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Abstract

Recently, cognitive networks and mmWave-based massive antenna transmission are becoming promising approaches for high per-
formance in dense, complicated 6G networks. However, accurate and efficient spectrum sensing that can provide primary user and
secondary user (SU) with satisfactory performance is still difficult. In this paper, we propose a new semi-distributed and cooperative
passive spectrum sensing method for directional antenna based cognitive radio networks, which can be considered as a key tech-
nology of industrial-internet-of-things systems. It finds optimal directional sensing-beams and spectrum detection energy threshold
to maximizes a system utilization that consists of accurate spectrum sensing probability and spatial efficiency. To find the optimal
controls in a semi-distributed manner, we employ a modified elimination method and a low-complex coordination algorithm among
localized user groups with proof of concavity. The simulation results reveal that the proposed control provides enhanced spectrum
sensing in terms of sensing accuracy, spatial efficiency, and energy consumption compared to legacy omnidirectional antenna-based
sensing approach and directional antenna-based fully distributed sensing approach. In fact, the performance gain becomes larger as
the number of SUs increases. We also confirm that the proposed scheme achieves a near-optimal performance within around 5% of
a directional antenna-based centralized sensing approach.
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1. Introduction

In future communication systems, the availability of a com-
munication resource is expected to become increasingly chal-
lenging issue because of the extensive growth in mobile traffic
demands. To address the problem, first, a new hierarchical com-
munication system, cognitive radio networks (CRNs), consists
of primary users (PUs) and secondary users (SUs) is emerg-
ing and attracting growing attention for deployment [1]. Sec-
ond, directional-transmission communication systems based on
massive antenna and mmWave-frequency resources are being
actively exploited. In this work, we consider a system that com-
bines the directional antenna technology and CRNs, referred to
as a distributed CRNs (D-CRNs). This emerging technique has
many advantages over legacy radio systems. First, new var-
ious device-to-device (D2D) and vehicle-to-everything (V2X)
communication systems can be implemented efficiently with-
out installing additional infrastructure or with minimal infras-
tructure. Second, exponentially increasing various internet-of-
things (IoT) equipment can be deployed without incurring seri-
ously interfering with neighboring users

In general, in cognitive-based networks, SUs perform regu-
larly or occasionally perform spectrum sensing to verify whether
the spectrum licensed to PUs is vacant. And if so, SUs per-

form spectrum sensing to verify whether the channel quality is
acceptable. The networks are permitted to use vacant or high
quality licensed spectrum while limiting interference with PUs.
However, unless the spectrum is vacant or of high quality, SUs
should decrease their transmission powers to reduce their inter-
ference levels or switch to a new vacant channel. Moreover, in
directional antenna-based networks, accurate energy-efficient
beam usage is critical to system performance. Therefore, in
this work, we focus on spatial and energy-efficient directional
spectrum sensing in D-CRNs.

1.1. Related Work

Cooperative spectrum sensing schemes can be classified into
two categories depending how SUs share their sensing informa-
tion in the network [2]: centralized and distributed.

1.1.1. Centralized Cooperative Spectrum Sensing
Centralized CRN (C-CRN) schemes [? 3, 4, 5] exploit a co-

ordinator called a fusion center (FC) that gathers sensing infor-
mation from SUs, computes the sensing schedule for the SUs,
and disseminates parameters to the SUs. Na et al. [? ] proposed
a centralized cooperative directional sensing scheme in CRNs.
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Using a modified gradient descent method, the scheme mini-
mized the sensing overhead by optimizing the sensing period,
power, and beams of each secondary node. Simulation results
demonstrate that our directional spectrum sensing technique is
well suited for the existing cognitive radio environment. Wan et

Table 1: Notations description

Notation Description
N,M The number of SU and beam
K, K̂ The number of subchannel and LBZ
SUi, j The jth beam of ith SU
R The coverage of an SU
Li

j,n(x) A linear equation
Ri, j(x) A circular equation
Pi, j

j,n An intersection point
Ci(xi, yi) The centroid of ith SU
θ The beam-sector angle
Υi, j The measured SNR
λi, j The detection margin (threshold)
Λ The set of λ
PFA The false-alarm probability
PCD The correct-detection probability
Φi, j The probability of accurate-sensing
W The bandwidth in system model
Ts,Td The time of sensing and transmission
u The time-bandwidth product
EU

d (x), EL
d (x) Upper and lower equation

[pd, qd] An overlapped subinterval region
id The d-th subinterval information
Ii, j(m, n) The set of id
Ψi, j The overlapping beam coverage ratio
Ai, j The area of SUi, j

si, j The beam decision binary indicator
S The set of si, j

α, β The weight factor for normalization

al. [3] proposed a cooperative spectrum sensing scheme for IoT
network. In the proposed scheme, the spectrum sensing tech-
nique is further devised to the spatial dimension. This technique
ias differentiated from the above study by considering spatial
correlation. The information derived from spatial correlation is
related to the probability of detection and spectrum utilization
to enhance the energy efficiency. Paul et al. [4] proposed a
spectrum sensing scheme for vehicular networks based on de-
cision fusion techniques using renewal theory model. The pro-
posed techniques can solve the frequent interference and hidden
PU problems in vehicular networks. Wu et al. [5] proposed a
cooperative sensing technique based on maximum a posterior-
Markov random field (MAP-MRF) framework which focuses
on the individual spectrum coverage of the SU. Spectrum state
information from each SU is exchanged and aggregated with
its neighbors using belief-propagation (BP) algorithm. Gener-
ally, the performance of the cooperative spectrum sensing ap-
proaches is satisfactory. However, these C-CRN schemes typi-
cally derive significant control overhead and energy consump-
tion for collecting sensing information and beam scheduling de-

