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Abstract—As Internet-of-things (IoT) technology emerges,
smart manufacturing has recently attracted a large amount of
attention. Smart manufacturing leads to smart energy manage-
ment because of its significant operating expenditure savings.
However, it is believed that the centralized energy management
of IoT devices would impose a critically large overhead since
massive numbers of IoT devices are expected to be deployed.
Therefore, distributed energy management or demand response
is deemed to be a better solution for emerging massive smart
manufacturing systems. There have been a significant number of
distributed demand response algorithms, including Stackelberg
game theoretic approaches. However, Stackelberg game theoretic
approaches require a large number of iterations to reach Nash
equilibrium, which in turn necessitates communication overheads
among IoT devices. This communication overhead causes a large
amount of energy consumption as well as delay. In this paper,
we propose a light-weight demand response scheme based on
the Stackelberg model without iterations for massive smart
manufacturing systems. The proposed scheme manages energy
consumption based on a non-iterative Stackelberg model and
historical real time pricing. To the best of our knowledge, our
approach is the first technique that considers communication
overheads for the demand response technique. The performance
evaluation demonstrates that the proposed scheme shifts oper-
ations to avoid peak loads, the electricity bill is significantly
reduced, operations occur at preferred times, and communication
energy consumption and delay are minimized.

Index Terms—Smart manufacturing, smart grid, distributed
demand response, Stackelberg game model, communication over-
head.

I. INTRODUCTION

Traditional manufacturing has critical problems, including
long downtime, inefficient asset utilization, labor inefficiency,
scheduling inaccuracy, and inefficient energy consumption [1].
Due to the proliferation in IoT technology, smart manufactur-
ing has emerged, disrupting the legacy of traditional manufac-
turing [2]. For instance, the Smart Manufacturing Leadership
Coalition (SMLC) proposed an open smart manufacturing
platform based on IoT technology [3] [4]. According to the
SMLC report [3], energy efficiency in smart manufacturing
systems is expected to increase by more than 25% with energy
management or demand response (DR) [5] [6].

Considering that smart manufacturing systems are extensive
energy consumers that have an already implemented infras-

tructure endowed with a massive number of IoT devices, a
larger amount of DR in this sector is expected compared to
the residential and commercial sectors [7].

DR schemes can be generally divided into centralized or
distributed schemes depending on the location of the DR
algorithm, i.e., whether the DR is implemented within a central
entity or in each IoT device, respectively [8]. In centralized
DR schemes, it is almost impossible for a central entity
such as an energy management system (EMS) to receive and
manage real time information from more than 10,000 IoT
devices in real time. In this context, a distributed DR scheme
that can determine energy scheduling using individual IoT
devices is adequate for information exchange in massive smart
manufacturing systems.

Distributed DR schemes have been proposed that use game
theory (related work on game-theoretic DR is well discussed
in [5]). Among these approaches, the Stackelberg game model
has been paid a great deal of attention. This model fits well the
distributed DR scheme, where the leader (the power retailer)
and followers (IoT devices) compete for profits [9].

The existing Stackelberg game models have only demon-
strated improved scheduling performance through iterative
calculation for a small number of power consumers and do
not consider extensive iterative strategy exchanges between
a leader and followers. However, in massive manufacturing
systems, such models have to include communication over-
heads since iterative calculation of the Stackelberg game
model requires communication between the power retailer (the
leader) and IoT devices (followers) for exchanging strategies.

These communication overheads result in extra power con-
sumption in response to iterative strategy exchanges and will
significantly delay the manufacturing operation. In manufac-
turing systems, in particular, the operation delay can raise
the production cost and these systems require a product
manufacture deadline [10]. Since material requirements and
production planning are systematically based on successive
planning of a deadline, it is very important to reduce the
communication overhead in the manufacturing systems [11].
Therefore, the DR scheme based on the Stackelberg game
has to consider the communication overhead for the stable
operation of smart manufacturing systems.

