
1

Partial Computation Offloading in NOMA-Assisted
Mobile Edge Computing Systems Using Deep

Reinforcement Learning
Van Dat Tuong, Thanh Phung Truong, The-Vi Nguyen, Wonjong Noh, and Sungrae Cho

Abstract—Mobile edge computing (MEC) and non-orthogonal
multiple access (NOMA) have been regarded as promising tech-
nologies for beyond fifth-generation (B5G) and sixth-generation
(6G) networks. This study aims to reduce the computational
overhead (weighted sum of consumed energy and latency) in a
NOMA-assisted MEC network by jointly optimizing the compu-
tation offloading policy and channel resource allocation under dy-
namic network environments with time-varying channels. To this
end, we propose a deep reinforcement learning algorithm named
ACDQN that utilizes the advantages of both actor-critic and deep
Q-network methods and provides low complexity. The proposed
algorithm considers partial computation offloading, where users
can split computation tasks so that some are performed on the
local terminal while some are offloaded to the MEC server. It
also considers a hybrid multiple access scheme that combines the
advantages of NOMA and orthogonal multiple access (OMA) to
serve diverse user requirements. Through extensive simulations,
it is shown that the proposed algorithm stably converges to its
optimal value, provides approximately 10%, 27%, and 69% lower
computational overhead than the prevalent schemes such as full
offloading with NOMA, random offloading with NOMA, and fully
local execution, and achieves near-optimal performance.

Index Terms—Deep reinforcement learning, mobile edge com-
puting (MEC), non-orthogonal multiple access (NOMA), partial
computation offloading, resource allocation

I. INTRODUCTION

THE explosive growth in mobile Internet services has
resulted in the development of a variety of computation-

hungry applications, e.g., augmented/virtual reality, three-
dimensional (3D) gaming, online artificial intelligence, smart
factory, and big data analytics for Internet of Things (IoTs),
which impose a heavy computational burden on mobile termi-
nals/users with limited computation and power resources [1].

To address this issue, mobile edge computing (MEC) has
been introduced as a promising solution [2], [3]. The key
idea of MEC is to provide resourceful computing capability
to servers located at the edge of radio access networks,
e.g., base stations (BSs), so that mobile users can offload
their computation workloads to the edge computing servers.

Manuscript received; revised; and accepted February 28 2021.
This work was supported by the Korea Electric Power Corporation under
Grant R19XO01-41 and the National Research Foundation of Korea (NRF)
grant funded by the Korean government (MSIT) (No. 2020R1F1A106911911).
(Corresponding author: Wonjong Noh and Sungrae Cho.)

V. D. Tuong, T. P. Truong, T.-V. Nguyen and S. Cho are with the School
of Computer Science and Engineering, Chung-Ang University, Seoul 06974,
Republic of Korea. (e-mail: vdtuong@uclab.re.kr, tptruong@uclab.re.kr, tvn-
guyen@uclab.re.kr, srcho@cau.ac.kr)

W. Noh is with the School of Software, Hallym University, Chuncheon
24252, Republic of Korea. (e-mail: wonjong.noh@hallym.ac.kr)

Many studies have demonstrated the effectiveness of MEC in
completing computationally intensive tasks [4]–[11]. However,
although MEC can fulfill the high computational requirements
of users, offloading tasks to the MEC server results in a
certain amount of delay and incurs energy. Therefore, in order
to better utilize the advantages of MEC, some methods are
needed to reduce the delay and energy consumption.

Non-orthogonal multiple access (NOMA) is considered as
one of the promising candidates for meeting this demand.
By allowing users to simultaneously transmit data over the
same resource block (RB) and using successive interference
cancellation (SIC) to decode individual signals among users,
NOMA is capable of accommodating more users than orthog-
onal multiple access (OMA) technique [12]. Although NOMA
schemes are more complex as they involve superimposing and
decoding of wireless signals, due to the advantages of NOMA,
many recent studies have been devoted to investigating the
challenges involved in NOMA transmission [13]–[15].

Therefore, in a NOMA-assisted MEC system, which utilizes
the advantages of both MEC and NOMA, multiple mobile
users can offload their tasks more efficiently using the same
resource. For example, let us assume that only one RB
is unoccupied at a given moment and that two users will
offload their tasks to the MEC server. If OMA transmission is
applied, only one user can offload, while the other must wait.
However, if NOMA is applied, both users can offload to the
MEC server simultaneously, which can reduce the latency and
energy consumption when the decoding energy consumption is
negligible [16]. Hence, the computing services in B5G and 6G
can benefit from using a NOMA-assisted MEC system, which
is a very important communication technique in future wireless
networks and has received considerable attention recently.

The conventional optimization approach involves heavy
computations, which make it challenging to apply it in a
dynamic NOMA network where the solution is required to
be in real-time. Recent advances in artificial intelligence, e.g.,
deep learning (DL), can address this problem. By optimizing a
model over all possible state realizations, DL algorithms can
significantly reduce the complexity of determining solutions
at different times. To the best of our knowledge, there is
no machine-learning based work that has studied the joint
optimization problem of partial computation offloading and
resource allocation to minimize the energy consumption and
latency in a hybrid NOMA-MEC network. The main contri-
butions and difference of this study can be summarized as
follows:

• We formulate a joint optimization problem of computa-
tion offloading policy and channel resource allocation as
a non-convex mixed integer programming (MIP) model.
It aims to determine the optimal computation offloading
amount and NOMA-OMA subcarrier allocation consider-
ing channel conditions. As a solution, we propose a low-
complexity deep reinforcement learning (DRL)-based al-
gorithm, which can avoid the complexity inherent in re-
computing solutions at different times by directly utilizing
the trained model of deep neural networks (DNNs).

• Many studies have focused on binary offloading in
NOMA-assisted MEC, while only a few researches have
investigated the partial computation offloading [8]–[11].
However, it is more suitable to offload tasks partially
rather than fully for efficient utilization of the limited
bandwidth in wireless networks [17]. Also, many studies
have focused on the resource allocation in conventional
pure NOMA-assisted MEC, while only a few researches
have investigated MEC with hybrid NOMA and OMA
protocols [13]–[15]. Unlike the methods in prior studies
[8]–[11], [13]–[15], the algorithm proposed in our study
finds the joint optimal control that enables partial com-
putation offloading and hybrid multiple access controls
under practical constraints such as SIC complexity and
maximum power constraints for the NOMA channel.