cisions. Moreover, the arrangement problem of PUs such as
drones or satellites is still challenging in C-CRNs. [6]. Above
all, the problem of inactivating the sensing function when the
FC is stopped and a security problem that makes the FC vul-
nerable in case of malicious behavior urgently need to be ad-
dressed [7]. To address these issues, various distributed spec-
trum sensing schemes in CRNs have begun to be studied.

1.1.2. Distributed Cooperative Spectrum Sensing
In D-CRNs, unlike C-CRNs, SUs share sensing informa-

tion without FC and determine their sensing schedules inde-
pendently. Distributed methods in CRNs sense the spectrum
better due to their fast adaptation to network changes. They
also consume less power, which is critical in CRNs. Most pre-
vious spectrum sensing techniques use omnidirectional anten-
nas. However, the use of directional antennas for spectrum
sensing is a promising technique that can realize fine-grained
sensing for a PU with a longer sensing range. Various dis-
tributed spectrum sensing schemes for D-CRNs[8, 9, 10, 11]
have been proposed. Gazestani et al. [8] proposed a diffusion-
based distributed sensing scheme for CRNs, which improves
the robustness of the spectrum sensing method against link fail-
ure and network topology changes. The convergence rate and
mean square error under a link failure assumption were ana-
lyzed in practical realistic scenario. The method achieved a
better convergence rate and level of accuracy then conventional
distributed methods. Smith et al. [9] proposed spectrum sens-
ing in a CRN with arbitrary numbers of PUs and SUs. Based
on the sphericity test, it analyzed the centralized spectrum sens-
ing where all the data available at the SUs are combined for the
signal detection of PUs. It found accurate approximations for
the false-alarm and detection probabilities. Gu et al. [10] pro-
posed a distributed available spectrum sensing and allocation
algorithm called a rendezvous algorithm. It assumed that the
users have different sensing capabilities due to hardware dif-
ferences. The proposed heterogeneous sensing algorithm has
enhanced time efficiency, but the algorithm does not consider
energy efficiency.

1.2. Motivation, Contribution, and Organization

Table 2 summarizes key features of the proposed scheme
and key differences from existing scheme. The major contribu-
tions of this research can be summarized as follows:

• We formulated a semi-distributed cooperative spectrum
sensing problem in CRNs to maximize the probability of
accurate spectrum sensing and overlapping beam cover-
age ratio (OBCR), which is related to spatial and energy
efficiency. The centralized cooperative spectrum sens-
ing scheme relies extensively on the FC, which can have
system stability and scalability issues. In contrast, dis-
tributed cooperative spectrum sensing problem has greater
complexity and poorer performance than centralized co-
operative spectrum sensing. Therefore, we transform the
centralized spectrum sensing problem into a distributed
spectrum sensing problem.
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Table 2: Summary of key features and differences (spectrum sensing techniques)

Reference Centralized Distributed Sensing Probability Energy Efficiency Spatial Correlation

[? ] ✓ × ✓ ✓ ×

[3] ✓ × ✓ ✓ ✓

[4] ✓ ✓ ✓ × ×

[5] ✓ ✓ ✓ ✓ ×

[8] × ✓ ✓ × ×

[9] ✓ ✓ ✓ × ×

[10] × ✓ × × ×

[12] × ✓ ✓ × ×

[11] × ✓ × ✓ ×

Proposed ✓ ✓ ✓ ✓ ✓

• To solve the centralized spectrum sensing problem in a
distributed manner, we initially form a cooperative local-
ized coalition called localized broadcast zones (LBZs).
Then, we propose a semi-distributed and cooperative spec-
trum sensing scheme that can be employed within each
LBZ. In addition, we proposed a low-complexity coor-
dination mechanism between LBZ leaders to ensure effi-
cient spectrum sensing.

• Through extensive simulations, we confirmed that the pro-
posed control provides better sensing accuracy, spatial ef-
ficiency, and energy consumption than traditional omni-
directional antenna-based sensing and directional antenna-
based fully distributed sensing approaches. The perfor-
mance gain increased with the number of SUs. More
importantly, the proposed scheme achieved near-optimal
performance within approximately 5% of that of a di-
rectional antenna-based centralized cooperative spectrum
sensing approach.

The remainder of this paper is organized as follows. The
system model and problem formulation are presented in Sec-
tions 2 and 3, respectively. The proposed semi-distributed op-
timization solution is presented in Section 4. The performance
evaluation and conclusions are described in Sections 5 and 6,
respectively. In addition, the notation used in this paper is sum-
marized in Table 1.

2. System Models

In this section, we describe the system model considered in
this paper.