In this paper, we propose the distributed demand response
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Fig. 1: Proposed architecture for a massive smart manufactur-
ing system.

scheme with the light-weight Stackelberg game theoretic ap-
proach without an iterative calculation process for massive
smart manufacturing systems. Since typical IoT devices per-
form similar tasks every day, abolishing the iterative calcu-
lations among IoT devices causes significant energy savings.
As shown in Fig. 1, the system consists of a power retailer
agent and multiple IoT devices, which can communicate with
each other. In order to distribute the energy demand, the
power retailer agent calculates an estimated day-ahead real
time pricing (RTP) based on the historical energy consumption
data of the IoT devices and then announces the RTP. The IoT
device schedules the power demand and operating time based
on the convenience of the RTP. In the proposed game, the
power retailer agent plays the role of a leader to disperse the
power demand, and the IoT device plays the role of a follower
who wants to maximize its utility. In addition, the proposed
game is a non-cooperative competition since each IoT device
does not share its strategies.

The proposed scheme makes the following contributions.

• In a massive environment with more than 10,000 IoT
devices, the proposed demand response scheme can re-
duce communication overheads that occurred by unneces-
sary iterative calculations. The existing schemes perform
a tremendous amount of communication for iteratively
exchanging strategies. Iterative communication is not
necessary since significant overhead occurs and conven-
tional manufacturing tasks are nearly static. However,
the proposed scheme exchanges strategies between the
power retailer agent and IoT devices only once per day.
Therefore, the communication overheads are significantly
reduced through the proposed scheme.

• We demonstrate that the proposed scheme can achieve
near-optimal scheduling based on day-ahead RTP data.
Initially, there is insufficient data on the power con-
sumption pattern, causing a cold start problem where
an appropriate peak load shift is not achieved. However,
as the data accumulate gradually, the problem quickly
converges to a near-optimal strategy, showing high-level
performance. As a result, a performance of the proposed
scheme works as well as the existing schemes.

This paper is organized as follows. Section II describes the

proposed system model, basic assumption, and objective func-
tion of the power retailer agent and IoT devices. Section III
provides the light-weight Stackelberg game theoretic approach
model. Section IV presents the reduction of communication
overheads compared with the existing scheme and the schedul-
ing performance in a massive environment. Section V provides
the conclusion and future works.

II. SYSTEM MODEL

In this section, we formulate the mathematical model of
DR for massive smart manufacturing systems. The proposed
system is modeled on both the supply and demand sides.

A. Basic Assumption

In the energy prediction system model, environmental fac-
tors such as weather and issues are important. In fact, energy
prediction models considering environmental factors have been
extensively studied [12], [13]. However, this study does not
consider environmental factors and issues since it aims to
reduce communication overhead by eliminating iteration of the
strategy exchange process in the existing Stackelberg model.

In the proposed system, we assume that there are a finite
number of IoT devices, as shown in Fig. 1. We assume that
IoT device set A consists of K appliances and is described
by

A = {a1, a2, · · · , ak, · · · , aK}. (1)

Moreover, we assume that the time is divided into equal
timeslots t and is described by

T = {1, 2, 3, · · · , t, · · · , T}. (2)

The timeslot can be represented by any unit of time. In this
paper, we select hours for simplicity.

In the proposed system, the power retailer agent uses the
RTP to disperse the power demand. We denote by pt the
RTP of time slot t. We assume that the RTP was sent from
the power retailer agent to all IoT devices at the end of the
previous day. Then, each IoT device schedules its operation
time based on the RTP. Denote by Sk the energy scheduling
vector of IoT device ak, and it is represented by

Sk = [s1k, s
2
k, s

3
k, · · · , sTk ], (3)

where

stk =

{
1, if IoT device ak is operating at t,
0, otherwise.

In this paper, we assume that IoT device ak consumes
energy Eon

k per each timeslot t during operation. Moreover,
we assume that ak has a preferred begin time and a preferred
end time, which can be represented as Cbegin

k and Cend
k ,

respectively, where Cbegin
k < Cend

k . Denoting by ρk the
required number of timeslots of device ak, we can derive the
following constraint:

T∑
t=1

stk = ρk,∀k. (4)
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Moreover, we derive the following constraint since the
preferred time section of device ak should be less than or
equal to the operation time:

Cend
k − Cbegin

k + 1 ≤ ρk. (5)

Following the previous notation, denote by prk the profile
of IoT device k, which is expressed by

prk = [Eon
k , Cbegin

k , Cend
k , ρk], (6)

where ρk is the required operation timeslot for ak.