• The proposed algorithm combines the advantages of both
actor-critic and deep Q-network (DQN) methods, which
is jointly referred to as ACDQN. In the algorithm, we
employ primary and target DNNs to stably train the
computation offloading policy whose domain is contin-
uous between 0 and 1. In addition, we employ n-greedy
strategy to select the channel resource allocation that can
be determined from indicators, e.g., 0 or 1. Then, the
comprehensive joint action is aggregated in critic DNNs
and it is evaluated using DQN method with Q-values and
instant rewards.

• We analyze the complexity of the proposed algorithm,
which has polynomial time and space complexity. Nu-
merical results are presented to demonstrate the reliable
convergence and its near-optimal performance, by the
comparison with NOMA-OMA based prevalent offload-
ing schemes and exhaustive search, in reducing energy
consumption and latency for task completion of all users.

The rest of the paper is organized as follows. Section II
introduces the related studies. In Section III, the system model
and problem formulation are described. Section IV presents
our proposed algorithm based on the DRL algorithm. The
performance evaluation is discussed in Section V. Finally, in
Section VI, we conclude the paper and outline our future work.

II. RELATED WORK

Recently, many studies have proposed ways to tackle the
technical challenges of NOMA-assisted MEC systems. Among
them, some studies focused on energy minimization [18]–[24].
Kiani et al. [18] proposed and demonstrated the benefits of
a MEC-aware NOMA approach for 5G networks by jointly
optimizing user clustering, computation and communication

resource allocation, and transmission powers to minimize the
energy consumption of mobile users. Wu et al. [19] inves-
tigated an energy-efficient multitask computation offloading
scheme in NOMA MEC networks. They exploited the varying
delay limits of tasks and the differing computation rates of
edge nodes to minimize the total energy consumption. Ye et al.
[20] studied an energy-efficient communication scheme from
a system perspective for distributed NOMA MEC networks.
They formulated a joint optimization problem for the com-
puting frequencies of the MEC server and mobile users, of-
floading time, transmission power, and local and remote task-
execution time, which was then solved using a Dinkelbach-
based algorithm. Eliodorou et al. [21] tried to minimize the
overall energy consumption for all users by jointly optimizing
user association, optimal power allocation, data rate, and
offloaded data. In particular, two coalition game algorithms
were proposed and compared in an effort to efficiently reduce
the total energy consumption. In [22], the energy consumption
minimization problem was formulated with joint optimiza-
tion of time assignment, power control, CPU frequency, and
computation offloading. By exploiting the block coordinate
descent (BCD) method, it developed a joint communication
and computation resource allocation algorithm to address the
original non-convex problem. Specifically, the optimal solution
was obtained in closed form. In [23], both power and time
allocations were jointly optimized to reduce the energy con-
sumption of computation offloading. Closed-form expressions
for the optimal power and time allocations were obtained and
used to establish the conditions for determining whether the
conventional OMA, pure NOMA, or hybrid NOMA should be
used for MEC offloading. Li et al. [24] tried to minimize the
energy consumption of a hybrid NOMA-assisted MEC system.
The original energy minimization problem is non-convex, and
to solve it, a multilevel programming method was proposed.
This method decomposes the non-convex problem into three
subproblems, namely power allocation, time slot scheduling,
and offloading task assignment, which are solved optimally
by carefully studying their convexity and monotonicity. In
addition, a close-to-optimal algorithm with low complexity
was proposed.

Compared to the energy minimization problems, minimizing
the delay is more challenging, since delay is a ratio between
rate-related functions. Some studies have focused on latency
minimization [25]–[29]. In [25] and [26], the authors studied
optimization problems of computation workloads and the
time required for uploading workloads as well as download-
ing computed results with NOMA to minimize the overall
workload-completion delay. Sheng et al. [27] proposed another
approach to reduce the computation delay by characterizing
the interaction between differentiated uploading delay and co-
channel interference, and then iteratively determining NOMA
user pairing and offloading policy using semidefinite relax-
ation and convex-concave procedure. Wu et al. [28] tried to
minimize the overall delay in performing computation tasks,
by jointly optimizing the offloaded workloads and the NOMA
transmission time. Despite the non-convexity of the formu-
lated joint optimization problem, they proposed distributed
efficient algorithms to find the optimal offloading solution.

Ding et al. [29] tried to minimize the offloading delay for
NOMA-assisted MEC systems. By transforming the delay
minimization problem into a form of fractional programming,
two iterative algorithms based on Dinkelbach’s method and
Newton’s method were proposed. Furthermore, a criterion for
choosing between three possible modes, namely OMA, pure
NOMA, and hybrid NOMA, for MEC was established.

Some studies have focused on joint minimization of energy
consumption and latency [30], [31]. Zhu et al. [30] considered
jointly optimizing the power and time allocations to reduce the
delay and energy consumption in hybrid NOMA and MEC.
The main contribution of this study was the characterization
of the optimal power and time allocations in a closed form. In
addition, by incorporating a matching algorithm with the opti-
mal power and time allocations, it proposed a low-complexity
method to efficiently optimize user grouping. Pham et al.
[31] proposed utilizing cooperative game theory to solve the
computation offloading problem in multicarrier NOMA MEC
networks to minimize the overall computational overhead in
terms of energy consumption and latency. It was demonstrated
that this solution ensures convergence to a Nash equilibrium.

Specifically, Ye et al. [32] focused on successful compu-
tation probability. They proposed a new hybrid offloading
scheme in a NOMA MEC network that can operate in three
different modes, namely partial offloading, complete local
computation, and complete offloading. It provides closed-
form mathematical expressions of the successful computation
probability and its optimal solutions for these three schemes.

