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Abstract

Recently, the simultaneous transmitting and reflecting (STAR) reconfigurable intelligent surface (RIS) has been
gaining attention as a key enabler for sixth-generation networks, providing additional links with reduction in power
consumption. This paper investigates the STAR-RIS’s potential in a cell-free (CF) massive multiple-input multiple-
output (mMIMO) network, where distributed APs serve user over the same time/frequency. We propose a deep deter-
ministic policy gradient framework satisfying system-specific and per-user spectral efficiency constraints, exploiting
a post-normalization and a penalized reward. From the simulations, it is revealed the proposed algorithm provides
better energy performance than benchmarks, highlighting the benefits of STAR-RIS in the CF network.

Keywords: Cell-free massive multiple-input multiple-output, Deep reinforcement learning, Energy efficiency,
Simultaneous transmitting and reflecting reconfigurable intelligent surface

1. Introduction

In the upcoming sixth-generation (6G) wireless net-
works, traditional cellular networks face significant
challenges in providing uniform services due to inter-
cell interference. Consequently, cell-free (CF) massive
multiple-input multiple-output (mMIMO) is an emerg-
ing network technology expected to replace the cellu-
lar architecture, and it has been widely studied as a
promising technology for 6G communication [1, 2, 3].
In CF mMIMO, geographically distributed APs jointly
serve multiple users on the same time-frequency re-
source without cell boundaries, similar to a coordinated
multi-point system [1]. Compared to cellular systems,
providing service without cell boundaries results in bet-
ter throughput by reducing inter-cell interference for
users far from the APs. Nevertheless, high infrastruc-
ture costs and power consumption problems remain due
to the requirement for large-scale AP deployment to
achieve higher throughput.

On the other hand, reconfigurable intelligent surfaces
(RIS) are promising techniques to improve the prop-
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agation environment by controlling the phase of inci-
dent signals [4]. RIS consists of low-cost passive pro-
grammable elements, each of which can perform ef-
fective passive beamforming [5]. This offers several
advantages, such as low power consumption, low de-
ployment cost, and scalability. Thus, the integration of
CF mMIMO and RIS has been extensively researched
[6, 7, 8, 9, 10].

However, most existing studies on RIS-aided CF
mMIMO systems focus on reflecting-only RISs, which
require the transmitter and receiver to be located on one
side of the RIS. This half-space topology problem pre-
vents taking full advantage of easy deployment and im-
poses additional topological constraints on the CF net-
work. Recently, simultaneous transmitting and reflect-
ing (STAR) RIS techniques have been developed to
overcome the above limitations. This can realize om-
nidirectional signal coverage and improve the capacity
and coverage of wireless networks by establishing cas-
caded links between transmitters and receivers, allow-
ing the 6G network to meet its demands for high SE and
energy-efficient system design [11].

As illustrated in [9], a joint optimization design in-
volving the precoding at the APs and the phase control
of the RIS elements is essential to fully utilize above
benefits. However, conventional numerical optimization
methods rely on complex algorithms or approximations,
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which can lead to high computational costs and per-
formance degradation. These limitations underline the
need for more efficient and adaptive optimization tech-
niques.

Recently, the integration of artificial intelligence in
wireless network is constantly being studied, among
which deep reinforcement learning (DRL) offers an ef-
ficient alternative to addressing the overhead of system
optimization [12]. For example, DRL can effectively
solve complex control problems through trial and error,
reducing computational complexity even as the number
of network elements grows [13]. Moreover, DRL can
adapt to dynamic environments where the state of the
network frequently changes [14].