2.1. Primary User

In this work, we assume that PU is equipped an omnidi-
rectional antenna, as depicted in Fig. 1a, operated in a slotted
fashion. Furthermore, PUs periodically broadcast pilot signals,
which are cyclostationary, such as in digital video broadcasting-
terrestrial (DVB-T) [13] in IEEE 802.22, a standard for a wire-
less regional area network (WRAN) using the white space band
of the television frequency band [14].

(a) Primary User Model (b) Secondary User Model

Figure 1: Proposed antenna models of primary user (PU) and secondary user
(SU). PUs are equipped an omnidirectional antenna while SUs are equipped
with directional antennas.

2.2. Secondary User

In this system, there are N SUs and the ith SU is denoted
as SUi. Each SU is equipped with a directional antenna, and
each directional antenna has M beam directions, as in Fig. 1b.
It is assumed that SUs are static, and SUs know information
about neighboring nodes, such as their number, locations, and
beam angle. This information can be obtained from initial setup
process, such as exchange of a ”Hello” message in the practical
standard system.

2.3. Antenna and Beam Model

The directional antenna consists of M directional beams and
can be switched between transmitting and receiving modes with
an antenna controller. The switching is implemented within the
antenna controller using very fast analog complementary metal-
oxide-semiconductor (CMOS) multiplexers/demultiplexers, which
have a fast transition time of fewer than 217ns and less than sig-
nal propagation delay [15]. Here, we assume that the side lobe
of each beam is much smaller than the main lobe. That is, the
side lobe is negligible, and each beam patterns can be treated
as ideally non-overlapping. Each beam has the same angle θ,
namely, θ = 2π

M .

2.4. Channels

In this system, the PU licensed band is divided into K chan-
nels, and SUs can opportunistically use the K data channels to
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transmit or receive their data. To exploit the PU’s data chan-
nels, SUs perform channel sensing for K channels to identify
any spectrum hole. We assume that SUs use a dedicated control
channel to share information their obtained with each other [16,
17]. As a communication protocol for the control channel among
SUs, we employ LoRa, a type of a low-power wide-area net-
work (LPWAN) technology that operates on low power and has
a wide communication range and multi-sensing capability [18].

2.5. Localized Broadcast Zone Model without Fusion Center

Algorithm 1 Localized Broadcast Zone Grouping Scheme

1: i, j : index of SU
2: k : index of LBZ
3: K̂ : number of LBZs
4: Step 1. Update the local information between SUs
5: All SUs broadcast their local information.
6: Step 2. Formulate LBZ according to definition (1)
7: k ← 1
8: while even one SU does not belong to any LBZ do
9: for i := 1 to N do

10: if S Ui is not contained any LBZ then
11: LBZk = LBZk ∪ S Ui

12: for j := i + 1 to N do
13: if S U j is not contained any LBZ then
14: if D(i, j) < R then
15: LBZk = LBZk ∪ S U j

16: end if
17: end if
18: end for
19: end if
20: end for
21: k ← k + 1
22: end while
23: K̂ ← k
24: Step 3. Select the LBZ leader among the SUs
25: amin ← ∞

26: for k := 1 to K̂ do
27: xk =

∑|LBZ|
i=1 xi

K̂

28: yk =
∑|LBZ|

i=1 yi

K̂
29: for i := 1 to |LBZk | do
30: a =

√
(xi − xk)2 + (yi − yk)2

31: if amin ≥ a then
32: amin ← a
33: LBZ leader is updated to S Ui.
34: end if
35: end for
36: end for

In this work, unlike a global FC, as in Fig. 2a, we use a local
clustering-based semi-distributed model, as in Fig. 2b. Each
local cluster is referred to as an LBZ [19]. The LBZ is defined
as follows:

LBZk = {SUi|D(i, j) < R, ∀i, j ∈ LBZk} , (1)

where k is the index of LBZ and D(i, j) is a distance between
SUi and SU j. In each LBZk, there is an LBZ leader, and all
the SUs in the same LBZk transmit their sensing information to
the LBZ leader using multi-hop routing algorithm [20]. Algo-
rithm 1 shows how the LBZs are formed and their local leaders
determined.

(a) Centralized system model.

(b) Semi-distributed system model.

Figure 2: System models: the centralized model (a) and proposed semi-
distributed model (b).

2.6. Licensed Spectrum Sensing Method

One of the most important functions in cognitive radio is
to efficiently detect whether SUs have available spectrum to
use without interfering with PUs. There are many approaches
to spectrum sensing methods: energy detection, second-order
statistics, statistical pattern recognition, feature template, matched
filter and cyclostationarity detection methods [21], [22]. Many
of these systems in recent studies have used the energy-detection
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method [14],[23] owing to its minimal hardware cost [? ].
However, it requires some SU quiet periods to distinguish the
PU signals and other noise. In addition, to ensure a quiet pe-
riod in a distributed environment, all SUs must be synchro-
nized, which is a very difficult task without an FC. Therefore, in
this work, we use the energy-detection sensing technique with
unsynchronized SU quiet periods, with the help of PU cyclosta-
tionary pilot patterns, which are usually open to the public [13].

3. Problem Formulation

In this section, we elaborate on the proposed optimization
problem. We first explain accurate-sensing probability and over-
lapping beam coverage ratio (OBCR), which are major factors
for the proposed efficient spectrum sensing, and then present
our problem formulation.