Several studies have proposed DL-based solutions for
NOMA MEC networks [33]–[38]. Yang et al. [33] considered
a NOMA-MEC system with multiple users and a single MEC
server, and investigated the problem of minimizing latency.
By using the DQN algorithm to select users who offload at
the same time without knowing the actions of other users in
advance, it obtains the optimal user combination state and min-
imizes the system offloading latency. The authors in [34] and
[35] extended the schemes in [19] and [31], respectively. In
particular, they developed DRL-based algorithms for reducing
the total energy consumption of IoT devices with a latency
limit [34] and increasing the computation rate of the MEC
server [35]. Meanwhile, NOMA-MEC systems are vulnerable
to various attacks such as denial of service attacks and rogue
edge attacks. Xiao et al. [36], [37] investigated different attack
models in MEC systems, focusing on both mobile offloading
and caching procedures. In [36], RL-based security solutions
were proposed to provide secure offloading to the edge nodes
against jamming attacks. It also presented light-weight authen-
tication and secure collaborative caching schemes to protect
data privacy. In [37], an RL-based mobile offloading scheme
for edge computing was proposed to prevent jamming attacks
and interference. It uses safe RL to avoid choosing the risky
offloading policy that fails to meet the computational latency
requirements of the tasks. Doan et al. [38] developed a method
to maximize the probability that all users decode the desired
signals in order to optimize the quality of service (QoS) while
ensuring fairness among users. This was achieved by finding
an RL-based power control in cache-aided NOMA networks.

Fig. 1. Mobile devices partially offload tasks to the MEC server using hybrid
NOMA–OMA subchannels.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Model

As illustrated in Fig. 1, we consider a network model
consisting of * user equipments (UEs) and one MEC server
co-located with a BS. We assume that time is slotted, and
the time slot and time slot index set are denoted by C

and T , {0, 1, . . . , }, respectively. The wireless channel is
assumed to be independent identically distributed (i.i.d.) block
fading, i.e., the channel remains static within each time slot,
but varies among different time slots.

Let U = {D8 | 8 = 1, . . . ,*} and S = {B8 | 8 = 1, . . . , (}
denote the sets of UEs and orthogonal SCs, respectively. In
this work, we assume that the number of UEs is significantly
greater than the number of SCs, i.e., * � (. In addition, some
UEs share NOMA SCs while other UEs use OMA SCs. This
type of implementation can be viewed as a hybrid NOMA–
OMA scheme. Assuming that there are " OMA SCs, e.g.,
orthogonal frequency division multiple access (OFDMA) SCs
and # NOMA SCs, " and # can take any value in the range
[0, (] that satisfies " + # = (. Without loss of generality, we
useM = {B8 | 8 = 1, . . . , "} and N = {B8 | 8 = " +1, . . . , (} to
denote the sets of OMA and NOMA SCs, respectively; then,
we have M ∪N = S.

We assume that each OFDMA SC is occupied by at most
one UE; hence, it is clear that " OFDMA SCs will be utilized
by at most " UEs. On the other hand, we use UB8 (B8 ∈
N) to denote the set of UEs sharing the NOMA SC B8 . By
utilizing NOMA SCs, the received signal of a UE contains not
only its desired signal but also the interfering signals of the
co-sharing UEs. The SIC is applied at the receiving ends to
decode individual signals from the aggregated received signal.
However, a NOMA SC may be overloaded with too many
UEs that are active on it, which results in an infeasible SIC
complexity. In [39], the authors proved that SIC complexity
could be reduced significantly by setting a small number of
active UEs per NOMA SC. Similarly, in this study, we set an
upper limit on the number of active UEs per NOMA SC, which
is denoted by !. Therefore, we have |UB8 | ≤ !,∀B8 ∈ N , and
the total number of concurrent active UEs does not exceed a
fixed number, e.g., (" + !#).

There are many applications that may profit from compu-
tation offloading [2]. In general, they can be classified into
three major groups: data partition oriented applications, code
partition oriented applications, and continuous execution ap-
plications [8]. In this study, we mainly focus on data partition
oriented applications such as data compression, online gaming,
and applications based on augmented/virtual reality, which
require high computational capability and low execution delay
to enhance user experience. In addition, their computation
tasks can be partitioned for parallel execution in a local device
and MEC server.

B. Communication Model

We denote x(C) = {GD8 ,B 9 (C) | D8 ∈ U, B 9 ∈ S} as the channel
allocation, where GD8 ,B 9 (C) ∈ {0, 1} indicates the association
between UE D8 and BS via SC B 9 . Here, B 9 can be any
NOMA or OMA SC. We have GD8 ,B 9 (C) = 1 if at time C, UE
D8 is associated with BS via SC B 9 , otherwise GD8 ,B 9 (C) = 0.
Let ℎD8 ,B 9 (C) denote the channel gain between UE D8 and BS
via SC B 9 , which includes distance-dependent loss, shadowing
loss, antenna gain, and instantaneous fading. Without loss of
generality, we assume that the UEs sharing the NOMA SC B8
(B8 ∈ N) are ordered as ℎD 9 ,B8 (C) ≤ . . . ≤ ℎD: ,B8 (C) ∀D 9 , D: ∈
UB8 | 9 < : . According to [40], the SIC decoding order in the
uplink (UL) follows the descending order of channel gain.
This means that the UL signal of NOMA UE with the greatest
channel gain will be decoded and removed from the aggregated
signal first, considering the UL signals of other co-sharing
UEs as interference. Afterward, the UL signals of other co-
sharing UEs will be decoded step by step in accordance with
descending channel gain order. By adopting Shannon formula,
we can express the UL rate of UE D8 on NOMA SC B 9
(B 9 ∈ N) as

'D8 ,B 9 (C) = � log2

(
1 +

GD8 ,B 9 (C)?D8 ℎD8 ,B 9 (C)
�D8 ,B 9 (C) + f2

)
, (1)

where � is the SC bandwidth, ?D8 is the transmission power of
UE D8 , f2 is the additive white Gaussian noise power spectral
density, and �D8 ,B 9 (C) is the aggregated interference from the
co-sharing UEs impacting UE D8 , which can be computed as

�D8 ,B 9 (C) =
∑

D: ∈UB 9
|:<8

GD: ,B 9 (C)?D: ℎD: ,B 9 (C). (2)