1.1. Related work

The early study of the integration of RIS and
CF mMIMO focuses on approximation/heuristic ap-
proaches [15, 16, 17, 18, 19, 20, 21, 22]. Qingqing
et al. investigated the joint beamforming optimization
for RIS-aided multi-user MISO system [15]. To handle
the nonconvexity of the power minimization problem
in the proposed system, a semidefinite relaxation tech-
nique was proposed to obtain an approximate solution.
The performance of RIS-assisted CF mMIMO system
over spatially correlated channels was studied in [16].
The RIS cascaded channel estimation method and opti-
mizing RIS phase shifts control scheme are proposed to
minimize the sum of channel estimation errors. In [23],
a closed-form solution for the weighted sum rate maxi-
mization problem is derived in RIS-aided CF mMIMO
system. To realize cooperative hybrid beamforming, the
alternating direction method of multipliers and mani-
fold optimization are proposed. Le et al. [18] proposed
an inner-approximation framework-based joint precod-
ing algorithm to maximize energy efficiency in the RIS-
assisted CF mMIMO system under limited backhaul
capacity. Zhang et al. [19] proposed a hybrid beam-
forming scheme that integrates digital beamforming in
AP and analog beamforming in RIS to improve the en-
ergy efficiency of RIS-aided CF mMIMO systems. This
study shows that the proposed RIS-assisted CF mMIMO
system achieves better energy efficiency than traditional
distributed antenna and CF mMIMO systems.

In [22], the cross-entropy-based probability learning
method was proposed to optimize phase shifts and t/r
ratio in the STAR-RIS-assisted multi-user system. The
method incorporates joint parameterized sampling dis-
tribution and updating rules for the tilting parameter.
Anastasios et al. [20] extended the above systems to a
STAR-RIS-aided CF mMIMO system and proposed a

closed-form expression for downlink achievable spec-
tral efficiency using statistical CSI. Furthermore, Song
et al. [21] investigated the WSR maximization problem
in multiple STAR-RISs-assisted mmWave CF mMIMO
systems. To jointly optimize active beamforming of APs
and passive beamforming in RISs, a Lagrangian dual
transformation and quadratic transformation were pro-
posed to break the highly coupled problem into man-
ageable subproblems.

However, the above-mentioned convex relaxation or
heuristic algorithms often require huge computational
resources to find the solution [24]. Recently, several
DRL-based optimization frameworks have been devel-
oped [12, 13, 14, 25, 26, 27]. In [27], the energy con-
sumption optimization problem for MEC offloading un-
der task processing time constraints was derived. To
reduce computation costs and adapt the time-varying
channel, a game theory-based DRL framework is de-
veloped by combining DDQN and distributed LSTM.
In [24], authors aimed to optimize the transmit power
strategies for anti-jamming game. A novel approach in-
tegrating the Stackelberg game and DDPG is developed
to solve the formulated problem while reducing the ef-
fect of incomplete information. In [28], the AP-user as-
sociation method was proposed for energy efficiency
maximization. To apply the DDPG for the large dis-
crete action space, the action space approximation and
the dimension-decreasing approach were proposed.

Huang et al. [14] proposed a DDPG-based sum-
rate maximization algorithm for the RIS-assisted multi-
user MISO system. The beamforming and phase shifts
are jointly obtained while reducing the complexity and
computation time. In [25], to maximize the achievable
data rates while satisfying the QoS and latency con-
straints for STAR-RIS-assisted V2X communications,
spectrum allocation, t/r ratio, phase shift, and power al-
location were optimized by using DDQN. In [12], an
optimal beamforming problem was formulated to max-
imize the sum-rate of the CF mMIMO system. The
DDPG-based centralized beamforming and distributed
deterministic policy gradient (D4PG) based beamform-
ing method were proposed to handle the continuous ac-
tion space. In [13], the dynamic clustering and beam-
forming for the CF mMIMO system were obtained via
hybrid DRL approach, which utilizes the DDPG to find
beamforming and DDQL to find dynamic clustering.

1.2. Contributions
Based on the above motivation, we propose the joint

optimization framework based on DDPG for the STAR-
RIS-aided CF mMIMO system. The contributions are
summarized as follows:
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• For a downlink CF network, we design the joint
transmit precoding, phase shifts, and t/r ratio
optimization method by formulating the energy-
efficiency maximization problem under a per-user
SE constraint and STAR-RIS system constraints.

• We transform the problem into a Markov deci-
sion processes (MDP) framework and apply a re-
inforcement learning approach to solve the non-
convex optimization problem. Post-normalization
and a penalized reward function are proposed to
satisfy the constraints.

• Through system simulations, we demonstrate that
the proposed algorithm converges stably, and it
outperforms the conventional CF mMIMO in terms
of energy efficiency as the number of network ele-
ments increases.

