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Abstract: Unmanned aerial vehicle (UAV) communication is regarded as a promising technology for1

lightweight Internet of Things (IoT) communications in narrowband-IoT (NB-IoT) systems deployed2

in rugged terrain. In such UAV-assisted NB-IoT systems, the optimal UAV placement and resource3

allocation play a critical role. Consequently, the joint optimization of the UAV placement and4

resource allocation is considered in this study to improve the system capacity. Because the considered5

optimization problem is an NP-hard problem and owing to its non-convex property, it is difficult to6

optimize both the UAV placement and resource allocation simultaneously. Therefore, a competitive7

clustering algorithm has been developed by exchanging strategies between the UAV and the adjacent8

IoT devices to optimize the UAV placement. With multiple iterations, the UAV and the IoT devices9

within the coverage area of the UAV, converge their clustering strategies, which are suboptimal, to10

satisfy both sides. The bordering IoT devices of the adjacent clusters are then migrated heuristically11

toward each other to obtain the optimal system capacity maximization. Finally, the transmission12

throughput is optimized using the Nash equilibrium. The simulation results demonstrate that the13

algorithms proposed in this study exhibit rapid convergence, within 10 iterations, even in a large14

environment. The performance evaluation demonstrates that the proposed scheme improves the15

system capacity of the existing schemes by approximately 28%.16

Keywords: UAV communication; UAV placement; Stackelberg game theory; capacity optimization;17

energy efficient; Internet of Things.18

1. Introduction19

Unmanned aerial vehicle (UAV)-assisted communications have gained widespread attention for20

their contribution toward human convenience and efficient line-of-sight (LoS) links [1] from the air to21

the ground. In addition, in various fields, such as agriculture and logistics, the use of UAVs is popular22

and common, and virtually essential[2][3]. Therefore, extensive research on UAV communications23

in wireless systems has been carried out recently to serve mobile users in complex urban areas as24

well as remote locations, where terrestrial communication is extremely difficult. This issue is more25

critical in Internet of Things (IoT) systems because IoT devices are typically limited to small battery26

capacities and therefore, are used in short-distance communication[4][5]. Additionally, lightweight IoT27

devices are deployed to collect field information in the cases of natural disasters and other emergency28

situations [6–10]. The utilization of UAVs to assist such IoT systems with the narrowband-IoT (NB-IoT)29

technology is a novel solution [11][12].30
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The UAV placement and subchannel assignment are essential factors to be considered in order31

to improve the system capacity and to achieve efficient UAV utilization and high performance in the32

NB-IoT system. The IoT devices form a cluster corresponding to the deployment location of the UAV,33

which transitions to an optimization problem for efficient resource utilization [13][14]. Essentially, after34

calculating the optimal location of the UAV through an efficient clustering algorithm, an improved35

multiple UAV-assisted NB-IoT system can be derived by solving the problem of optimal resource36

allocation in clustering [15–17]. In previous studies [18][19], the UAV placement was optimized37

by solving the clustering problem of the IoT devices by using the K-mean traditional clustering38

method. The optimal subchannel assignment was then performed for the fixed cluster set, based on the39

corresponding clustering method. However, these techniques do not consider the total system-wise40

optimization that can be achieved by an iterative algorithm. In addition, since considered optimization41

problem is an NP-hard problem and has non-convex property, it is difficult to optimize both the42

UAV placement and resource allocation simultaneously. In particular, the positional relationship43

between the UAV and the IoT devices, which is initially determined, affects the throughput in44

communication [20][21]. Therefore, this paper proposes a heuristic algorithm that iteratively converges45

to a suboptimal UAV placement based on a game-theoretic approach to overcome this problem.46