Moreover, because all SCs are orthogonal, the intra-cell
interference among OFDMA UEs as well as between an
OFDMA UE and a NOMA UE is completely eliminated.
Therefore, the UL rate of UE D8 on OFDMA SC B 9 (B 9 ∈ M)
can be expressed as

'D8 ,B 9 (C) = � log2

(
1 +

GD8 ,B 9 (C)?D8 ℎD8 ,B 9 (C)
f2

)
. (3)

In this work, we assume that the transmission power of
all UEs is predefined, and to enhance the QoS, the UL
transmission power of co-sharing UEs should be subject to
the total transmission power constraint [40]. Let %C>C denote

the allowed total transmission power on a NOMA SC. Accord-
ingly, the total transmission power constraint of UEs sharing
NOMA SC B 9 (B 9 ∈ N) can be expressed as∑

D8 ∈UB 9

GD8 ,B 9 (C)?D8 ≤ %C>C . (4)

C. Computation Model

We denote the computation offloading policy by o(C) =
{>D8 (C) | D8 ∈ U}, where >D8 (C) ∈ [0, 1] specifies the ratio of
the computation task of UE D8 , which is offloaded to the MEC
server. The remaining ratio, (1 − >D8 (C)), is executed locally.
Note that we have two special cases: >D8 (C) = 1 indicates
that UE D8 offloads its computation task entirely to the MEC
server, whereas >D8 (C) = 0 indicates that the computation
task is executed locally without any offloading. We define
the computation task of UE D8 as ,D8 = {&D8 , �D8 }, where
&D8 is the task size in bits, and �D8 is the number of CPU
cycles required to accomplish ,D8 . In this study, we aim to
minimize the total computational overhead in terms of energy
consumption and latency for completing the tasks of all power-
hungry UEs instead of the MEC server.

1) Local Computing: We denote 5 ;D8 as the computing
capability of UE D8 in CPU-cycles/second. The time required
to execute a computation task partially at UE D8 is computed
as

) ;D8 (C) = (1 − >D8 (C))
�D8

5 ;D8
. (5)

By utilizing the widely adopted model of energy consumption
per computing cycle as E = ^ 5 2 [41], [42], where ^ is an
energy coefficient that depends on the hardware architecture
and 5 is the CPU frequency, the energy consumed while
executing the computation task partially at UE D8 can be
computed as

� ;D8 (C) = (1 − >D8 (C))&D8 ^D8 (5
;
D8
)2, (6)

where ^D8 is the energy coefficient of UE D8 .
2) Computation Offloading: In the case of computation of-

floading, the time required for completing the computation task
of UE D8 is primarily composed of two parts: UL transmission
delay)1D8 (C) and remote-execution delay)2D8 (C). In this study,
we assume that the size of the computed results is small so
that time required for superimposing and downloading the
computed results from the MEC server is negligible. Moreover,
because the SIC complexity is significantly reduced due to the
upper limit on the number of co-sharing NOMA UEs, we do
not take into account the signal decoding delay. Therefore, the
time required for completing the computation task of UE D8
during computation offloading can be computed as

)AD8 (C) =)
1
D8
(C) +)2D8 (C)

=
>D8 (C)&D8
'D8 ,B 9 (C)

+
>D8 (C)�D8

5 AD8

= >D8 (C)
(

&D8

'D8 ,B 9 (C)
+
�D8

5 AD8

)
, (7)

where 5 AD8 is the amount of MEC computation resources
allocated to UE D8 , which is assumed to be predefined at each

time slot. We compute the energy consumption �AD8 (C) of user
D8 for uploading its computation task to the MEC server as

�AD8 (C) =
?D8

ZD8
)1D8 (C) =

?D8

ZD8

>D8 (C)&D8
'D8 ,B 9 (C)

, (8)

where ZD8 is the power amplifier efficiency of UE D8 .
3) Total Computational Overhead: In the partial offloading

scheme, the task-completion latency)D8 (C) of UE D8 accounts
for the longest time delay among the delays) ;D8 (C) of local
computing and)AD8 (C) of computation offloading, and it is given
by

)D8 (C) = max
(
) ;D8 (C),)

A
D8
(C)

)
= max

((
1 − >D8 (C)

)
�D8

5 ;D8
, >D8 (C)

(
&D8

'D8 ,B 9 (C)
+
�D8

5 AD8

))
,

(9)

Unlike the latency, the energy consumption �D8 (C) of UE
D8 is the sum of � ;D8 (C) in local computing and �AD8 (C) in
computation offloading, which is computed as

�D8 (C) = � ;D8 (C) + �
A
D8
(C)

=

(
1 − >D8 (C)

)
&D8 ^D8

(
5 ;D8

)2
+
?D8

ZD8

>D8 (C)&D8
'D8 ,B 9 (C)

. (10)

Furthermore, the total computational overhead /D8 (C) of UE
D8 can be determined in terms of the energy consumption
�D8 (C) and latency)D8 (C). Similar to [7], we define /D8 (C)
as the weighted sum of energy consumption and latency as
follows:

/D8 (C) = V4D8�D8 (C) + V
;
D8
)D8 (C), (11)

where the weight parameters V4D8 and V;D8 specify the UE
preferences regarding energy consumption and latency, respec-
tively, in which V4D8 , V

;
D8
∈ [0, 1] and V4D8 + V

;
D8
= 1, ∀D ∈ U.