B. Supply Side Model

As mentioned earlier, the retailer agent stores the statistics
of energy consumption historically with a simple moving
average method [14]. Analysis of the historical power con-
sumption pattern to predict the next power consumption is
widely used [15].

Denote by Et
N the average energy consumption of timeslot

t at the N th day, which can be obtained by

Et
N =

(N − 1) · Et
N−1 + Et

N

N
, (7)

where Et
N is the measured electricity consumption at timeslot

t for day N . The retailer agent determines RTP ptN based on
Et
A using the following quadratic equation [16]:

ptN = αt · Et
N

2
+ βt · Et

N + γt, (8)

where αt ≥ 0, βt ≥ 0, and γt ≥ 0 at each timeslot t ∈ T .
Denote by PN the day-ahead RTP of the N th day, described

by
PN = [p1N , p

2
N , p

3
N , · · · , pTN ]. (9)

Algorithm 1 Day-ahead RTP Decision

1: Estimate Energy Consumption
2: if N = 1 then
3: for t = 1→ 24 do
4: Et

0 ⇐ 0
5: end for
6: for k = 1→ K do
7: for t = Cbegin

k → Cend
k do

8: Et
0 ⇐ Et

0 + Eon
k

9: end for
10: end for
11: else if N > 1 then
12: Update Et

N−1
13: Calculate Et

N−1 by (7)
14: end if
15: Decision of Day-ahead RTP
16: for t = 1→ T do
17: Calculate ptN by (8)
18: end for
19: Return PN

Algorithm 1 shows the day-ahead RTP decision algorithm.
In order to calculate the day-ahead RTP, the estimated energy

consumption is calculated based on the historical electricity
consumption. However, we assume that on the first day,
there are no historical data for electricity consumption. We
assume that each IoT device operates during its preferred time
section on the first day. Therefore, the expected electricity
consumption is calculated based on the profiles of the IoT
devices (Lines 2-10 in Algorithm 1). From the second day
onward, the energy consumption is estimated based on realistic
measured electricity consumption using (7) (Lines 11-14 in
Algorithm 1). Based on the estimated energy consumption, the
RTP can be calculated by (8) (Lines 16 and 17 in Algorithm
1). Then, the power retailer agent sends the RTP to the IoT
devices (Line 19 in Algorithm 1).

C. Demand Side Model
Using the notation in Section II-A, we formulate the IoT

devices modeling in this section. The IoT device schedules
its operation time considering the electricity bill and its own
convenience. Denote by Bk the electricity bill of IoT device
ak, which is calculated by

Bk =
1

τB

T∑
t=1

(ptN · stk · Eon
k ), (10)

where ptN is the RTP of timeslot t for day N and τB is the
scaling denominator which is an expected maximum electricity
bill per timeslot for Bk [16].

As mentioned in Section II-A, we assume that an IoT device
has preferred begin operation and end operation times. We
assume that the user will be satisfied if the operation time
scheduled by the power retailer occurs between these preferred
times. Moreover, we assume that the satisfaction decreases
as the scheduling result deviates from these preferred times.
Denote by wt

k the degree of user dissatisfaction for IoT device
k, which represents how much the scheduled time differs from
the preferred time, described by

wt
k =


Cbegin

k − t, t < Cbegin
k ,

0, Cbegin
k ≤ t < Cend

k ,

t− Cend
k , Cend

k ≤ t.

(11)

Denote by Dk the user dissatisfaction of the scheduling
result, which we can obtain based on the user dissatisfaction
degree as follows [16]:

Dk =
1

τD

T∑
t=1

wt
k · stk
ρk

, (12)

where the reason for dividing by ρk is that we assume the
dissatisfaction of IoT device is less sensitive if it has a long
operation time and τD is scaling denominator, which is an
expected maximum user convenience per timeslot for Dk [16].