The Stackelberg game model is a non-cooperative game theory model consisting of a leader who47

decides the preemptive strategy and a follower who chooses the best strategy for each or common48

interest according to the leader’s preemptive strategy [22][23]. The leader considers the strategies of49

their followers and decides on a strategy which maximizes own profits. The determined strategy is50

passed on to all followers, and the followers re-establish the strategy based on a preemptive strategy51

in non-cooperative and competitive state. This process is iterated until the strategies of both side are52

no more changes and converged. The convergence of the two sides to a state of strategic equilibrium53

where they choose the best strategy is called the Nash Equilibrium (NE). In this model, UAV roles the54

leader and IoT devices role the followers.55

In previous studies [24][25], a solution of joint optimization problem for energy efficiency and56

task allocation, and the solution of joint optimization problem for path planning and access point57

selection based on quality of service (QoS) was proposed. In both studies, due to the joint optimization58

problem which has nature of both NP-hard problem and high complexity, game theoretic approach is59

considered with cooperative rule and deep reinforce learning (DRL), respectively. However, in the60

competition system for subchannel allocation, the coalition formation game model is not suitable.61

In addition, it is necessary to consider clustering of UAVs in the total system along with UAVs that62

become massive.63

Therefore, the algorithm proposed in this study involves the exchange of competitive strategies64

between the UAV and each IoT device within the coverage of the UAV to obtain the optimal IoT device65

clusters corresponding to the system capacity maximization with Stackelberg game theoretic approach.66

The contributions of this paper are summarized as follows.67

• Based on the assumption that a UAV is placed at the center of the IoT cluster within its coverage68

area, we developed a competitive clustering algorithm for all the UAVs and IoT devices in the69

network. The IoT devices determine the UAV that can maximize the transmission throughput.70

The UAV simultaneously calculates the optimal placement in order to minimize the power71

consumption (i.e., the maximum operation time) when all the IoT devices within the coverage72

area are considered. Therefore, the challenges of joint optimization of UAV-related problems can73

be resolved based on Stackelberg game theoretic approach in competitive environment.74

• The adjacent clusters are then heuristically calculating to contain the non-clustered IoT devices75

so as to obtain the optimal system capacity maximization. The distance between the UAV and76

the non-clustered IoT devices is calculated, the UAV energy consumption and system capacity77

maximization are considered, and the non-clustered IoT devices are assigned to the appropriate78

cluster based on Stackelberg game theoretic approach based on Nash equilibrium.79
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• The simulation results demonstrate that the proposed algorithm exhibits rapid convergence to80

the suboptimal solution and is observed to significantly increase the system performance by81

approximately 28% when compared to the existing methods.82

This paper consists of the following sections. In Section 2, the overall clustering and containing83

algorithms are formulated. The design of the total optimization of the cluster-based multiple UAV84

placement is presented in Section 3. Subsequently, the performance of the proposed algorithms is85

evaluated in Section 4. Finally, the conclusion and future scope are presented in Section 6.86

2. System Model and Problem Formulation87

Figure 1. Proposed multi UAV-assisted IoT system.

This paper proposes a multiple UAV-assisted IoT system composed of M UAVs and N IoT nodes,88

as shown in Figure 1. In this system model, it is assumed that a ground station (GS) manages and89

controls all the UAVs. That is, the channel state information (CSI) and the state information of the90

UAVs are periodically updated to the GS. We also assume that the CSI is constant over the timeframe.91

In this scenario, the coverage area of the UAV is determined by the altitude of the UAV that manages92

the IoT cluster. Furthermore, it is assumed to exclude uncertain environmental factors such as strong93

wind, thunder strike, etc., because we assumed that GS also control the external environmental factors.94

As a result, the energy consumption of the UAV for communication with an IoT node varies depending95

on the altitude and location of the UAV.96

2.1. System Model97

M = {1, 2, · · · , m, · · · , M− 1, M} and N = {1, 2, · · · , N − 1, N} denote the sets of M UAVs and
N IoT nodes, respectively. hm denotes the height of UAV m from the ground. The set of IoT nodes that
are served by the UAV m is denoted by Ω = {Ωm | m = 1, 2, . . . , M}. The 3D coordinates of the UAV
m and IoT node n are expressed by Λm(xuav

m , yuav
m , hm) and (xnode

n , ynode
n ), respectively. The distance

between the mth UAV and the nth IoT node on the ground can be expressed by projecting in the x-y
plane as follows:

lm,n =
√
(xuav

m − xnode
n )2 + (yuav

m − ynode
n )2. (1)