Notation: Vectors are given in lowercase bold (e.g.,
a), and matrices are given in uppercase bold (e.g., A).
The superscripts T, and H denote the transpose and Her-
mitian transpose, respectively. In addition, exp(v) rep-
resents a vector with the exponential function applied
to each element of v. The elementwise exponential of
a matrix A, denoted as exp(A), applies the exponential
function to each element of A. Further, ||A||F denotes
the Frobenius norm of matrix A, and a ◦ b represents
the elementwise multiplication of vectors a and b. Fi-
nally, A ◦ B represents the elementwise multiplication
of A and B.

2. System Model and Problem Formulation

We consider a CF mMIMO system supported by
STAR-RIS, where M APs equipped with N antennas
and K single antenna UEs are distributed in a cover-
age area, as illustrated in Fig. 1. With U RIS elements,
STAR-RIS is at the center of the area, taking advantage
of its full-space coverage. The coverage region can be
divided into a front region ( f ) and a back region (b) de-
pending on the angle of STAR-RIS. Furthermore, UE
can be distinguished into front and back users depend-
ing on divided regions. That is, K f UE is located in the
front region and Kb UE is located in the back region
where K f +Kb = K.

The APs are assumed to serve UE jointly over the
same time and frequency resource blocks. Furthermore,
all APs are connected to a CPU via error-free backhaul
links to enable channel information exchanges. Assum-
ing the CPU is in the same position as STAR-RIS, it
can be directly connected and controls the coordination
of the phase shift and the transmission and reflection

Figure 1. STAR-RIS-assisted Cell-Free mMIMO system.

(t/r) ratio without additional dedicated links. The t/r ra-
tio and phase control can be individually performed on
each element. When a signal incidents on the uth STAR-
RIS element, it is divided into transmitted and reflected
signals through the t/r ratio, β f

u and βb
u. The magnitude

of the t/r ratio is constrained to satisfy the law of energy
conservation as follows:

|β
f
u |

2 + |βb
u|

2 = 1, ∀u. (1)

Furthermore, the divided signals are reconstructed using
the phase shift control of the front region ϕ f

u and back
region ϕb

u to satisfy the unit-modulus constraint:

|ϕ
f
u | = |ϕ

b
u| = 1, ∀u, (2)

where ϕ
f
u , ϕb

u ∈ C. The combined matrix representa-
tion of the STAR-RIS t/r ratio and the phase shift for
K f and Kb is Φ f = diag(β f

1ϕ
f
1 , . . . , β

f
Uϕ

f
U) and Φb =

diag(βb
1ϕ

b
1, . . . , β

b
Uϕ

b
U). For simplicity, the region indica-

tor for UE k is defined as gk ∈ { f , b}. Thus, the STAR-
RIS control parameter for UE k at region (gk) is repre-
sented as Φgk . Then, the STAR-RIS control parameter
Φg can be defined as Φg = {Φg1 , ...,ΦgK }.

2.1. Channel Model
For a given system model, Hm ∈ CN×U , qk ∈ CU×1,

and dm,k ∈ CN×1 represent the AP-RIS channel matrix,
RIS-user k channel vector, and AP-user k channel vec-
tor, respectively. The channel vector between AP m and
UE k is represented as follows:

hm,k = HmΦ
gk qk + dm,k, (3)

where

Hm = {
√
κmHm,1, ...,

√
κmHm,U}, (4)

qk =
√
κkhk, (5)

dm,k =
√
κm,khm,k, (6)

where κm, κk, and κm,k represent the large-scale fading of
the AP-RIS, AP-UE k, and RIS-UE k links, respectively.
Additionally, Hm,u ∈ CN×1, hm,k ∈ CU×1, and hk ∈ CN×1

represent the small-scale fading vector corresponding
components of the system.
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2.2. Downlink Data Transmission
The transmit signal vector of AP m is given as fol-

lows:

xm =

K∑
k=1

wm,k sm,k, (7)

where sm,k ∼ CN(0, 1) represents the data symbol trans-
mitted from AP m to UE k, and wm,k ∈ CN×1 is the
precoding vector for UE k from AP m. The transmitted
signal power for each AP Pt

m should satisfy following
constraint:

Pt
m =

K∑
k=1

|wm,k |
2 ≤ Pmax. (8)

where Pmax is the maximum transmit power. The re-
ceived signal at the kth UE is given by

yk =

M∑
m=1

hH
m,kxm + nk (9)

where nk ∼ CN(0, σ2) represents the complex Gaussian
noise at UE k. Given that, the signal-to-interference-
and-noise ratio of UE k is defined as follows:

γk =
|
∑M

m=1 hH
m,kwm,k |

2∑
k′,k |
∑M

m=1 hH
m,kwm,k′ |

2 + σ2
. (10)

Then, the downlink SE of the kth UE is denoted as:

Rk = log2 (1 + γk) . (11)

2.3. Problem Formulation
Based on the system model, we propose an energy-

efficiency maximization problem to optimize the pre-
coding, phase shift, and t/r ratio. Then, the energy-
efficiency maximization problem can be expressed as
follows:

(P1) max
w,Φ,β

EE =
BW
∑K

k=1 Rk

Ptotal
(12a)

s.t. Rk ≥ Rth, ∀k (12b)
βt

u ≥ 0, βr
u ≥ 0, ∀u (12c)

(1), (2), (8), (12d)

where w = {wm,k |m ∈ M, k ∈ K}, Φ = {ϕ f , ϕb}, β =
{β f , βb}, BW denotes the system bandwidth, and Rth in-
dicates the guaranteed per-user SE. The total power con-
sumption of the system Ptotal is modeled as in [29],[30]:

Ptotal =
1
αm

M∑
m

Pt
m +

M∑
m=1

Pbh,m

+ M · Pap + K · Pue + U · Pris, (13)

where αm denotes the power amplifier efficiency, and
Pap and Pue represent the circuit static power of the AP
and UE, respectively. Moreover, Pris indicates the power
consumed by each RIS element. The backhaul power
consumption is denoted as:

Pbh,m = P0,m + BW ·
K∑

k=1

Rk · Pbt,m, (14)

where P0,m denotes the fixed power consumption
of each backhaul, and Pbt,m represents the traffic-
dependent backhaul power consumption. In addition,
(12b) represents the per-user SE constraints. Moreover,
(12c) guarantees that the energy of the divided signals
has a positive range.

The precoding vectors w, the passive beamforming in
the STAR-IRS Φ, and the t/r ratio β should be jointly
optimized to maximize the total energy efficiency of the
system. However, (P1) is a non-convex problem with
highly coupled variables and constraints. Although op-
timization methods using convex relaxation or heuris-
tic approaches can be applied, they cannot guaran-
tee a global optimum solution, and the computation
cost can be extensive. Therefore, we propose a post-
normalization layer and penalized DDPG framework
for designing the energy-efficient transmission control.

3. Proposed Approach

We first transform the optimization problem into a
task for an RL agent to determine the transmit precod-
ing, phase shift, and t/r ratio for the AP. The agent,
which uses the computational capacity of the CPU, ob-
serves the environment to determine the appropriate ac-
tions and receives a reward at each time step t. The CPU
receives environment information through the backhaul,
and the agent’s decisions are sent to each AP. These
learning scenarios are modeled as a Markov decision
process (MDP). Based on MDP, the proposed DRL
agent collects state, action, reward, and transition pairs
to learn the optimal policy.

3.1. Markov Decision Process
The state space, action space, and reward function are

defined as follows:
1) State space: The state of the system observed by

the agent is defined as the CSI of the AP-RIS-user and
AP-user paths, which is transmitted to the CPU via the
backhaul links.

s[t] = [{Hm[t]|m ∈ M}, {qk[t]|k ∈ K},
{dm,k[t]|m ∈ M, k ∈ K}] (15)

4



2) Action space: According to the given state, the
agent determines the phase shift, t/r ratio, and AP pre-
coding vector. The action space combines all possible
continuous values of these variables.

a[t] = {w,Φ,β}. (16)

3) Reward function: During the training session, the
agent aims to determine the optimal action to maximize
the reward and the energy efficiency is used to assess
it. Accordingly, the following definition is used for the
instantaneous reward function r[t]

r[t] = BW
∑K

k=1 Rk[t]
Ptotal

. (17)

3.2. Post-Normalization Layer and Penalized Reward

The neural network outputs may not satisfy the con-
straints described in equations (1), (2), (12b), and (12c)
because of the added noise and the limited output range
of the activation functions. Therefore, we propose a
post-normalization layer and penalized reward to satisfy
the constraints. The network output is divided into the
following components to address the constraints on the
optimization variables.