III. PROBLEM FORMULATION: THE STACKELBERG GAME

A. Problem Definition
In this section, we formulate the optimization problem

and apply the Stackelberg game based on the modeling in
Section II.
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We assume that benefit of the power retailer agent is
maximization of the electricity bill value. Therefore, the utility
function of the power retailer agent is defined as

UR(P,SK) =

K∑
k=1

T∑
t=1

1

τB
· Eon

k · stk · pt. (13)

Since the power retailer agent wants to maximize its benefit,
the optimization problem is formulated as follows:

maximize
P

UR(P,SK), (14)

subject to
T∑

t=1

stk = ρk,∀k. (15)

According to this optimization problem, the power retailer
agent will increase the RTP when more power consumption is
expected.

On the IoT device side, the benefit is defined as reduction
of the electricity bill and dissatisfaction. From (10) and (12),
we derive the utility function of IoT device k as follows:

UA(Sk,P) = −
T∑

t=1

(
1

τB
·Eon

k · stk · pt +
1

τD
· w

t
k · stk
ρk

). (16)

Since the IoT device wants to maximize its benefit, the
optimization problem is defined as follows:

maximize
Sk

UA(Sk, P̃ ), (17)

subject to
T∑

t=1

stk = ρk,∀k. (18)

Therefore, the IoT device schedules its operation time using
this optimization problem. Moreover, computing is possible
on IoT devices with low computing performance since the
objective function is standard convex form.

The derived optimization problems (14) and (17) together
form the Stackelberg game, i.e., the power retailer agent and
each IoT devices takes on the role of leader and a follower
respectively. Moreover, the strategies of the followers can be
affected by the leader’s strategy.

Algorithm 2 Light-weight Stackelberg Game Theoretic

End of Day (N − 1)
1) The retailer broadcasts day-ahead RTP pt to each IoT

device ak.
2) Each IoT device ak calculates maximize

Sk

UA(S
∗
k , P̃

∗).

3) Each IoT device transmits the result to the retailer.
Day (N )

1) Each IoT device operates during its scheduled timeslot.

Algorithm 2 shows the proposed light-weight Stakelberg
scheme. At the end of each day, the power retailer agent
calculates the RTP using Algorithm 1 and announces it to
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Fig. 2: Similarity between the proposed algorithm and the
existing algorithm.

all IoT devices. Then, each IoT device schedules its operation
time using objective function (17) and sends the result of its
scheduling to the power retailer agent.

The proposed light-weight algorithm exchanges the strati-
gies once a day. Since the proposed algorithm determines
the strategies based on accumulated power consumption data,
it is typical Stackelberg game in the long term. Therefore,
the theoretical basis of the proposed algorithm is not as
problematic as that of the existing algorithms. As shown in
Fig. 2, the shape of the existing algorithm graph and that of
the proposed algorithm graph are very similar.

B. Stackelberg Equilibrium

In the proposed game, the Stackelberg equilibrium (SE)
is defined as follows. Let P∗ be the best response for the
optimization problem of the power retailer agent and S∗k be
the best response for IoT device k. Then, point (P∗,S∗k) is
a SE for the proposed game if for any (P,Sk) with P ≥ 0
Sk ≥ 0, the following conditions are satisfied:

UR(P̃ ∗,S∗K) ≥ UR(P̃ ,S∗K) (19)

and

UA(S∗k , P̃ ∗) ≥ UA(Sk,P∗),∀k. (20)

Generally, the SE can be obtained by finding its subgame-
perfect NE. However, in the proposed game, each IoT device
considers only the power retailer agent, and there is no strategy
exchange or competition among the IoT devices. In these non-
cooperative and competitive games, we find empirical stability
through the average value of the best policies determined by
cumulative best responses rather than by deriving NEs. As
shown in (17), the objective function of the IoT device is
convex and there are no impacts from other IoT devices.
Therefore, each IoT device will find its optimal scheduling
(best response) and will not change its strategy at every
iteration. At the power retailer agent side, the best response
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Fig. 3: PAR vs. days.

of power retailer agent will be obtained from (14) because
the equation is convex and there is only one player on the
supplier side. For the proposed scheme, the calculation of the
SE is at first gradual but quickly stabilizes and converges as
follows. At the beginning of the first day, each IoT device k
finds S∗k by (17) for a given P . Then, Et

A is updated according
to the IoT device scheduling. Based on Et

A, the power retailer
agent finds P∗ by solving (14). The next day, we calculate the
objective function on the follower side again with the mean
value of the best strategies of the power retailer agent we
obtained the day before. As a result, the proposed algorithm
is a series of processes of obtaining the SE. The conventional
Stackelberg game model repeats the proposed algorithm until
it obtains the SE for each timeslot. However, in a massive
system with no major changes, it is possible to derive a near-
optimal strategy even after one execution per timeslot, as in
the proposed algorithm. Furthermore, given the statistics of
the previous RTP data, this early processing can be skipped.