Therefore, the distance in 3D coordinates is calculated as follows:

dm,n =
√

l2
m,n + h2

m (2)
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In the proposed system model, it is assumed that the communication between UAVs and IoT nodes
follows the LoS link model. The channel gain, gm,n,k, from the IoT node n to the UAV m on the
subchannel k is as follows:

gm,n,k =
η

d2
m,n

, (3)

where η is the unit power gain over the reference distance d0 (d0 is unit distance, i.e., 1 m) [1,26,27].98

Considering the inter-channel interference, each subchannel can be assigned only one node in
a cluster, which means that the interference between the nodes in the same cluster can be ignored.
The interference among the nodes using the same subchannel in different clusters was analyzed in
a previous study [19]. Let αm,n,k denote the subchannel allocation indicator; αm,n,k = 1 implies that
the IoT node, n, is in the cluster set, Ωm, which is allocated to subchannel, k. Otherwise, αm,n,k is 0.
Consequently, the interference, Im,n,k, in the transmission from the IoT node n to the UAV m on the
subchannel k can be denoted as follows:

Im,n,k =
M

∑
i=1,
i 6=m

N

∑
j=1

αi,j,k · pi,j,k · gi,j,k. (4)

where pm,n,k is the transmission energy consumption of the subchannel k between the UAV m and IoT
node n. Therefore, the signal to interference and noise ratio (SINR) between the mth UAV and the nth
IoT node on the subchannel k can be denoted as follows:

SINRm,n,k =
pm,n,k · gm,n,k

Im,n,k + σ2 , (5)

where σ2 is the variance of additive white Gaussian noise (AWGN).99

2.2. Problem Formulation100

In this section, we devise the clustering problem for IoT nodes by considering the placement
of UAVs to maximize the total capacity and minimize the total energy consumption of a
multi-UAV-assisted IoT network. Following Shannon’s capacity theorem, the communication capacity
Cm,n between the UAV m and the IoT node n is calculated as follows:

Cm,n,k =
B
K

log2 (1 + SINRm,n,k). (6)

Consequently, the total capacity of the system, Ctotal , can be expressed as follows:

Ctotal =
M

∑
m=1

N

∑
n=1

K

∑
k=1

B
K

αm,n,k log2 (1 + SINRm,n,k). (7)

According to Equation 7, the following constraints should be considered to maximize the total system
capacity: The minimum height of the UAVs should be determined to avoid conflict with various
physical obstacles such as trees, telegraph poles, and transmission towers. Conversely, if the UAVs
are too high, the UAVs are much more difficult to control and the battery consumption is increased.
Therefore, the height constraint of the UAVs can be represented as follows:

hmin ≤ hm ≤ hmax, ∀m ∈M. (8)

where hmin and hmax denote the minimum and maximum heights of UAV m, respectively. Because a
multi-UAV-assisted communication system is considered in this study, the horizontal distance between
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Figure 2. Coverage area of UAV m on the ground. hm denotes the altitude of the UAV m. µm denotes a
half beamwidth received from the UAV’s antenna. m. Therefore, hm tan(µm) is calculated as the radius
of the UAV’s coverage area.