• Precoding phase: For each AP m, the precod-
ing direction is represented by the block matrix
V = {V1, ...,VM}. Each element of the matrix
Vm ∈ RN×K indicates the signal phase in the com-
plex space between the corresponding antenna and
UE.

• Precoding amplitude: For each AP m, the ampli-
tude of precoding is A = {A1, ...,AM}, where each
element of Am ∈ RN×K indicates the magnitude of
the signal between the corresponding antenna and
UE.

• AP power budget: The power budget for each AP
m represents the proportion of maximum power
each AP uses and is indicated by the vector η =
{η1, ..., ηm}.

• Passive beamforming phase: The STAR-RIS
phase shift is divided into two vectors: Ψ f =

{ψ
f
1 , ..., ψ

f
U} and Ψb = {ψb

1, ..., ψ
b
U}.

• t/r proportion: The t/r proportions are described
by the vectors pf = {p f

1 , ..., p f
U} and pb =

{pb
1, ..., pb

U}.

Due to the nature of the activation function, these out-
puts have values between 0 and 1. Thus, the precoding
vector wm,k reformulated as follows:

wm,k =
√

Pmaxηm
am,k ◦ exp( j2πvm,k)
||Am ◦ exp( j2πVm)||F

, (18)

where am,k and vm,k are the kth column of Am and Vm,
respectively. The above normalized precoding vector is
easily proved to satisfy the constraint (8). The STAR-
RIS phase shifts, θ f

u and θb
u are as follows:

ϕ
f
u = exp

(
j2πψ f

u

)
, ϕb

u = exp
(

j2πψb
u

)
(19)

which satisfy the unit-modulus constraint (2). The t/r
ratio of each RIS element βt

u and βr
u are rewritten as fol-

lows:

β
f
u =

p f
u√

p f
u

2
+ pb

u
2
, βb

u =
pb

u√
p f

u
2
+ pb

u
2
, (20)

satisfying constraints (1) and (12c).
Although system-specific constraints can be ad-

dressed post-normalization, resolving the per-user SE
(12b) via these approaches is challenging. Therefore,
we propose a penalized reward, expressed as follows:

rpenalty[t] = BW
∑K

k=1 Rk[t]
Ptotal[t]

+ λ

K∑
k=1

(
min(Rk[t] − Rth, 0)

)
(21)

where λ is the amplitude of the penalty term that is a
positive constant. Setting an appropriate value for λ de-
creases the reward if the constraint (12b) is not satisfied
during training, ensuring maximization of energy effi-
ciency while meeting constraints.

3.3. Proposed DDPG Framework
Due to the continuous action space in the MDP

framework, we propose an DDPG algorithm that can
manage this continuous space [31]. Two types of neu-
ral networks exist: an actor network µ(s|θµ) and a critic
network Q(s, a|θQ), where θµ and θQ represent the pa-
rameters of the network of the actor and critic networks
in DDPG. For off-policy learning, the agent maintains
two sets of actor-critic networks: the target and behav-
ior networks. The target networks are denoted by Q′ and
µ′, while the behavior networks are written as Q and µ.
The behavior network selects actions based on the cur-
rent policy to explore the environment. Noise is added
to the output of the behavior network to improve explo-
ration as follows:

a[t] = µ(s[t]|θµ) +N[t], (22)
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Figure 2. The proposed post-normalization and penalized DRL framework.