3.1. Accurate-sensing Probability
The accurate-sensing probability can be evaluated based on

two hypotheses, H0 and H1:

H0 : PUs are absent (a subchannel is not being used),
H1 : PUs are present (a subchannel is being used).

Under H0 and H1, the false-alarm probability PFA(·) and correct-
detection probability PCD(·) can be evaluated as follows:

PFA(λi, j) = P
(
SUi, j detects at least one PU under λi, j|H0

)
,

PCD(λi, j) = P
(
SUi, j detects at least one PU under λi, j|H1

)
,

where λi, j represents the energy-detection threshold for PU sig-
nals. Based on [? ],[24], the probabilities PFA(·) and PCD(·) can
be expressed as

PFA(λi, j) =
Γ
(
u, λi, j

2

)
Γ(u)

, (2)

PCD(λi, j) = Q1

(√
2Υi, j,

√
λi, j

)
, (3)

where Γ(·) denotes the gamma function, Γ(·, ·) represents the up-
per incomplete gamma function, and Q1(·) indicates the gener-
alized Marcum Q function with the first-order-modified Bessel
function [25]. In (2), u denotes a sensing time-bandwidth prod-
uct and it is usually approximated to 1 [? ]. In (3), Υi, j repre-
sents the measured signal-to-noise ratio (SNR) of the PU signal.
For sensing, the SU determines the presence of PUs based on
energy detection with a constant sensing period Ts Then, the
accurate-sensing probability Φi, j(λi, j) can be obtained as fol-
lows:

Φi, j(λi, j) (4)

=
(
1 − PFA

(
λi, j

))
P(H0) + PCD(λi, j)P(H1),

=

1 − Γ(1, λi, j

2 )
Γ(1)

 P(H0) + Q1

(√
2Υi, j,

√
λi, j

)
P(H1),

where P(H0) and P(H1) denote the probabilities of hypotheses
H0 and H1, respectively, during the sensing period and satisfy
P(H0) + P(H1) = 1.

3.2. Overlapping Beam Coverage Ratio (OBCR)
When a sensing beam that significantly overlaps a neigh-

boring beam area is turned on, many sensing beams may not
need to perform beam sensing, allowing that much energy to
be conserved. That is, we need to estimate how much the area
overlaps the area of the other beam when one beam is turned
on. We define this overlapping degree as OBCR.

To this end, we first determine overlapping points among all
the beam sectors of the SUs in the same LBZ. The information
on the overlapping points between a particular SUi, j and another
beam SUm,n in the same LBZ is denoted as Ii, j(m, n),

Ii, j(m, n) =
{
id |id = (pd, qd, EU

d , E
L
d )

}
, (5)

where id denotes the d-th overlapping subinterval region [pd, qd]
that is upper- and lower-bounded by EU

m and EL
m, respectively.

For the example in Fig. 3, the information on the overlapping
points for SU11 can be expressed as follows:

I1,1(2, 2) = {(x
′

1,1, x2,1, E13, E23), (x2,1, x
′

1,2, E21, E23)},

I1,1(2, 3) = {(x2,1, x
′

1,2, E32, E33), (x
′

1,2, x
′

1,3, E32, E13),

(x
′

1,3, x1,3, E12, E33)},

I1,1(3, 4) = {(x
′

1,4, x
′

1,5, E43, E12), (x
′

1,5, x1,3, E43, E13)}.

After finding the information about the overlapping sub-
intervals, the OBCRΨi, j for each beam sector can be calculated
as follows:

Ψi, j =
1

Ai, j

|LBZk |∑
m=1

M∑
n=1

|Ii, j(m,n)|∑
d=1

∫ qd

pd

[
EU

d (x) − EL
d (x)

]
dx, (6)

where Ai, j denotes the area of SUi, j. As an example, the OBCR
calculation for Fig. 3 is calculated in the Appendix. Algo-
rithm 2 summarizes the procedure for finding overlapping points
of (5).

3.3. Optimization Formulation
In this work, we aim to maximize the probability of accurate

sensing and OBCR to reduce energy consumption as possible.
That is, the target system utilization to be maximized can be
expressed as follows:

N∑
i=1

M∑
j=1

si, j

{
αΦi, j(λi, j) + βΨi, j

}
, (7)

where α and β denote the weight factors, that is α + β = 1 and
α, β ∈ [0, 1]. In (7), we optimize the PU detection threshold,
λi, j, with its minimum and maximum thresholds as λmin and
λmax, respectively,

λmin ≤ λi, j ≤ λmax. (8)

In addition, we optimize the beam decision binary indicator si, j.
If beam SUi, j is used for spectrum sensing, si, j becomes 1; oth-
erwise, it becomes 0. That is, all si, j can be denoted as binary
integer variables,

si, j ∈ {0, 1}, ∀i, j. (9)
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(a) Vertices of sectors.

(b) Intersection points between sectors.

Figure 3: Example: vertices and intersection points between SU11 and other
beams of SUs in the same LBZ.

Let Oi, j denote an N × M sparse matrix with overlapping infor-
mation, such that

Oi, j(n,m) =
{

1, if SUn,m is overlapped with SUi, j

0, otherwise

}
.