D. Problem Formulation
In this study, we minimize the total computational overhead

by jointly optimizing the channel resource allocation x(C)
and the computation offloading policy o(C). This optimization
problem can be formulated as

min
x(C) ,o(C)

/ (x(C), o(C)), (12)

s.t. GD8 ,B 9 (C) ∈ {0, 1},∀D8 ∈ U,∀B 9 ∈ S, (13)∑
B 9 ∈S

GD8 ,B 9 (C) ≤ 1,∀D8 ∈ U, (14)

>D8 (C) ∈ [0, 1],∀D8 ∈ U, (15)
>D8 (C) ≤ max({GD8 ,B 9 (C) |B 9 ∈ S}),∀D8 ∈ U, (16)

|UB 9 | ≤ !,∀B 9 ∈ N , with ! � *, (17)∑
D8 ∈UB 9

GD8 ,B 9 (C)?D8 ≤ %C>C ,∀B 9 ∈ N . (18)

In (12), we denote the total computational overhead incurred
by all UEs by / (x(C), o(C)), which can be expressed as

/ (x(C), o(C)) =
∑
D8 ∈U

/D8 (C)

=
∑
D8 ∈U

V4D8�D8 (C) + V
;
D8
)D8 (C). (19)

Constraints (13) and (14) describe the channel resource allo-
cation, i.e., each UE can utilize at most one SC. Constraint
(15) specifies the computation offloading policy by which
computation tasks can be processed in parallel using both
local and remote executions, and constraint (16) states that
only associated users can offload their computation tasks. In
addition, constraints (17) and (18) ensure that the number
of co-sharing UEs and the allowed total power over one
NOMA SC do not exceed the predefined values ! and %C>C ,
respectively. These conditions are necessary to enhance the
QoS with efficient and low-complexity SIC.

The problem formulated in (12) is an MIP problem because
of the existence of multiple discrete and continuous variables.
Moreover, MIP problems are known to be NP-hard by nature,
and finding the optimal solution usually requires exponential
time complexity [43]. As the channels between UEs and BS
change dynamically over time, a large number of possible
channel realizations can be generated at different times, which
makes it challenging to apply conventional optimization solu-
tions in real-time. To address this issue, we study and develop
a novel DL solution based on DRL algorithm.

IV. DEEP REINFORCEMENT LEARNING FOR PARTIAL
COMPUTATION OFFLOADING IN NOMA MEC SYSTEMS

A. RL Task Formulation

We consider the BS as an RL agent and the entire network
system as the environment in RL jargon. At each time slot,
the agent interacts with the environment by deciding an
action based on the collective information regarding channel
conditions. The action includes channel resource allocation
and computation offloading policy for all UEs. After executing
the action, the agent achieves a step reward, which is computed
from the computational overhead defined in (19). In addition,
it is updated with an evolved environmental state. We identify
the state space, action space, and reward function as follows:

1) State space: The environmental state is determined by
realizing the channel conditions between UEs and BS on all
SCs. Therefore, the state B(C) at time C can be formulated based
on the realistic channel gains as follows:

B(C) =


ℎD1 ,B1 (C), . . . , ℎD1 ,B((C),
ℎD2 ,B1 (C), . . . , ℎD2 ,B((C),
. . . , . . . , . . . ,

ℎD* ,B1 (C), . . . , ℎD* ,B((C)

 . (20)

2) Action space: At time C, the agent decides an aggregated
action 0(C) including the channel resource allocation x(C) and
the computation offloading policy o(C). Therefore, the action
0(C) can be given as follows:

0(C) =


GD1 ,B1 (C), . . . , GD1 ,B((C),
GD2 ,B1 (C), . . . , GD2 ,B((C),
. . . , . . . , . . . ,

GD* ,B1 (C), . . . , GD* ,B((C),
>D1 (C), . . . , >D* (C)


, (21)

which must satisfy all constraints (13)–(18) of the optimization
problem given in (12). The action yields a significantly low
reward if any constraint is violated.

Memory pool

Primary actor DNN

θµ

Target actor DNN

θµ’

Primary critic DNN

θQ

Target critic DNN

θQ’

{s
(t

)}

{s(
t),a

(t)
}

{s(t+1)}

{s(t+
1)}

Update θµ

O
v
er

al
l

lo
ss

L
(θ

Q
)

{R(t)}

{Q(s(t),a(t);θQ)}

{Q(s(t+1),a(t+1);θQ’)}

O
p
ti

m
iz

er

x(t+1)

x(t)

Environment
s(t)

s(t) a(t)

<s(t),a(t),R(t),s(t+1)>

o(t)=µ(s(t);θµ)+N0(t)

o(t+1)=µ’(s(t+1);θµ’)+N0(t+1)

1

1
1

1

1

1

2

2

2

2

2

3

3

3

3

3

3

3

3
3

3

O
p
ti

m
iz

er

Update θQ

Offloading loss L(θµ)

2

Fig. 2. Structure of the proposed ACDQN algorithm: (1) collecting experiences through interaction with the environment, (2) training the optimal computation
offloading policy, and (3) training the optimal overall action including channel resource allocation and computation offloading policy.

3) Reward function: In NOMA MEC systems, the com-
putational overhead in terms of the energy consumption and
latency is a crucial metric for evaluating the system perfor-
mance. We define a reward function '(C) as an inversion of
the computational overhead as follows:

'(C) = − / (x(C), o(C))
= −

∑
D8 ∈U

(
V4D8�D8 (C) + V

;
D8
)D8 (C)

)
. (22)

At time C, the agent observes a state B(C), selects and
performs an action 0(C), and then obtains a step reward '(C)
and the next state B(C + 1). It aims to determine the optimal
action that can maximize the long-term return ';>=6, which
is computed from the step rewards with discounting factor W.
Therefore, we can model the optimization problem (12) as an
RL task as follows:

';>=6 = max
0 (C)
E

[
) −1∑
C=0

WC'(C)
]

(23)

where WC approaches zero when C →) − 1 is large enough.

B. ACDQN Algorithm

Motivated by the advantages of DRL-based algorithms [44]–
[46] in handling discrete and continuous action spaces, we
propose and develop a novel DRL algorithm for addressing
the RL task (23) as well as the optimization problem (12).

1) Overall Architecture: The architecture of the algorithm
is illustrated in Fig. 2 that comprises three processes: (1) col-
lecting experiences through interaction with the environment,
(2) training the optimal computation offloading policy, and (3)
training the optimal overall action including channel resource

allocation and computation offloading policy. They can be
described as follows.