Algorithm 1 Proposed DDPG algorithm

1: Initialize Q(s, a|θQ), Q′(s, a|θQ′ ), µ(s|θµ), and
µ′(s|θµ

′

)
2: for episode 1, ..., E do
3: Initialize noise process N for exploration
4: Observe system state s[t]
5: for t = 1, ..., S do
6: Receive network outputs: µ(s[t]|θµ) +N[t]
7: Calculate action a[t] through normalization

layer according to (18), (19), and (20)
8: Execute a[t], observe rpenalty[t], and state

transition s[t + 1]
9: Store transition (s[t],a[t],rpenalty[t],s[t + 1])

in the replay buffer
10: Select a random batch of B samples

(si, ai, ri, si+1) from the replay buffer
11: Update each target network parameter ac-

cording to (24), (25), (26), (27), and (28)
12: end for
13: end for
14: Output: actor network µ∗

where N[t] represents Ornstein-Uhlenbeck noise. Ad-
ditionally, the target network is a copy of the behavior
network used to stabilize the training.

The fundamental objective of the proposed DDPG
framework is to learn an optimal policy that maximizes
cumulative reward. The optimal policy π∗ satisfies the

following Bellman optimality equation for all states:

µ∗(s|θµ) = arg max
a

(
Q(s, a, |θQ)

)
(23)

In order to achieve it, the proposed DDPG framework
updates the behavior network through the policy gradi-
ent:

∇θµ J =
1
B

B∑
i=1

(
∇aQ(s, a|θQ)

∣∣∣
s=si,a=µ(si |θµ) ∇θµµ (si|θ

µ)
)
,

(24)

where B denotes the size of the sample batch, and si de-
notes the state in batch i. At the same time, the behavior
critic function Q(s, a) is updated by minimizing the fol-
lowing MSE loss between the behavior and target critic
values:

L =
1
B

B∑
i=1

(
Q
(
si, ai|θ

Q
)
− yi

)2
, (25)

where yi represents the target critic value, and ai indi-
cates the action in batch i. The target critic value is de-
fined as follows:

yi = ri + γQ′
(
s′i , µ

′
(
s′i |θ

µ′
)
|θQ′
)
, (26)

where γ denotes the discount factor, ri and s′i represent
the reward and next state in batch i, respectively.

On the other hand, the target network gradually
changes by slowly tracking the behavior network using
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Table 1
Hyperparameter Values

Parameters Value

Learning rate 0.001
Discount factor 0.99
Soft update rate λ 0.001
Steps 500
Episodes 10000
Batch size 128
Critic - Hidden layer 256, Sigmoid
Actor - Hidden layer 256, Sigmoid

the soft update mechanism, making learning more sta-
ble. The two target networks can be updated via Polyak
averaging, as follows:

θQ′ ← τθQ + (1 − τ)θQ′ (27)

θµ
′

← τθµ + (1 − τ)θµ
′

, (28)

where τ ∈ (0, 1) indicates the soft update coefficient.
Each network hyperparameters are described in Table
1, and the learning process is summarized in Algorithm
1 and Fig.2.

4. Simulation Results

The performance was evaluated in various scenarios
by comparing energy efficiency to verify the perfor-
mance of the proposed algorithm and the STAR-RIS-
aided CF system. In the simulation of the proposed sys-
tem, the M APs and K UEs are uniformly distributed
in a region of D × D m2. The system environment is
modeled from previous work [2]. The large-scale fad-
ing coefficients κm,k, κm, and κk represent the path loss
and shadow fading effects of the respective elements,
defined as follows:

κm,k = PLm,k10
σshzm,k

10 , (29)

κm = PLm10
σshzm

10 , (30)

κk = PLk10
σshzk

10 , (31)

where PL indicates the path loss, and the exponential
component indicates the log-normal shadow fading with
a standard deviation σsh, and z ∼ N(0, 1). The path loss

model is given by following three slope fading model:

PLm,k =



−L − 35 log10(dm,k),
dm,k > d1

−L − 15 log10(d1) − 20 log10(dm,k),
d0 < dm,k ≤ d1

−L − 15 log10(d1) − 20 log10(d0),
dm,k ≤ d0

(32)
The small-scale fading is modeled using the Rayleigh
distribution. Noise power is determined by multiplying
the bandwidth, Boltzmann constant, noise temperature,
and noise figure. Table 2 outlines the system parameters
employed in the simulations.