IV. PERFORMANCE EVALUATION

TABLE I: Simulation Parameters

Parameter Value
Timeslot units 1 hour
Eon

k ,∀k (uniform distribution) From 1 to 100W
EMax

k ,∀k (uniform distribution) From 50 to 100W
EMin

k ,∀k (uniform distribution) 0W
mean of Cbegin

k ,∀k From 1 to 24
(Poisson distribution)

ρk,∀k (uniform distribution) From 1 to 10

In this section, we evaluate the performance of the proposed
game in terms of the communications overhead and delay. For
this evaluation, an event-driven simulator for the proposed
game was implemented in the C programming language.
Moreover, the optimization problem was computed using the
MOSEK optimization tool [17].
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Fig. 4: Iteration vs. number of IoT devices.

The simulation parameters are illustrated in Table I.
To demonstrate the performance of the proposed scheme,
small-scale topologies (K=100), and large-scale topologies
(K=10,000) are configured. In the small-scale topologies, the
existing scheme presented in [18] is compared with the pro-
posed scheme. This is because that comparison scheme cannot
be simulated in large-scale topologies since its computation
time is exponential. In the large-scale topologies, we verify
that the proposed scheme can prevent system blackout by
adjusting the electricity demand so that the peak electricity
consumption remains low in the massive environment with
more than 10,000 devices.

A. Small Topologies (K = 100)

This section compares the peak load reduction and commu-
nication overhead of the proposed scheme with the comparison
scheme [18]. For comparison of peak load reduction, we ana-
lyze the peak-to-average ratio (PAR) of the power scheduling.
In order to compare the communication overhead, we also
analyze the number of iterations of strategy exchanges, which
increases according to the number of IoT devices. Then, we
simulate the impact of increasing the number of iterations on
communication power consumption and delay.

1) Peak Load Reduction: Fig. 3 shows the PAR according
to days. As shown in the figure, the PAR of the proposed
scheme decreases with increasing number of days since the
strategy converges to near-optimal (i.e., SE). The initial PAR
of the proposed scheme is 2.2. However, the PAR of proposed
scheme rapidly decreases in early days and then stabilizes
steadily at 1.2. This shows that the proposed scheme works
well over the earliest days. The problem of a very high PAR
at the initial days (i.e., cold start problem) can be solved by
the early accumulation of DB. On the other hand, the PAR
of the comparison scheme is stably maintained at 1.4. The
reason the comparison scheme maintains a stable PAR from
the beginning is it uses the SE state strategy starting from the
first day. The Fig. 3 shows that the convergence PAR reduction
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Fig. 5: Communication energy consumption vs. number of IoT
devices.

of proposed scheme and comparison scheme are 45% and
35%, respectively.

2) Iteration of Strategy Exchanges: In order to analyze
the communication overheads, we first need to analyze the
characteristics of the iterative in strategy exchange. It has
been experimentally demonstrated in [19] that the number of
iterations increases as the number of followers increases. We
also verified through several simulations that the number of
iterations increases only moderately in the comparison scheme
as the number of IoT devices increases as shown in Fig. 4.
However, the number of iterations in the proposed scheme is
always 1 regardless of the number of IoT devices since the
proposed scheme exchanges strategies only once a day. Since
IoT devices and the power retailer need to communicate for
strategy exchange, the number of iterations is equivalent to
the number of communications. Therefore, in the proposed
scheme, the number of communications for strategy exchange
is much smaller than that of the comparison scheme.