The first process involves the environment, a memory pool,
and the primary actor and critic DNNs. The agent observes
a state B(C) from the environment and feeds it to the primary
actor and critic DNNs. The continuous computation offloading
policy o(C) is selected in the primary actor DNN ` using
weight \` as follows:

o(C) = `(B(C); \`) + #0 (C), (24)

where #> (C) is the noise that is added to enhance the explo-
ration of the computation offloading policy. In practice, we can
use Gaussian white noise or Ornstein–Uhlenbeck (OU) noise
[46], which is a correlated additive Gaussian noise generated
by 3#0 (C) = o(h − #0 (C))3C + f3, (C), where o is a drift
coefficient, h is the mean value, f is a diffusion coefficient,
and , (C) is the standard Wiener process. The discrete channel
resource allocation x(C) is selected in the primary critic DNN
using weight \& and n-greedy strategy as

GD8 ,B 9 (C) =
{

F if I ≤ n
argmaxGD8 ,B 9 (C) &(B(C), 0(C); \&) >.F.,

(25)

where F is a random variable generating 0 or 1 equiprobably,
I ∈ [0, 1] is a random variable, and n ∈ [0, 1] is a monotone
decreasing random variable, which first generates a number
close to 1 and gradually decreases the number to 0 along with
the training process. The agent interacts with the environment
by executing the overall action 0(C) = x(C) ⊕ o(C), where
⊕ denotes an aggregation operation, which results in a step
reward '(C) and the next state B(C + 1). The experience tuple
〈B(C), 0(C), '(C), B(C + 1)〉 is then saved to the memory pool.

The second process involves the memory pool, the primary
actor and critic DNNs, and an optimizer, e.g., Adam optimizer
[47]. From the memory pool, the agent samples a D-size mini-
batch of experiences to feed into the DNNs, where � ∈ (1, �)
with � is the size of the memory pool. Similar to the first
process, the continuous computation offloading policy o(C) is
selected based on (24), while the discrete channel resource
allocation x(C) is fixed in this process. In addition, because the
computation offloading policy o(C) is continuous, the Q-value
function can be assumed to be differentiable with respect to
o(C). Therefore, we can construct a gradient to update weight
\` of the primary actor DNN ` as follows:

∇\`! (\`) = E
[
∇\`&(B(C), 0(C))

]
= E

[
∇o(C)&(B(C), 0(C))∇\`o(C)

]
= E

[
∇o(C)&(B(C), 0(C))∇\`

(
`(B(C); \`) + #0 (C)

)]
,

(26)

where ! (\`) is the Q-value loss based on the computation
offloading policy, the so-called offloading loss.

The third process involves the memory pool, the primary
critic DNN, the target actor and critic DNNs, and an optimizer,
e.g., Adam optimizer [47]. Basically, this process operates like
a DQN algorithm, in which the primary and target critic DNNs
are utilized for computing the Q-value loss ! (\&) based on
the overall action, the so-called overall loss. From the memory
pool, the agent samples a D-size minibatch of experiences to
feed into the primary critic DNN and the target actor and
critic DNNs. By handling the input of state-action pairs, the
primary critic DNN delivers the Q-value &(B(C), 0(C); \&) at
the current state using its weight \&. Similar to the primary
actor and critic DNNs in the first process, the target actor
and critic DNNs select the continuous computation offloading
policy o(C + 1) and the discrete channel resource allocation
x(C + 1), respectively. After that, the overall action for next
state B(C +1) is aggregated as 0(C +1) = x(C +1) ⊕ o(C +1). The
target critic DNN delivers the Q-value &(B(C+1), 0(C+1); \&′)
at the next state using its weight \&′ . Therefore, the overall
loss can be given as

! (\&) =
1
�

�∑
8=1

(
'8 (C) + WQ ′

(
B8 (C + 1), 08 (C + 1); \&′

)
− Q(B8 (C), 08 (C); \&)

)2
, (27)

where W is the discounting factor. The optimizer is utilized
to update the weight \& of the primary critic DNN for
minimizing the overall loss. The weights of the target actor
and critic DNNs can be soft-updated based on the weights of
the primary actor and critic DNNs as follows:

\`′ = g\` + (1 − g)\`′ , (28)

\&′ = g\& + (1 − g)\&′ , (29)

where g is the common target learning rate (LR) for updating
the target actor and critic weights.

Algorithm 1 DRL algorithm for partial computation offload-
ing in NOMA MEC systems (ACDQN)

% Initialization
1: Initialize the network model.
2: Initialize DNN weights \` and \& of the primary actor `

and primary critic &, respectively.
3: Initialize DNN weights \`′ ← \` and \&′ ← \& of the

target actor `′ and target critic & ′, respectively.
4: Initialize experience replay memory F with size �.

% Training
5: while the stop condition is not satisfied do
6: Get initial state B(1) based on (20).
7: for t = 1, . . ., T do
8: Get state B(C).
9: Select overall action 0(C) including o(C) and x(C).

10: Execute action 0(C).
11: Compute reward '(C) and next state B(C + 1).
12: Save experience 〈B(C), 0(C), '(C), B(C + 1)〉 to F .
13: Sample experiences to feed into DNNs.
14: Compute offloading and overall losses.
15: Update weight \` using Adam optimizer [47].
16: Update weight \& using Adam optimizer [47].
17: if after every G steps then
18: Soft-update weights \`′ and \&′ .
19: end if
20: end for
21: end while
22: Return \∗` = \` and \∗

&
= \&.

2) Training Algorithm: The training algorithm is described
in Algorithm 1. It first initializes the network model, weights
of the primary actor and critic DNNs, weights of the target
actor and critic DNNs, and the experience replay memory (see
lines 1–4). In each episode, the agent obtains the initial state by
collecting information about the channel conditions between
UEs and BS (see line 6). In each training step, it gets the
current state, and based on this state, it selects to perform
an action including the computation offloading policy based
on (24) and the channel resource allocation based on (25)
(see lines 8–10). Afterward, a step reward is computed based
on (22), and the environment evolves to the next state (see
line 11). Next, the experience tuple 〈B(C), 0(C), '(C), B(C + 1)〉
is saved to the replay memory (see line 12). The weights of
the primary actor and critic DNNs are updated using Adam
optimizer [47] to minimize the offloading and overall losses
(see lines 13–16). The weights of the target actor and critic
DNNs are soft-updated after every � steps based on (28) and
(29), respectively (see lines 17–19). The training process ends
once it meets the stop condition, e.g., it reaches to the maxi-
mum number of episodes or the overall loss becomes less than
a preset value. Finally, it returns the optimal weights \∗` and
\∗
&

of the primary actor and critic DNNs for later exploitation
(see line 22). For example, by exploiting the returned weights
\∗` and \∗

&
, we can determine the overall action 0(C) for a state

B(C), i.e., 0(C) = x(C) ⊕ o(C), where o(C) = `(B(C); \∗`) and x(C)
is given as GD8 ,B 9 (C) = argmaxGD8 ,B 9 (C) &(B(C), 0(C); \

∗
&
).