UAVs that are close to each other must be constrained to avoid collisions. Therefore, the constraint of
the horizontal distance among the UAVs can be represented as follows:

lm1,m2 > β, ∀m1, m2 ∈M, m1 6= m2. (9)

where β is the minimum distance between two different arbitrary UAVs. To avoid management
conflicts, each IoT node should be included in only one cluster. This constraint is expressed as follows:

M

∑
i=1

K

∑
l=1

αi,n,l = 1, ∀n ∈ N. (10)

As mentioned earlier, each subchannel can be assigned only one node in a cluster. Therefore, the
constraint can be expressed as follows:

N

∑
j=1

αm,j,k ≤ 1, ∀m ∈M, ∀k ∈ K. (11)

As shown in Figure 2, Rm denotes the radius of the coverage area of the UAV m, and it can be calculated
by the beamwidth that is received from the UAV’s antenna as follows:

Rm = hm tan µm. (12)

Therefore, the distance lm,n between the UAV m and the IoT node n is adjusted from 0 to Rm as follows:

0 ≤ lm,n ≤ Rm, ∀m ∈M, ∀n ∈ Ωm. (13)
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(a) Example of clustering system model

(b) Clustering results with traditional method (c) Clustering results with proposed method

Figure 3. Comparison of the placement optimizing algorithm. Based on the traditional clustering
method, the non-clustered node is included in Cluster 1 because d1 is shorter than d2 as shown
in Figure 3(a). However, after clustering, the distance d1

‘ differs from d1, as shown in Figure 3(b).
Therefore, optimal clustering cannot be ensured. However, suboptimal clustering can be guaranteed if
the proposed method is followed by considering the capacity and energy consumption, denoted as C1

and C2, respectively.

Finally, a capacity threshold is set for each IoT node to avoid unnecessary resource assignment. Let
ρmax and ρmin denote the maximum and minimum capacity requirements of each IoT node, respectively.
Therefore, the capacity requirement constraint can be expressed as follows:

ρmin ≤
K

∑
k=1

Cm,n,k ≤ ρmax, ∀m ∈M, ∀n ∈ Ωm. (14)

Consequently, the objective function to maximize the total capacity of the system can be
constructed as follows:

maximize
(hm,n,k ,αm,n,k)

M

∑
m=1

N

∑
n=1

K

∑
k=1

B
K

αm,n,k log2 (1 + SINRm,n,k) (15)

satisfying the above constraints (8), (9), (10), (11), and (13).101

This problem contains the binary indicator αm,n,k and the interference model within the sum of the102

logarithmic functions. That is, the problem is non-convex, and the optimization of clustering has been103

proved to be an NP-hard problem [28][29]. To overcome this issue, a competitive clustering algorithm104

is proposed to obtain the optimal 3D coordinates of the UAVs that are resolved by the Stackelberg105

game theoretic approach in Section 3.106
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Algorithm 1 Stackelberg Game Theoretic Clustering Algorithm

Step 1 : Initiation state information of UAVs and IoT nodes
1: The GS obtains CSI of all UAVs and IoT nodes.
2: The transmission power is fixed.
3: According to the previous mean-shift clustering method, the initial deployment is defined.

Step 2 : UAV placement and IoT subchannel allocation.
4: FOR m=1 to M
5: By Equation (18), the height of the UAV is updated to maximize the total system throughput

corresponding to the minimization of the energy consumption.
6: FOR n=1 to ΩM

7: By Equation (19), the IoT nodes determine the subchannel resources to maximize their own

beamwidth.
8: ENDFOR
9: until convergence.

10: ENDFOR
Step 3 : Assigning the non-clustered IoT node.

11: Assign the non-clustered node to Ωm, after which UAVm is calculated by considering the total

system throughput for all the UAVs using equation (18) and (19), as shown in Figure 3(c)

3. Competitive Clustering-based UAV Placement with Stackelberg Game Theoretic Approach107

This section presents a heuristic and an iterative game theoretic method to obtain the suboptimal108