3) Communication Overhead: In this simulation, we as-
sume that Wi-Fi wireless technology is used for comparative
analysis of communication overheads. For convenience of
calculation, the data size of the exchanged strategy is 1,600
bytes. Furthermore, due to practical limitations, it is difficult to
implement wireless communication simulations using 10,000
IoT devices. Thus, energy consumption is calculated by apply-
ing energy per bit [20] in the wireless communication process.

In one strategy exchange communication, energy consump-
tion occurs as much as the strategic data size and increases
in proportion to the number of iterations. Therefore, based on
Fig. 4, the communication energy consumption is calculated,
as shown in Fig. 5. The communication energy consumption
of the proposed scheme increases just a little, but linearly
since only the amount of total communication data increases
as the number of IoT devices increase. On the other hand, the
communication energy consumption in the comparison scheme
exponentially increases with the number of IoT devices since
the number of iterations increases as well as the amount of
total communication data. As a result, the proposed scheme
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Fig. 6: Minimum latency per day vs. packet size (K = 100,
Data size = 1,600 bytes).

can reduce the communication energy consumption by more
than 99% compared with the comparison scheme.

Latency is caused by communication in each strategy ex-
change. The latency is accumulated by the iterative com-
munication, which is a critical problem for smart manufac-
turing systems. For comparative analysis of communication
latency between the proposed scheme and the comparison
scheme, we refer to the analysis data of [21]. According
to [21], the packet size determines how many strategy data are
fragmented in wireless communication and has a significant
impact on the amount of the latency. Considering the number
of communications in the comparison scheme as shown in
Fig. 4, the minimum latency per day for each packet size is
shown in Fig. 6. In the comparison scheme, the total latency
is high since the latency is accumulated as the number of
communication increases. On the other hand, the proposed
scheme reduces the latency more than 99% compared with
the the comparison scheme by minimizing the latency with
one-time communication. As a result, the proposed scheme
can dramatically reduce the communication latency compared
to the existing scheme, and can operate an efficient smart
manufacturing systems.

B. Large Topologies (K = 10,000)

In this section, we demonstrate a performance of the pro-
posed scheme in the large-scale topologies. First, we show
the cold start problem due to the lack of power consumption
pattern data through simulation at the early days. After a suf-
ficient amount of pattern data has accumulated, the proposed
scheme stably reduces the peak load well in the large-scale
environment by converging to the near-optimal strategy.

Fig. 7 shows the cold start problem that occurs in the early
days of the proposed scheme when power consumption pattern
data are insufficient. As shown in Fig. 7 (a), the original
demand of power consumption is concentrated at 13:00h. The
IoT devices shift their operation time for minimizing the cost
function. Therefore, the average power consumption pattern
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(a) Original demand
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(b) 1st day
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(c) 2nd day
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(d) 3rd day

Fig. 7: Power consumption vs. timeslot for days 1-3.

with considering original demand and the first day is figured
almost flat as shown in Fig. 7 (b) by algorithm 1. On the
second day, the power consumption is concentrated at 11:00
and 14:00 since the degrees of user dissatisfaction are the same
and electricity costs are inexpensive within the preference
time. Despite the degree of user dissatisfaction being high,
the power consumption is also concentrated at 2:00 and 23:00
since the cost function is minimized at those times due to low
electricity costs. Therefore, the average power consumption
pattern is figured as shown in Fig. 7 (c). With this iterative
process, the power consumption pattern converges to SE after
early days.

Fig. 8 shows the maximum power consumption per day
and a process of solving the cold start problem. As shown
in Fig. 8 (a), the cold start problem occurring during the
early stage is solved by converging very quickly to the stable
section with the accumulation of power consumption pattern
data. Furthermore, as shown in Fig. 8 (b), the deviation of
the maximum power consumption is gradually reduced in the
stable section and the power consumption pattern converges

to a near-optimal strategy. Therefore, it is possible to verify
that the proposed scheme significantly reduces the peak load
in large-scale topologies as well as small-scale topologies.