TABLE I
SYSTEM-LEVEL SIMULATION PARAMETERS

Parameter Value Parameter Value

Network coverage radius, R 100 m SC bandwidth, � 1 MHz

Number of UEs, * 10–15 Number of SCs, (, (N/M) 4–8 (2/2, 3/2, 3/3, 4/3, 4/4)

Min. dist. between UEs and the BS 5 m Fading model Rayleigh

Total number of co-sharing UEs, ! 1–4 BS antenna pattern 0 dB (omnidirectional)

UE transmission power, ?D8 20–23 dBm Shadowing deviation 10 dB

Total power of co-sharing UEs, %C>C 26 dBm Noise power, f2 −175 dBm/Hz

Energy switched coefficient, ^D8 1e-28 [5] Path loss 140.7 + 36.7 log10 (3 (km)) [dB]
MEC allocated computing resources, 5 AD8 4–10 GHz Energy/Latency weight, V;D8 /V

4
D8

0.5/0.5 [31]

UE computing capability, 5 ;D8 1 GHz Task size, &D8 420–900 KB [9]

Number of training episodes, � 2,000 Task complexity, �D8 1.68–3.6 GHz

Number of steps per episode,) 300 Primary learning rates, LR`/LR& 1e-3/1e-3, 1e-4/1e-3, 1e-4/1e-4

Replay memory size, � 250,000 Common target learning rate, g 1e-3

Discounting factor, W 0.9 OU noise coefficient, (h, o, f) (0, 0.15, 0.2)

Minibatch size, � 32 OU noise decaying factor, DF 1e-4, 1e-5, 1e-6, 0

C. Computational Complexity

We derive the space and time complexity of the proposed
algorithm based on the replay memory and the DNN work-
load. The replay memory’s size is fixed. When the number
of experiences becomes so large that the memory capacity
becomes insufficient, a number of oldest experiences will be
freed to allocate memory for the new incoming experiences.
Regarding the neural network architecture, both the primary
actor and critic DNNs have one input layer, two hidden layers,
and one output layer, which are all fully connected. We use
the rectified linear unit (ReLU) function as the activation
function for the hidden layers. The primary actor DNN ` uses
the tangent (tanh) function to deliver the output computation
offloading policy. In the primary critic DNN, the output Q-
values are obtained linearly. Let 61, 62 and 6′1, 6

′
2 denote the

corresponding numbers of neurons in the hidden layers of
the primary and critic DNNs, respectively. Then, according
to [48], we can compute the space complexity of the primary
actor and critic DNNs, respectively, as

$
B?024
` = $ ((*()2) +$ (62

1 + 6
2
2) +$ (*

2), (30)

$
B?024

&
= $ ((*()2) +$ (6′21 + 6′

2
2) +$ ((*(+*)2). (31)

Similar to [49], the upper bound of the time complexity of the
primary actor and critic DNNs can be given, respectively, as

$C8<4` = $ (�) ((*()2 + 62
1 + 6

2
2 +*

2)), (32)

$C8<4& = $ (�) ((*()2 + 6′21 + 6′
2
2 + (*(+*)2)), (33)

where � is the number of training episodes and) is the
maximum number of training steps in an episode. Because the
target actor and critic DNNs share the same neural network
structures with the corresponding primary actor and critic
DNNs, their space and time complexity are identical, e.g.,
$
B?024/C8<4
` = $

B?024/C8<4
`′ , and $

B?024/C8<4
&

= $
B?024/C8<4
&′ .

Therefore, the space and time complexity of the proposed
algorithm can be computed, respectively, as

$B?024= $ (2((*()2 + 62
1 + 6

2
2 +*

2))
+ $ (2((*()2 + 6′21 + 6′

2
2 + (*(+*)2)), (34)

$C8<4= $ (2�) ((*()2 + 62
1 + 6

2
2 +*

2))
+ $ (2�) ((*()2 + 6′21 + 6′

2
2 + (*(+*)2)). (35)

We see that the complexity of the proposed algorithm is
polynomial and suitable for application to practical problems.

On the other hand, in the hybrid NOMA–OMA scheme,
each channel resource allocation is a permutation that involves
choosing ("+!#) UEs out of the total * UEs. Therefore, the
complexity of exhaustive search (ES) in the channel resource
allocation problem can be given as $ (%"+!#

*
) with

%"+!#* :=
(

*

" + !#

)
=

*!
(* − (" + !#))! . (36)

For the partial computation offloading problem, the computa-
tion offloading policy is a continuous variable in the range
[0, 1] so that the complexity of ES is $ (∞). Assuming
that a quantization to Ω levels ensures the existence of a
near optimal computation offloading solution, the complexity
of ES is reduced to $ (Ω"+!#). Accordingly, the overall
complexity of ES in the joint optimization problem of partial
computation offloading and channel resource allocation is
given as $ (%"+!#

*
Ω"+!#). Therefore, we can see that the

complexity of the proposed algorithm is much lower than that
of the ES algorithm.