3D coordinates of the UAVs. Initially, the UAVs and the IoT nodes are distributed randomly through109

the air and the ground, respectively. Each of the individual IoT nodes and UAVs consider only their110

own profit to serve their tasks. The objective of the UAVs is to achieve high capacity and low energy111

consumption and the objective of the IoT nodes is to achieve a high beamwidth. Therefore, an iterative112

exchange is performed between the UAVs and the IoT nodes within the coverage of the UAVs until113

the objectives of both the UAVs and IoT nodes are satisfied. These heuristic clustering strategies are114

applied with respect to the total system throughput achievement and adjust the 2D locations and the115

altitudes of the UAVs.116

3.1. Initial UAVs and IoT nodes Deployment117

In the proposed system, the UAVs and IoT nodes are initially deployed in air and on the ground
with random coordinates. As described in Algorithm 1 lines 1–3, the perfect information situation is
assumed, such that the state information such as the location of the UAVs and the IoT nodes is already
known to the GS (i.e., information sharing procedure, association procedure, etc.). Therefore, the initial
IoT node cluster is automatically set. To focus on maximizing the total capacity of the system, we
consider the initial clustering method that is concerned with channel gain. From (3), it can be inferred
that the channel gain is inversely proportional to the distance. Therefore, the usage of the mean-shift
clustering method, which has the advantage of low complexity to form the initial IoT node clusters, is
preferred. Notably, the proposed mean-shift clustering method is applicable to other algorithms such
as the K-means algorithm and random clustering with using Gaussian kernel as follow:

k(x) = e−
x2

2ω2 . (16)
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However, the proposed algorithm considers dense ground areas, due to which the mean-shift clustering
algorithm is used as the initial method. The state information of the UAV in 2D coordinates is then
automatically located at the center of the cluster, as follows:

(xuav
m , yuav

m ) =
1
|Ωm|

· ∑
n∈Ωm

(
xnode

n , ynode
n

)
, (17)

where |Ωm| denotes the size of the set Ωm.118

3.2. Optimization of UAV Placement119

The basic concept of the underlying algorithm is to calculate the capacity and energy consumption
for all the placements. From the initial cluster, each UAV calculates its capacity and energy consumption.
The capacity problem has already been defined, as shown earlier. However, the energy consumption is
related to the channel gain. As the channel gain is inversely proportional to the height of the UAV,
the height of the UAV must be as low as possible while still satisfying the constraints. In order to
perform clustering with the game theoretic approach, Am,k is considered as a set of strategies αn,m,k
from a game-theoretic perspective. It is assumed that the GS controls the strategy exchange and
shares the information. As shown in Algorithm 1 line 5, it is assumed that the profit of the UAV is the
maximization of the total throughput of all the IoT nodes within the coverage of the UAV. Therefore,
the utility function of the UAV is defined as follows:

maximize
hm,n,k

Um (Am,n,k, hm,n,k) =
Ωm

∑
n=1

K

∑
k=1

αn,m,k · (γm · Cm,n,k − (1− γm) · hm,n,k), (18)

where γm is the weight factor of the UAV, and hm,n,k is the optimal height of the UAV m that satisfies
the constraints (8). Similarly, as shown in Algorithm 1 line 7, it is assumed that the objective of the IoT
nodes is the maximization of the capacity and the beamwidth received from the UAV with which the
IoT node aims to establish a stable subchannel. Therefore, the utility function of an IoT node is defined
as follows:

maximize
Am.k

Un
(

Am,n,k, h̃m,n,k
)
=

K

∑
k=1

αn,m,k · (γn · Cm,n,k + (1− γn) · lm,n), (19)

where γn is the weight factor of the IoT node, and h̃n,m,k is the provisional height received from the120

UAV. Consequently, the UAVs and IoT nodes attempt to maximize the capacity of the total system and121

also derive optimal clustering by considering their own objectives. As shown in Algorithm 1 lines122

4–9, UAVm and each of the IoT nodes exchange their strategies via the GS until the optimal solution is123

found. In this competitive and non-cooperative game theoretic scheme, empirical stability must be124

established from the average value of the best strategies determined by the Stackelberg equilibrium125

(SE), which is near-optimal, rather than by deriving the NE [23]. Subsequently, as shown in Algorithm126