V. CONCLUSIONS

In this paper, we considered the power consumption of
massive smart manufacturing systems consisting of more than
10,000 IoT devices. Since the power consumption of IoT
devices does not fluctuate, we proposed a light-weight Stack-
elberg game theoretic DR scheme for massive smart manufac-
turing systems. This scheme is proposed to reduce the peak
load and communication overheads without iterative processes
to calculate the SE. For the Stackelberg game, the optimization
formulation and corresponding model were proposed for the
power retailer agent and IoT devices. To maximize the benefit
of the power retailer agent, we proposed the day-ahead RTP
algorithm, which is based on historical power consumption
statistics. To maximize the benefit of the IoT devices, we
proposed a scheduling optimization problem that considers
the electricity bill and the degree of user convenience. Via
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(a) Maximum power consumption vs. days for 1-200.
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(b) Maximum power consumption vs. days for 200-700.

Fig. 8: Maximum power consumption vs. days for 1-700.

simulations, we demonstrated that the power consumption can
be distributed over the day using the proposed scheme. We
also verified that the proposed scheme reduces the communi-
cation overheads 99% more than the conventional Stakelberg
game based scheme. By comparison with the conventional
scheme, we show that the proposed algorithm can sufficiently
reduce the communication overhead and delay. In addition, the
proposed scheme can reduce the electricity peaks in massive
smart manufacturing systems using the historical RTP. Future
research will focus on the cold start problem of RTP based on
appliance usage patterns using machine learning algorithms
while considering environmental issues and factors.

ACKNOWLEDGEMENT

This research was supported by Korea Electric Power
Corporation(Grant number:R15XA03-69) and Basic Science
Research Program through the National Research Foundation
of Korea(NRF) funded by the Ministry of Science and ICT
(NRF-2017R1A4A1015675).

REFERENCES

[1] M. M. Umble, “Analyzing Manufacturing Problems using V-A-T
Analys” Production and Inventory Management Journal, Second Quar-
ter 1992, pp. 55.

[2] F. Tao, and Q. Qi, “New IT Driven Service-Oriented Smart Manufactur-
ing: Framework and Characteristics,” to appear in IEEE Transactions
on System, Man, and Cybernetics: Systems, 2017.

[3] Smart Manufacturing Leadership Coalition (SMLC), “Implementing
21st Century Smart Manufacturing,” Workshop Summary Report, June
2011.

[4] J. Davis, T. Edgar, J. Porter, J. Bernaden, and M. Saril, “Smart
Manufacturing, Manufacturing Intelligence and Demand-Dynamic Per-
formance,” Computers & Chemical Engineering, Vol. 47, No. 12,
December 2012, pp. 145–156.

[5] R. Deng, M. Chow, and J. Chen, “A Survey on Demand Response
in Smart Grids: Mathematical Models and Approaches,” IEEE Trans-
actions on Industrial Informatics, Vol. 11, No. 3, March 2017, pp.
570–582.

[6] E. Karimi, and M. Kazerani, “Impact of demand response management
on improving social welfare of remote communities through integrating
renewable energy resources,” in Proc. of IEEE conf. on Electrical and
Computer Engineering, April 2017.

[7] M. Starke, D. Letto, N. Alkadi, R. George, B. Johnson, K. Dowling,
and S. Khan, “Demand-side response from industrial loads,” in Proc.
of Clean Technol. Conf., January 2013, pp. 46–49.

[8] L. Siebert, L. Ferreira, E. Yamakawa, E. Custodio, A. Aoki, T.
Fernandes, and K Cardoso, “Centralized and Decentralized Approaches
to Demand Response Using Smart Plugs,” in Proc. of IEEE Conf. PES
T&D Conference and Exposition, April 2014, pp. 1–7.

[9] H. von Stackelberg, “Market Structure and Equilibrium,” Springer,
Berlin, Heidelberg, 2011.

[10] R. Dylewski, A. Jardzioch, and I. Krebs, “The Optimal Sequence
of Production Orders, Taking into Account the Cost of Delays,“
Management and Production Engineering Review, Vol. 7, No. 2, June
2016, pp. 21–28.

[11] E. Hartweg, “Smart Factories–Self-Organizing Production Unit,“ Pro-
duction and Operations Management Society Conference,

[12] Q. Zhou, W. Guan, and W. Sum, “Impact of Demand Response
Contracts on Load Forecasting in a Smart Grid Environment,“ 2012
IEEE Power and Energy Society General Meeting, San Diego, CA,
2012, pp. 1–4.