Table 2
System parameters

System parameter Value
Power amplifier efficiency, αm 0.40
Fixed power consumption of the backhaul, P0,m 0.825 W
Traffic-dependent backhaul power, Pbt,m 0.25 W(Gbits/s)
Fixed power consumption, Pap, Pue, Pris 0.2, 0.01, 0.01 mW
Bandwidth, BW 20 MHz
Carrier frequency 1.9 GHz
Noise figure 9 dB
Std of shadow fading, σsh 8 dB
Antenna height 15 m
User antenna height 1.65 m
RIS height 30 m
D, d1, d0 200, 50, 10 m

The STAR-RIS-aided CF system was compared with
the following benchmarks.

• S-CF/MRE : This scheme employs MR precod-
ing, random phase shifts, and an equal t/r ratio in
the STAR-RIS-aided CF mMIMO system.

• C-CF : This scheme employs the proposed DDPG
algorithm in the conventional CF mMIMO system.

• C-CF/MRE: This scheme employs MR precoding,
random phase shifts, and an equal t/r ratio in the
conventional CF mMIMO system.

First, we evaluated the average reward of the pro-
posed DDPG with various learning rates, which is de-
picted in Fig. 3. The shaded area represents the 95%
confidence interval. Each parameter converges within
5,000 episodes. A learning rate of 1e-3 performs the
best, whereas the convergence speed is similar between
rates. A lower learning rate tends to make the model
more susceptible to becoming trapped in the local op-
tima. A high level of variance exists in the cases of 1e-4
and 5e-4.
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Figure 3. Average rewards versus episodes under various learning
rate settings in the STAR-RIS-aided CF mMIMO system, where
M = 10, K = 4, N = 4, U = 16, and Rth = 0.5.

Figure 4. Cumulative distribution of the average total energy
efficiency for the STAR-RIS CF mMIMO system for the proposed
algorithm and benchmark schemes, where M = 10, K = 4, N = 4,
U = 16, and Rth = 0.5.

Fig. 4 presents the cumulative distribution of the en-
ergy efficiency for the DDPG and benchmark schemes,
indicating that the STAR-RIS-aided CF mMIMO sig-
nificantly outperformed the conventional CF mMIMO
in the median value. Furthermore, the proposed algo-
rithm performs 79.3% and 83.3% better than the MRE
method in the cases of the S-CF and C-CF systems in
terms of median value, respectively. However, for the
95% likely, the S-CF and S-CF/MRE have nearly iden-
tical values. This result suggests that the proposed algo-
rithm is relatively unstable in poor channel conditions.

Fig. 5 evaluates the influence of the number of AP an-
tennas. The energy efficiency increases with the number
of antennas in all cases except for C-CF/MRE because
more precise precoding becomes possible as the num-
ber of antennas at the AP increases. However, for C-
CF/MRE, the precoding gain is initially observed to in-
crease but saturates due to the fixed power consumption
of the antennas. Furthermore, the proposed algorithm

Figure 5. Average total energy efficiency versus the number of
antennas, N, where M = 10, K = 4, U = 16, and Rth = 0.5.

Figure 6. Average total energy efficiency versus the number of RIS
elements, U, where M = 10, K = 4, N = 4, and Rth = 0.5.

demonstrates an improvement of 67% in the STAR-RIS
CF and 62% in the CF compared to the benchmarks.

Next, Fig. 6 represents the influence of the RIS el-
ements. When STAR-RIS was deployed, the proposed
algorithm achieved an average increase of 46.1% com-
pared to S-CF, demonstrating the potential of STAR-
RIS. Moreover, for S-CF/MRE, the energy efficiency
did not increase significantly and even decreased as the
number of elements increased. This indicates that when
joint precoding optimization is not performed, the static
power consumption per element outweighs the gains
from RIS.

5. Conclusion

This work demonstrates how STAR-RIS can improve
energy efficiency in CF mMIMO networks under di-
verse system configurations. We propose a novel DDPG
approach that addresses the energy-efficiency maxi-
mization problem. The proposed post-normalization
layer and penalized reward ensure compliance with

8



system-specific and per-user SE constraints. The sim-
ulation results demonstrate that the proposed DDPG-
based algorithm learns efficiently from the environment
and provides better energy efficiency than the conven-
tional benchmark scheme in CF mMIMO networks.
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