That is, the matrix element Oi, j(n,m) is 1 if beam SUi, j overlaps
with beam SUn,m. In this work, for energy-efficient beam sens-
ing, for each beam SUi, j, we switch on only one beam among
overlapping neighboring beams. Therefore,

N∑
n=1

M∑
m=1

sn,mOi, j(n,m) = 1 ∀i, j, . (10)

Finally, the control variables λi, j and si, j can be expressed in the
form of N × M matrices Λ and S, respectively.

Λ =


λ1,1 λ1,2, · · · λ1,M−1, λ1,M
...

. . .
...

λN,1 λN,2, · · · λN,M−1, λN,M

 (11)

Algorithm 2 Finding Overlapping Points for LBZk

1: i,m: index of two distinct SUs in LBZk

2: j, n: index of beams of two distinct SUs
3: a, b: index of equation of two distinct beams
4: d: index of information of intersection point
5: k: index of LBZ
6: Ei

j,a(x): equation if a = 1 then Li
j,1(x), else if a = 2 then

Li
j,2(x), else if a = 3 then Ri, j(x)

7: for i := 1 to | LBZk | do
8: for m := i + 1 to | LBZk | do
9: if

√
|xi − xm|

2 + |yi − ym|
2 < ri + rm then

10: d ← 1
11: For all i, j,m, n of SUi, j, SUm,n,
12: if ∃x s.t. |Ei

j,a(x) − Em
n,b(x)| = 0 then

13: pd ← x
14: qd−1 ← x
15: if Ei

p,a(pd + ϵ) > E j
q,b(pd + ϵ) then

16: EU
d ← Ei

j,a(x)
17: EL

d ← Em
n,b(x)

18: else
19: EU

d ← E j
i,b(x)

20: EL
d ← Ei

j,a(x)
21: end if
22: d ← d + 1
23: end if
24: end if
25: Sorting id in ascending order.
26: end for
27: end for

S =


s1,1 s1,2, · · · s1,M−1, s1,M
...

. . .
...

sN,1 sN,2, · · · sN,M−1, sN,M

 (12)

Therefore, the problem can be summarized as determining the
optimal control variables (Λ∗,S∗) of the following problem:

(P1) max
Λ,S

(7) s.t (8), (9), (10). (13)

4. Proposed Semi-Distributed Spectrum Sensing Control

In this work, we solve (P1) in a semi-distributed manner.
To do so, we first decompose the problem (P1) into each LBZk

basis local problem (P2), which can be solved, as in 4.1.

(P2) max
Λ,S

∑
i∈LBZk

M∑
j=1

si, j

{
αΦi, j(λi, j) + βΨi, j

}
, (14)

s.t (8), (9), (10).

Then, the leaders of the LBZk iteratively coordinate their solu-
tions, as in Algorithm 4.

4.1. Concave Optimization with Elimination Approach
For each LBZk, the leader of the LBZk finds its local solu-

tion. In (14), si, j is independent of Φi, j(λi, j). Thus, the optimal
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si, j and λi, j can be determined separately. First, to find optimal
λi, j, we can check some properties of the function Φi, j(λi, j). For
simplicity, we use Φ(λ) rather than Φi, j(λi, j) in the following
propositions.

Proposition 1. There exists an extreme point λ∗ that satisfies
the first derivative ∂

∂xΦ(λ∗) = 0.

Proof. The functionΦi, j(λi, j) is a linear combination of the prob-
ability density functions (PDFs) of false alarm (PFA) and missed
detection (1 − PCD), and therefore, it is continuous and differ-
entiable. For convenience, let x = λ2 for evaluating the deriva-

tive of Γ(1,
λ
2 )

Γ(1) . As Γ(u, x) is
∫ ∞

x tu−1e−tdt, the first-order partial
derivative of Γ(1,x)

Γ(1) can be derived as follows:

∂

∂x

(
Γ (u, x)
Γ(u)

) ∣∣∣∣∣∣
u=1
= − exp(−x). (15)

Subsequently, let a =
√

2Υ and b =
√
λ to calculate the first-

order partial derivative of the generalized momentum Q func-
tion Q1

(√
2Υ,
√
λ
)

for convenience. Then, the first-order par-
tial derivative of Q1 (a, b) is derived based on [26] and [27] as
follows:

∂

∂b
Q1(a, b)

=
∂

∂b

∫ ∞

b
x exp

(
−

a2 + x2

2

)
I0(ab)dx

= (−b) exp
(
−

a2 + b2

2

)
I0(ab), (16)

where In denotes the nth-order modified Bessel function in a
series form. Therefore, the first-order partial derivative of Φ
can be derived as follows:

∂

∂λ
Φ(λ)|u=1

= exp
(
−
λ

2

)
− λ

1
2 exp

(
−

2Υ + λ
2

)
I0(
√

2Υλ)

= exp
(
−
λ

2

)
·
(
1 −
√
λ exp(−Υ)I0(

√
2Υλ)

)
. (17)

The extreme point λ∗ that equates (17) to zero with a constant
Υ can be obtained through various numerical analysis methods.

The function Φ(λ) also has the following property.

Proposition 2. If λ∗ is an extreme point, function Φ(λ) is con-
cave if ∂

∂λ
Φ(λ∗ − ϵ) > 0 and ∂

∂λ
Φ(λ∗ + ϵ) < 0 for any ϵ > 0.