1 line 11, optimization is performed for the remaining UAV cluster for total capacity maximization127

considering the maximum capacity between the remaining IoT nodes that are not included in the UAV128

cluster. Therefore, each individual IoT device and UAVm can find their suboptimal cluster set Ωm129

and do not change their strategy at every iteration. Because the proposed algorithm is an NP-hard130

problem and owing to its non-convex property, the convergence and stability are confirmed through131

the simulation in Section 4.132

4. Simulation Results133

This section demonstrates the performance of the proposed algorithm using a simulator that is134

developed using MATLAB and C++. In the simulations, the field size of the proposed system model135

was 1000 m ×1000 m, and a diverse number of IoT nodes were randomly distributed in the 2D-field.136
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Table 1. Simulation Parameters

Parameters Value
Field Size 1000 m × 1000 m
Beamwidth of Antenna π/3
hmax 500 m
hmin 50 m
β 50 m
ρmin 10 kbps
ρmax 50 kbps
B 20 MHz
γm, γn [0, 1]
K 100
σ2 −174 dBm
η 1.4× 10−4
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Figure 4. Average iteration number for convergence of the proposed algorithm with M = 3, 4, 5 from
N = 100 to 1000.

The fixed beamwidth of the receiving antenna was set to π/3 for each UAV, and the altitude constraint137

of each UAV was in the range of hmin = 50 m and hmax = 500 m. The minimum distance between two138

different UAVs was set to β = 50 m to prevent collisions. The weight factor γm andγn of UAV and IoT139

devices are set to between 0 to 1. The unit power gain was set to η = 1.4× 10−4 [19]. The bandwidth140

B was also assumed to be 20 MHz for each cluster. The simulation parameters mentioned above are141

listed in Table 1.142

With the Stackelberg game theoretic approach, the number of iterations to achieve the suboptimal143

convergence is shown in Figure 4. The actual number of iterations of the algorithm demonstrates that144

the algorithm can achieve a suboptimal clustering solution after a finite number of iterations. The145

simulation result is obtained by setting M = 3, 4, 5 and setting the number of IoT nodes from N = 100146

to N = 1000, that is from a small environment to a large environment. The detailed description of the147

simulation setup is provided in Section 4. As shown in the Figure 4, the number of iterations required148

for the convergence of the total throughput of the system increases according to the number of UAVs149

and IoT nodes. However, the number of UAVs has little effect on the number of iterations when150

compared to the number of IoT nodes. In addition, the number of iterations converges when N = 700,151

regardless of the number of UAVs. The evaluation was performed 100 times for each distribution152

of the IoT nodes, and then the results were averaged. The evaluated results show that the proposed153

algorithm can obtain suboptimal results within 10 iterations, even with a large number of IoT nodes.154

Additionally, the total system capacity was compared with that of another relevant scheme155

proposed in [19]. Duan et al.[19] applied non-orthogonal multiple access (NOMA) technology to156

increase the total system capacity through competitive resource allocation and UAV placement. This157
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Figure 5. Total system capacity versus the number of IoT nodes compared with other schemes.
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Figure 6. Comparison of total system capacity improvement versus the number of IoT nodes and UAVs

model uses a method of allocating subchannels within the cluster through M:N matching. At this time,158

each channel creates a preference list for IoT devices based on the channel gain, and subchannels are159

allocated to IoT device according to the created preference list. They then conducted a performance160

comparison between the OMA and the NOMA schemes. For comparison with this model, the161

experimental setup was established and the proposed algorithm was applied to the OMA scheme162

and the Stackeblerg game theoretic approach-based clustering algorithm was applied to the NOMA163

scheme, as depicted in Figure 5. The results demonstrate that the proposed algorithm improves the164

overall performance of Duan’s scheme as well as the performance of the OMA scheme by applying the165

joint clustering and subchannel allocation algorithm when compared to the original NOMA scheme.166

In particular, the performance of the NOMA and OMA schemes were improved by approximately167

