverage
over time. However, when the data relayed by HAPs arrive at the LEO
satellite, the data can be guaranteed back to Earth through inter-satellite
links between LEO satellites. The maximum coverage radius of the HAP is
set to 46 km, and the downlink frequency is set to 12 GHz. The transmission
power of the HAP is 2 W, and the bandwidth is assumed to be 10 MHz.

The proposed HierFL-PCC scheme uses PyTorch 2.0 with Python 3.11.3
on a computer powered by an Intel (R) Core (TM) i7-10700F CPU with a
frequency of 2.9 GHz and RAM of 16 GB. The graphics card was an Nvidia
GeForce GTX 1050Ti with 12 GB of total memory. Prior to running the
simulations, we developed a fully connected DNN-MLR model with three
hidden layers, and the number of neurons in the corresponding hidden layers
was set to 32, 24, and 16. We used the rectified linear unit activation function
for the output and other layers. The LR for the DNN was set to 1e− 3, and
the training epochs were set to 5x102.
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Figure 3: Loss function value over the growing number of epochs for various learning rates.

The proposed HierFL-PCC scheme is evaluated using the real-world dataset
MovieLens (Harper and Konstan, 2015). The MovieLens 100K dataset con-
tains 100,000 ratings on 1,682 movies from 943 users. This dataset provides
the contextual information of users, such as gender, age, and occupation.
The rating scale is 0 to 5, where each user rates 20 movies. To simulate the
content requests, we follow an approach where the rated movies represent
the files requested by the GTs, where each movie rating corresponds to a
streaming request from the GT (Müller et al., 2016; Li et al., 2016; Yu et al.,
2018). It is notable that while the dataset is distributed among the GTs
to capture diverse user preferences, the DNN-MLR model training occurs
exclusively at the GTs, leveraging the contextual information and content
ratings to predict popular contents. The model weights derived from the
GTs’ DNN-MLR training are shared among the HAPs and LEO satellites
for HierFL model training while the MovieLens dataset is not shared among
the HAPs or LEO satellites, which ensures the integrity of the dataset as
the contents of the dataset remain unchanged during the simulation. Table 2
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Figure 4: Loss value over training epochs for values of k1 and k2.

describes the parameters and values used during the simulation. The pro-
posed HierFL-PCC scheme was compared to four baseline caching schemes,
which have been employed as benchmarks in recent related works focusing on
proactive caching (Yu et al., 2018, 2020; Cui et al., 2020; Feng et al., 2023),
as detailed below.

• Random caching scheme: In a random caching scheme, content stored
in the cache is randomly selected by the HAPs.

• Least frequently used (LFU) caching scheme: In an LFU caching scheme,
the LFU cache content is removed when the capacity is reached.

• Least recently used (LRU) caching scheme: In an LRU caching scheme,
the least recently accessed or used content is removed when the cache
is full.

• Cloud-based FAVG caching scheme: We implemented a cloud-based
FAVG method using the LEO satellite as a central cloud for model
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Figure 5: Loss comparison of the HierFL-PCC scheme and existing cloud-based FL using
the FAVG method over communication rounds

aggregation. It employs the same DNN-based predictive approach as
HierFL-PCC, caching popular contents to optimize cache performance.
It allows to evaluate proposed caching scheme against FL-based proac-
tive content-caching scheme.

• Proposed caching scheme (HierFL-PCC): The proposed HierFL-PCC
scheme leverages a DNN-MLR-based HierFL model to predict the pop-
ularity of contents requested by GTs and maximizes the cache efficiency
and reduces content delivery delay and training overhead.

5.2. Performance Evaluations

This section studies the performance of the proposed HierFL-PCC scheme
in terms of cache efficiency, delivery delay, and training overhead reduction.
First, we perform simulations to evaluate the performance of the HierFL
method. The results are plotted in Figs. 3 and 4. Figure 3 demonstrates the
value of the loss function over the increasing number of epochs for different
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LR values. The Adam optimizer employs the LR of the fully connected DNN
to update the weight parameter w of the DNN to make the prediction. As
the number of epochs approaches 10, the loss (MSE) achieved with an LR
= 1e − 3 is minimized and continues to be lower throughout the remaining
number of epochs than those with an LR = 1e − 2 and 1e − 4. Therefore,
we selected the training result with LR = 1e − 3 to evaluate the remaining
performance comparison of the proposed HierFL-PCC scheme. Figure 4 il-
lustrates the convergence performance of the proposed HierFL-PCC scheme
in terms of the value of loss (MSE) function over training epochs. Based on
the convergence analysis provided in Liu et al. (2020), we selected the update
frequencies such that the product of κ1 and κ2 is constant to maintain a fixed
number of local updates between the two LEO aggregations. Therefore, we
fixed the communication frequency with the LEO satellite cloud at 50 local
epochs (i.e., κ1κ2 = 50) and changed the value of κ1 and κ2. Then, we have
three combinations of the values of κ1 and κ2 for the product of κ1 and κ2

to be fixed (i.e., κ1κ2 = 50). The lowest loss value can be reached when κ1

= 10, minimizing the loss with fewer local computations. It also reveals that
frequent communications with HAP for partial model aggregation acceler-
ate the training process when the communication frequency with the LEO
satellite for global model aggregation is fixed.