Proof. By substituting λ∗ + ϵ into (17), we can derive the dis-

criminant equation as follows:

∂

∂λ
Φ(λ)|u=1,λ=λ∗+ϵ

= exp
(
−
λ∗ + ϵ

2

)
−

(λ∗ + ϵ)
1
2 exp

(
−

2Υ + λ∗ + ϵ
2

)
I0

( √
2Υ(λ∗ + ϵ)

)
= exp

(
−
ϵ

2

) {
exp

(
λ∗

2

)
− λ∗

1
2 exp

(
−

2Υ + λ∗

2

)
I0

( √
2Υ(λ∗ + ϵ

)
− ϵ

1
2 exp

(
−

2Υ + λ∗

2

)
I0

( √
2Υ(λ∗ + ϵ

) }
, (18)

where the first-order modified Bessel function I0 is monotoni-
cally increasing in (0,∞). Therefore, if ϵ is a negligibly small
positive value (but not zero), the first-order partial derivative of
Φ(λ) is always negative. Similarly, if ϵ is an extremely small
negative value (but not zero), the first-order partial derivative of
Φ(λ) is always positive. Thus, Φ(λ) is concave, as illustrated in
Fig. 4.

Based on the Propositions 1 and 2, function Φ(λ) has the
following property.

Figure 4: First derivative of Φi, j(λi, j) with u = 1 and Υi, j = 24.

Proposition 3. Function Φ(λ) is quasi-concave for λ ∈ (0,∞).

Proof. The first-order partial derivative is always positive if λ
is less than λ∗ and negative if it is greater than λ∗. In addition,
based on the convergence properties of Γ(1, λ) and Q1(Υi, j, λ),
Φ(λ) converges if λ → ∞. Therefore, the proposed accurate-
sensing probability Φ(λ) is quasi-concave.

Based on these properties, we can guarantee the existence
and uniqueness of optimal λi, j [28]. Therefore, we employed
an gradient descent method to find the optimal λi, j with modi-
fying step size. With the optimal λi, j (a constant variable), we
use a modified elimination method to find the optimal si, j in
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(14) based on the constraint (10) for the overlapping informa-
tion matrix Oi, j, as shown in Algorithm 3.

Algorithm 3 Modified Elimination Approach to Solve (P2)

1: Input : Problem (P2)
2: Constraints : (8), (9), (10)
3: Solution Procedure :
4: All SUi, j are divided into sets of overlapping beams based

on Oi, j.
5: Then, si, j can be determined using (8) and (9) because only

one beam will be turned on: the one that has the greatest
value in each set (10).

6: The optimal solution is obtained by summing all derived
si, j.

7: Output : Optimal Solution S∗ of (P2)

4.2. Coordination between LBZs

The coordination process is shown in Algorithm 4. After
local sensing of each LBZ, all LBZs broadcast its sensing in-
formation and connectivity table using LoRa (line 6). The dis-
tance between the SUs is checked for the channel that senses
the same private sub-channel (PS) as the LBZ (line 12). At this
time, if there is overlapping, the smaller beam, determined by
comparing the OBCR, is turned off (line 13–17). After opti-
mizing each LBZ, it is done in the stage of coordinating the
optimization between LBZs, so it is almost closed as solving
the problem of (P1).

4.3. Operational Flow and Computational Complexity

Figure 5: Proposed cooperative spectrum sensing timeline.

The overall spectrum sensing procedure can be summarized
as in Fig. 5. For the complexity analysis below, recalling some
symbols once again, N, K and M denote the number of SUs,
the number of subchannels, and the number of beams per SU,
respectively. In the initialize step, the main computational com-
plexity for grouping LBZ (Algorithm 1) comes from formu-
lation of connectivity table and calculation of OBCR Ψ. The

Algorithm 4 Localized Broadcast Zone Coordination

1: i, j : index of SU in connectivity table
2: m, n : index of beam
3: k, l : index of LBZ
4: K̂ : number of LBZs
5: Step 1. Sharing connectivity table between LBZs
6: ∀ LBZk broadcast its sensing information and connectivity

table using LoRa.
7: Step 2. Validation overlapping of beam direction
8: for k := 1 to K̂ do
9: for l := k + 1 to K̂ do

10: if PS of LBZk == PS of LBZl then
11: for i := 1 to |LBZk | do
12: Check for overlap with SU j in LBZl based on

D(i, j) < R, ∀ j.
13: if ∀m, n, SUi,m and SU j,n are overlapped then
14: if Ψi,m ≥ Ψ j,n then
15: si,m ← 0
16: else
17: s j,m ← 0
18: end if
19: end if
20: end for
21: end if
22: end for
23: end for
24: Step 3. Update for next sensing and transmission
25: Update and store the shared sensing information and con-

nectivity table.
26: Shift PS for next cycle.

complexity becomes O(N log N). Finding optimal λ with gradi-
ent descent method has O(N2) computational complexity. Find-
ing optimal S k (Algorithm 3) employs a modified elimination
approach, which is based on linear search and has O(N2) com-
putational complexity. For LBZs coordination in Algorithm 4,
the algorithm examines overlapswith different LBZs and ad-
justs overlapping beam to ON or OFF. This total sensing and
transmission phase is repeated for each sub-channels, that is K
times. Therefore, the overall computational complexity of the
proposed algorithm becomes O(KMN2), which is polynomial
complex. In addition, K and M can be generally assumed to be
extremely small compared to N.