17.0% and 28.3%, respectively.168

Figure 6 shows the improvement in the total capacity for the mean-shift clustering method and169

the K-mean clustering method with the application of the proposed algorithm. Figure 6(a) shows170

that the number of UAVs set, was changed from M = 3 to M = 7, and Figure 6(b) shows that the171

number of IoT nodes set, was changed from N = 100 to N = 500 in the field. This result shows172

that the proposed algorithm has improved the performance of the traditional clustering method by173

approximately 28 %. That is, the proposed algorithm can be applied to existing infrastructure to174

increase the efficiency of the capacity. A higher improvement ratio was observed when the result was175
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applied to the mean-shift method when compared to the K-mean method. Therefore, the proposed176

algorithm improves performance regardless of the basic clustering algorithm.177

5. Discussion178

Solving joint optimization problems in the multi-UAVs system is an NP-hard and is highly179

complex. Therefore, it can be confirmed that many studies use game theory to solve it heuristically.180

Unlike the cooperative game theoretic approach so far, the proposed algorithm in this paper adopts a181

method for obtaining an equilibrium according to the preemptive strategy of UAV in as system where182

IoT devices compete. In particular, in the clustering technique, while traditional studies calculate183

the optimal solution through simple physical distances, this paper proposed the method that profits184

and losses of UAVs and IoT devices are actually measured not only in terms of energy consumption185

and allocation channel as compensation, but also total system throughput. However, it is a practical186

limitation to exclude variable factors through the assumption of variables not considered in the187

objective function, such as environmental factors or interference.188

The proposed clustering and joint optimization algorithm based on Stackelberg game theoretic189

approach has significantly improved the performance by considering the total system even though190

it has limited environmental factors and derived suboptimal equilibrium heuristically. In addition,191

the proposed algorithm is not cooperative among IoT devices, but competitive for maximizing own192

profits. Through this, it is noteworthy that the proposed algorithm guarantees a satisfaction of IoT193

device according to the profit-seeking strategy which is decided by itself. Also, the proposed algorithm194

can derive an equilibrium strategy with only the number of iteration around 10 times even in an195

massive IoT device environment. However, due to the iterative strategy exchange characteristics of196

the Stackelberg game model, the number of iterations eventually increases as the number of IoT or197

UAV increases. With investigating previous studies of NOMA scheme, it can be demonstrated that it198

has well performance with considering the total system throughput. However, it is necessary to check199

whether the individual performance and satisfaction of each IoT device is even.200

In addition, it is considered that it will be a much novel study if we analyze performance results201

and simulation results for various scenarios through not only Gaussian kernels, but also variety kernels202

for mean-shift application. If so, the results in Figure 6 will be more diverse and accurate analysis can203

be performed. Furthermore, it is necessary to more accurately analyze the superiority and limitation204

of the proposed algorithm by increasing the number of comparison models. Although the NOMA205

scheme is a novel multiple access technique in the IoT networks using UAV, the proposed algorithm206

also should be compared and analyzed in other channel allocation environments.207

However, as a result, the mean-shift clustering method and joint optimization using Stackelberg208

game theoretic approach showed 28% performance improvement compared to the previous model209

applied to the most popular NOMA scheme. In addition, it also proved that the convergence of210

equilibrium is fast even in a relatively large environment of 1,000 IoT devices.211

6. Concluding Remarks212

In this paper, we proposed a competitive game-theoretic optimization of the UAV placement213

and subchannel allocation for multiple UAV-assisted NB-IoT systems. The UAV placement is decided214

based on the suboptimal strategies exchanged with the IoT devices to maximize the system capacity215

and profits. With mean-shift clustering using Gaussian kernel and joint optimization algorithm216

based on Stackelberg game theoretic approach, the proposed algorithm significantly improves the217

system capacity by up to 28% and ensures that the optimization is achieved within 10 iterations even218

in various large environment such as agriculture and logistic field, massive smart manufacturing.219

In future work, energy harvesting and the beamwidth adjusting capabilities of UAVs should be220

considered in a comprehensive scenario with considering more constants such as weather. Also,221

mean-shift application not only using Gaussian kernel but the other varius kernels that were not222
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covered in this study be analyzed in future works. In addition, heterogeneous IoT devices and their223

mobility should be facilitated.224
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