Next, simulations were conducted using the HierFL-PCC scheme and
cloud-based FAVG method to evaluate the loss performance. The result is
plotted in Fig. 5. The communication rounds varied from one to 10. Fig-
ure 5 reveals that the loss value using the FAVG method is higher than that
of HierFL, even after the first communication round. In contrast, HierFL
achieves superior loss function improvement during the early communication
rounds and continues its performance throughout the considered communica-
tion rounds. HierFL outperforms the cloud-based FAVG method due to fewer
local computations and more frequent HAP aggregation occurrences. Cache
efficiency is a performance metric for the proposed HierFL-PCC scheme, mea-
suring the ratio of cache hits to the total number of content requests on the
cache. In Fig. 6, we compared the cache efficiency over the communication
rounds for 100%, 60%, and 20% GT participation. More communication
rounds are needed to achieve a suboptimal cache efficiency of 30% with a
20% GT participation, whereas it only takes only five communication rounds
to reach the suboptimal cache efficiency of 30% with full (100%) GT par-
ticipation. However, a cache efficiency with 60% GT participation is still
considered reasonable compared to that of 100% GT participation.
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Figure 6: Caching efficiency comparison of the proposed HierFL-PCC for 100%, 60%, and
20% ground terminal participation over the communication rounds.

Figure 7 depicts the cache efficiency for varying cache sizes from 50 to 300
content items. As depicted in Fig. 7, the cache efficiency of all the comparison
caching schemes increases as the cache size increases. The results indicate
that the proposed HierFL-PCC scheme achieves a cache efficiency of 13%,
43%, 178%, and 457% compared to the cloud-based FAVG, LFU, LRU, and
random caching schemes, respectively. The HierFL-PCC scheme outperforms
the cloud-based FAVG method because it achieves superior loss function im-
provement due to a better computation-communication trade-off. However,
the cloud-based FAVG scheme indicates better cache performance than the
LFU, LRU, and the random caching schemes because the cloud-based FAVG
scheme employs the DNN to learn contextual information between GTs and
content requests. In contrast, the LFU , LRU, and random caching schemes
do not observe past requests. LFU, considering frequency, and LRU, factor-
ing in the recency, both reduce caching efficiency compared to cloud-based
FAVG and HierFL-PCC schemes. LFU struggles to adapt to changing con-
tent requests, while LRU, lacks the dynamic adaptability demonstrated by
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HierFL-PCC. Figure 8 depicts the average delay in delivering the requested
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Figure 7: Caching efficiency comparison of the proposed HierFL-PCC and existing schemes
over cache size.

content for each GT. The average delay comparison is made against 9, 18,
and 27 GTs. As depicted in Fig. 8, the average delay is 10%, 20%, 31%,
and 37% less than that in the cloud-based FAVG, LFU, LRU, and random
caching schemes, respectively, because the HierFL-PCC scheme improves
cache performance and an increase in cache performance directly reduces
the delay associated with content delivery. Figure 9 presents the overhead
reduction regarding the volume of data transmitted in each communication
round and the total number of communication rounds. We compared the
communication cost of the HierFL-PCC with that of the cloud-based FAVG,
where 10 communication rounds were considered. As depicted in Fig. 9, the
communication cost of the proposed HierFL is 89% lower than that of the
traditional cloud-based FAVG, explaining the efficiency gains of HierFL com-
pared to the cloud-based FAVG because HierFL significantly reduces costly
cloud communications, supplemented by efficient edge communications.
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Figure 8: Average delay comparison of the proposed HierFL-PCC and existing caching
schemes with varying numbers of ground terminals.

6. Conclusion

The current mobile access networks prioritize high throughput and low
delay but lack coverage in remote areas. To address this issue, heteroge-
neous AANs serve as a complementary solution to overcome the limitations
of ground-based networks and provide content requests in remote and under-
served areas. This paper introduced the privacy-preserving intelligent proac-
tive content-caching scheme HierFL-PCC. The proposed scheme leverages
the HierFL model involving GTs, HAPs, and the LEO satellite constella-
tion in heterogeneous AANs. First, we analyzed the heterogeneous AAN
system from multiple perspectives, such as the transmission model, caching
model, delay model, privacy preservation, and overhead calculation. Then,
we proposed the HierFL-PCC scheme to predict dynamic content requests
from GTs to maximize caching efficiency while preserving the privacy of GTs.
The requested content is directly accessed from the HAPs instead of the LEO
satellite, reducing the delay and overhead associated with content delivery.
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Figure 9: Overhead reduction comparison of the proposed HierFL-PCC and existing cloud-
based FAVG method.

In addition, HierFL-PCC reduces the communication overhead involved in
model training by reducing the costly LEO-HAP communications and supple-
menting efficient HAP-GT communications in model training. Furthermore,
the numerical experiments revealed that HierFL-PCC outperforms the base-
line caching schemes regarding cache efficiency, content delivery delay, and
training overhead. In future work, we intend to evaluate the performance
of the proposed HierFL-PCC scheme across different network environments
and explore the challenges of proactive content-caching, taking into account
factors such as network congestion, varying user densities, and heterogeneous
device capabilities.
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