5. Performance Evaluation

In this section, we evaluate the performance of the proposed
control in terms of spatial efficiency, detection accuracy, and
energy consumption:

• Spatial Efficiency (%): This measures how efficiently spec-
trum sensing is carried out without beam overlapping for
the entire sensing area.

• Sensing Accuracy (%): This measures the average accurate-
sensing probability without false alarm and miss detec-
tion by SUs.
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• Energy Consumption for Sensing (mJ): This measures
the total energy consumption used for spectrum sensing
by all SUs.

Figure 6: Simulation topology.

Table 3: Simulation Parameters

Parameter Value
Topology Size 1 km × 1 km
Energy Consumption per Sensing 0.4 mJ
Bandwidth W 1 KHz
Sensing Period Ts 0.001 s
Number of Beams M 2 – 8
Number of PUs 10
Number of SUs N 100 – 2000
Sensing Distance of SU 0.1 – 0.5 km
Time-bandwidth Product u [? ] 1

In this work, we compared the proposed control with fol-
lowing approaches:

• omnidirectional non-cooperative spectrum sensing: this
method uses an omnidirectional antenna-based non-cooperative
spectrum sensing model. It always turns on all beams and
senses without considering overlapping sensing ranges.

• Directional centralized spectrum sensing [? ]: This is
a directional antenna-based centralized spectrum sensing
scheme. The global FC collects the sensing information
of all SUs and determines the optimal sensing beam of
all the SUs.

• Directional fully distributed spectrum sensing [29]: This
method is a directional antenna-based fully distributed
sensing scheme. Unlike the proposed scheme, it does not
employ any inter-LBZ coordination.

• Proposed sensing: This is the proposed directional antenna-
based semi-distributed and cooperative spectrum sensing
scheme.

For the evaluation, we implemented a simulator using the
C and PYTHON programming languages and MATLAB opti-
mization tool. In the simulation, the users were uniformly dis-
tributed over 1 km × 1 km regions, as shown in Fig. 6. The
users were grouped into four LBZ, and each LBZ leader was
selected. The simulation parameters were set as in Table 1.

Fig. 7 shows the correct-sensing probability ϕi, j according
to the time-bandwidth product u and the measured SNR γi, j.
In Fig. 7a and Fig. 7b, as u increases, 1 − PFA increases more
slowly, but PCD is not affected. In contrast, as γi, j increases,
1 − PFA is not affected, but PCD increases more slowly. On
the other hand, because the correct-sensing probability ϕi, j is a
linear combination of 1− PFA and PCD, ϕi, j is affected by u and
γi, j, as shown in Fig. 7c. As u increases, optimal λi, j increases,
and its ϕi, j value decreases. As γi, j increases, optimal λi, j and
its ϕi, j value increases.

Fig. 8-11 compare the average system utilization, spatial ef-
ficiency, energy consumption, and detection accuracy for dif-
ferent numbers of SUs and measured SNRs, respectively. We
conducted this simulation in an environment with u = 1 (sens-
ing period Ts = 0.001 s and bandwidth W= 1KHz), which was
used for the directional centralized cooperative spectrum sens-
ing model [? ].

Fig. 8 compared the average system utilization, where we
set the performance of the omnidirectional sensing model to
100% as the baseline for comparison. In Fig. 8a, the system
utilization of the all sensing approaches increases as the num-
ber of SUs increases. However, the performance of the di-
rectional antenna-based sensing models is superior to that of
the omnidirectional sensing approach. The proposed model
shows 33%−167% and 7%−12% better than the omnidirec-
tional sensing and directional centralized sensing approaches,
respectively, and 5$−8% worse than the directional centralized
sensing approach. In Fig. 8b, there is almost no system util-
ity change according to the measured SNR γi, j. The directional
antenna-based sensing model were always superior to the om-
nidirectional sensing model under all the measured SNR γi, j.
The proposed model provides 74% and 8% higher system util-
ity than the omnidirectional sensing and directional fully dis-
tributed sensing approaches, respectively, and 7% lower system
utility than the directional centralized sensing approach.

Fig. 9 shows the spatial efficiency. For the evaluation, we
set the spatial efficiency of the omnidirectional sensing model
to 100% as the baseline. Fig. 9a shows that the proposed model
provided 31%−202% and 17%−97% better spatial efficiency
than the omnidirectional sensing and directional fully distributed
sensing approaches, respectively. This is because the proposed
sensing model consider the sensing coverage overlapping, but
the traditional omnidirectional model does not, and the direc-
tional fully distributed sensing model only considers sensing
coverage overlap within a cluster. On the other hand, the pro-
posed model provided 2%−7% lower spatial efficiency than the
directional centralized approach. In Fig. 9b, there is almost no
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spatial efficiency change according to γi, j. The proposed model
provides 66% and 36% higher spatial efficiency than the om-
nidirectional sensing and directional fully distributed sensing
approaches, respectively, and 4% lower spatial efficiency than
the directional centralized sensing approach.