[13] H. R. Khosravani, M. D. M. Castilla, M. Berenguel, A. E. Ruano, and P.
M. Ferreira, “A Comparison of Energy Consumption Prediction Models
Based on Neural Networks of a Bioclimatic Building,“ Energies, Vol.
9, No 12. p. 57, January 2016.

[14] R. J. Hyndman, “Moving Averages. In: M. Lovric (eds) International
Encyclopedia of Statistical Science,“ Springer, Berlin, Heidelberg,
2011, pp. 866–869.

[15] R. Zhou, Y. Pan, Z. Huang, and Q. Wang, “Building Energy Use
Prediction Using Time Series Analysis,“ 2013 IEEE 6th International
Conference on Service-Oriented Computing and Applications, Koloa,
HI, 2013, pp. 309–313.

[16] L. Park, Y. Jang, S. Cho, and J. Kim, “Residential Demand Response
for Renewable Energy Resources in Smart Grid Systems,” to appear in
IEEE Transactions on Industrial Informatics, 2017.

[17] http://www.mosek.com/
[18] M. Latifi, A. Khalili, A. Rastegarnia, and S. Sanei, “Fully Distributed

Demand Rsponse Using the Adaptive Diffusion-Stackelberg Algo-
rithm,” IEEE Transactions on Industrial Informatics, May 2017, pp.
2291–2031.

[19] M. Yu, “Demand Response in Smart Grid: A Stackelberg Game-
Theoretic Approach,” Ph.D. dissertation, Dept. Electron. Eng, Han-
yang Univ. Seoul, Korea, 2015.

[20] P. Smith, “Comparing Low-Power Wireless Technologies,” Digi-Key
Electronics, White Paper, August 2011.

[21] J. Horalek, T. Svoboda, and F. Holik, “Analysis of the Wireless
Communication Latency and Its Dependency on a Data Size,” in Proc.
of IEEE Computational Intelligence and Informatics (CINTI), Nov.
2016, pp. 145–150.



9

Chunghyun Lee received B.S. degree in Computer
Science and Engineering from Chung-Ang Univer-
sity, Seoul, South Korea, in 2018. He is currently
pursuing his M.S. degree in Computer Science and
Engineering at Chung-Ang University, Seoul, Ko-
rea. His research interests include demand response,
game theory, micro grids, and smart grids.

Laihyuk Park received B.S., M.S., Ph. D. degrees
in Computer Science and Engineering from Chung-
Ang University, Seoul, South Korea, in 2008, 2010,
and 2017, respectively. He is currently an assistant
professor with the Da Vinci College of General
Education, Chung-Ang University, Seoul, South Ko-
rea. His research interests include demand response,
smart grid, electric vehicles, Internet of things, and
wireless network.

Sungrae Cho received his Ph.D. degree in electrical
and computer engineering from Georgia Institute
of Technology, Atlanta, Georgia, USA, in 2002,
and his B.S. and M.S. degrees in electronics en-
gineering from Korea University, Seoul, Korea, in
1992 and 1994, respectively. He is currently a full
professor with the School of Computer Science and
Engineering, Chung-Ang University, Seoul, Korea.
Prior to joining Chung-Ang University, he was an
assistant professor with the Department of Computer
Sciences, Georgia Southern University, Statesboro,

Georgia, USA, from 2003 to 2006, and a Senior Member of Technical Staff
with Samsung Advanced Institute of Technology (SAIT), Kiheung, Korea,
in 2003. From 1994 to 1996, he was a Member of Research Staff with
the Electronics and Telecommunications Research Institute (ETRI), Daejeon,
Korea. From 2012 to 2013, he held a Visiting Professorship with the National
Institute of Standards and Technology (NIST), Gaithersburg, Maryland, USA.
He is an Editor of the Elsevier Ad Hoc Networks Journal since 2012 and
has served numerous international conferences as an organizing committee
member, such as IEEE SECON, ICOIN, ICTC, ICUFN, TridentCom, and
IEEE MASS. His research interests include wireless networking, ubiquitous
computing, performance evaluation, and queuing theory.