Fig. 10 shows energy consumption. In Fig. 10a, when the
number of SUs is 500, the proposed semi-distributed model
showed 25% and 16% less energy than the omnidirectional sens-
ing and directional fully distributed sensing approaches, respec-
tively. As the number of SUs up to 2,000, its energy-saving
gains increased to 67% and 50%, respectively. This is because
the number of sensing beams overlapping between SUs or LBZs
increase as the number of SUs increases. Therefore, the perfor-
mance gap gradually increases as the number of SUs increases.
The proposed approach consumed slightly more energy than the
directional centralized approach, but its difference is within 1%.
In Fig. 10b, the energy consumption of the comparative mod-
els was fixed regardless of γi, j. However, the energy consump-
tion with the proposed model changed slightly as γi, j changed.
This is because, unlike the comparative models, the proposed
model considers its energy consumption when determining the
optimal beam strategy. The proposed sensing model consumed
approximately 41% and 27% less energy than the omnidirec-
tional sensing model and directional full distributed sensing
model. On the other hand, the proposed approach consumed
approximately 4% more energy than the directional centralized
approach.

Fig. 11 shows the average sensing accuracy. In Fig. 11a,
for all cases where the user number is different, the proposed
model is slightly more accurate than the omnidirectional sens-
ing and directional fully distributed sensing approaches, and it
is slightly less accurate than the directional centralized sensing
approach. However, all the schemes, including the proposed
scheme, provided very high accuracy, above 98.4%. On the
other hand, in Fig. 11b, all schemes provide almost same sens-
ing accuracy, and the sensing accuracy contiued to increase to
nearly 100% as the γ increases. This is because it becomes eas-
ier to determine whether the sensed signal is a licensed spec-
trum signal or noise as the measured SNR increases. That is,
this result shows that the proposed approach provides very high
sensing accuracy with significantly reduced energy consump-
tion.

6. Conclusion

In this paper, as an alternative to centralized spectrum sens-
ing approaches, we proposed a directional antenna-based semi-
distributed and cooperative passive spectrum sensing scheme.
As a solution framework, we translated the centralized spec-
trum sensing problem to distributed spectrum sensing problem
with a modified elimination method and coordination method
between LBZs. We proved the concavity of the formulated
problem with perspective of λ and found optimal λwith descent
gradient method. Then, we found the optimal beam ON/OFF
solutionS by a modified elimination method. We also proposed
a low-complex coordination mechanism among LBZ leaders
for efficient spectrum sensing and close to original centralized

spectrum sensing problem. A simulation confirmed that the
proposed scheme is superior to the existing omnidirectional antenna-
based sensing and directional antenna-based fully distributed
sensing approaches in terms of sensing accuracy, spatial effi-
ciency, sensing energy consumption. The performance gain in-
creases as the number of SUs increases. It is also confirmed
that the proposed scheme achieves a near-optimal performance
within around 5% of a directional antenna based centralized
spectrum sensing approach. The experimental can be efficiently
applied to directional antenna-based cognitive IoT networks.

Appendix A. Example of OBCR Calculation

In Fig. 3, SU1 overlaps two beams of SU2 and one beam of
SU3. Then, the OBCRs between SU1, SU2, and SU3 are illus-
trated in Fig. 12. Therefore, Ψ1,1 can be evaluated as in (A.1).

Ψ1,1 =
1

Ai, j

3∑
n=1

|Ik,1
1,n |∑

d=1

∫ pd+1

pd

{
EU

d (x) − EL
d (x)

}
dx

=
1

Ai, j

[∫ x2,1

x′1,1
{E13(x) − E23(x)}dx+∫ x
′

1,2

x2,1
{E21(x) − E13(x)}dx+∫ x

′

1,2

x2,1
{E32(x) − E33(x)}dx+∫ x

′

1,3

x′1,2
{E13(x) − E33x)}dx+∫ x1,3

x′1,3
{E13(x) − E12(x)}dx+∫ x

′

1,5

x′1,4
{E43(x) − E12(x)}dx+∫ x1,3

x′1,5
{E13(x) − E12x)}dx

]
.

(A.1)
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(a) 1 − PFA vs. λi, j.

(b) PCD vs. λi, j.

(c) Probability of accurate-sensing vs. λi, j.

Figure 7: Impact of u, and γi, j on accurate-sensing probability.
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(a) Average system utilization with γi, j = 24. (b) Average system utilization with N = 1000.

Figure 8: Comparison of average system utilization vs. the number of SUs N and the estimated SNR γi, j.

(a) Spatial efficiency with γi, j = 24. (b) Spatial efficiency with N = 1000.

Figure 9: Comparison of spatial efficiency vs. number of SUs N and the estimated SNR γi, j.

(a) Energy consumption with γi, j = 24. (b) Energy consumption with N = 1000.

Figure 10: Comparison of Energy consumption vs. the number of SUs N and the estimated SNR γi, j.
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(a) Sensing accuracy with γi, j = 24. (b) Sensing accuracy with N = 1000.

Figure 11: Comparison of sensing accuracy vs. the number of SUs N and the estimated SNR γi, j.

(a) Overlapping beam coverage ratio between SU11 and
beam 2 of SU22.

(b) Overlapping beam coverage ratio between SU11 and
SU23.

(c) Overlapping beam coverage ratio between SU11 and
SU34.

Figure 12: Example: calculation of overlapping beam coverage ratio Ψ1,1.
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