Remark 1. In the exploitation phase, we utilize the weights
\∗` and \∗

&
returned from Algorithm 1 to instantaneously

determine the optimal computation offloading policy o∗ (C)
and the optimal channel resource allocation x∗ (C) for any
state B(C), i.e., o∗ (C) = `(B(C); \∗`) and x∗ (C) is given as
GD8 ,B 9 (C) = argmaxGD8 ,B 9 (C) &(B(C), 0(C); \

∗
&
). Therefore, com-

paring with the conventional optimization approach, the pro-
posed algorithm significantly reduces the complexity.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Training episode

-1800

-1700

-1600

-1500

-1400

-1300

-1200
T

o
ta

l
re

w
a
rd

LR = 1e-3, LR
Q

 = 1e-3

LR = 1e-4, LR
Q

 = 1e-3

LR = 1e-4, LR
Q

 = 1e-4

(a) Impact of primary LRs

0 500 1000 1500 2000

Training episode

-1800

-1600

-1400

-1200

T
o
ta

l
re

w
a
rd

DF = 1e-4

0 500 1000 1500 2000

Training episode

-1800

-1600

-1400

-1200

T
o
ta

l
re

w
a
rd

DF = 1e-5

0 500 1000 1500 2000

Training episode

-1800

-1600

-1400

-1200

T
o
ta

l
re

w
a
rd

DF = 1e-6

0 500 1000 1500 2000

Training episode

-1800

-1600

-1400

-1200

T
o
ta

l
re

w
a
rd

DF = 0

(b) Impact of the OU noise DF

Fig. 3. Convergence of the proposed algorithm with various primary DNN learning rates (LRs) and OU noise decaying factors (DFs): * = 10, (= 5, # = 3,
" = 2, ! = 2, 5 ;D8 = 1 GHz, 5 AD8 = 4 GHz, &D8 = 420 KB, �D8 = 1.68 GHz, � = 2000, and) = 300.

V. PERFORMANCE EVALUATION

A. Simulation Settings

We built the network model and developed the proposed
algorithm using PyTorch with Python 3.7.3 on a server pow-
ered by Intel Core i5-8500 CPU with Nvidia GTX 1050 Ti
GPU, and 250 GB of memory. The network model comprised
an MEC server attached to a BS, i.e., an access point in
a warehouse or a roadside unit, having a coverage radius
of 100 m. The UEs were uniformly distributed within the
coverage area and were placed apart from the BS by at least
5 m. The transmission power of the UEs was equally selected
from the set {20, 21, 22, 23} dBm, and the total transmission
power of co-sharing NOMA UEs did not exceed 26 dBm. The
baseline number of SCs was five, including three NOMAs and
two OFDMAs, each having a bandwidth of 1 MHz. We utilized
a path loss model of 140.7 + 36.7log10 (d(km)) and an i.i.d.
Rayleigh block fading model with a shadowing deviation of
10 dB. We employed fully connected actor and critic DNNs,
in which the number of neurons in their two corresponding
hidden layers were 128–128 and 1024–512, respectively. We
considered an application of augmented reality framework
ARkit [9] for all UEs, in which the ranges of computation task
size and required CPU cycles were adjusted to [420, 900] KB
and [1.68, 3.6] GHz, respectively. In addition, we assumed
that the tasks were generated regularly at every time step and
equally across all UEs. The system level simulation parameters
are summarized in Table I. To evaluate the performance of
the proposed algorithm, we compared it with several existing
schemes. Details are as follows:

• Proposed scheme (ACDQN algorithm): The computation
tasks of the associated UEs are optimally partitioned for
local execution and offloading to the MEC server using
NOMA and OMA SCs (ACDQN-NOMA), and OMA
SCs only (ACDQN-OMA).

• Random offloading (RAO): The computation tasks of
the associated UEs are randomly partitioned for local

execution and offloading to the MEC server using NOMA
and OMA SCs.

• Fully remote computing (FRC): All the computation tasks
of the associated UEs are fully offloaded to the MEC
server using NOMA and OMA SCs.

• Fully local computing (FLC): All the computation tasks
of UEs are executed locally.

• Deep deterministic policy gradient (DDPG): This scheme
utilizes DDPG algorithm as a regular DRL method for
continuous control.

• Near optimum with exhaustive search (ES): This scheme
searches whole combinations of offloading and resource
allocation. Here, the continuous computation offloading
policy is quantized equally into a deterministic level.
Therefore, it is considered a near-optimal scheme.

B. Convergence

Fig. 3 (a) and (b) depict the convergence of the proposed
algorithm with various primary DNN learning rates (LRs) and
OU noise decaying factors (DFs). Here, the primary DNN LRs
LR` and LR& are used by the Adam optimizer for updating
the weights \` and \& of the primary actor and critic DNNs,
respectively. In addition, we use DF to reduce the OU noise
perturbation after each training step by using the control of
o(C) = o(C) · max(0, 1 − DF · C) in the OU noise coefficients.
The baseline network setting is as follows: * = 10, (= 5,
" = 3, # = 2, ! = 2, 5 ;D8 = 1 GHz, 5 AD8 = 4 GHz, &D8 = 420
KB, and �D8 = 1.68 GHz. The number of training episodes
and training steps per episode are � = 2000 and) = 300,
respectively.

From Fig. 3 (a), we can see that the total reward increases
as the number of training episodes increases, and it converges
within a specific range. This is because the raw channel states
are inputted directly for training without any quantization. In
addition, the highest total reward achieved with (LR`,LR&) =
(14−4, 14−3) is slightly higher than those with (LR`,LR&) =
(14− 3, 14− 3) and (LR`,LR&) = (14− 4, 14− 4). Therefore,

0 10 20 30 40 50 60 70 80 90 100

Running episode

1200

1400

1600

1800

2000

2200

2400

2600

2800
T

o
ta

l
c
o

m
p

u
ta

ti
o

n
a

l
o

v
e

rh
e

a
d

FLC

RAO

FRC

ACDQN-NOMA

ACDQN-OMA

Fig. 4. Total computational overhead comparison between the proposed
algorithm and existing schemes: * = 10, (= 5, # = 3, " = 2, ! = 2,
5 ;D8 = 1 GHz, 5 AD8 = 4 GHz, &D8 = 420 KB, and �D8 = 1.68 GHz.

we select the training result with (LR`,LR&) = (14−4, 14−3)
for evaluating the performance of the proposed algorithm.

In Fig. 3 (b), we can see that the proposed algorithm
converges in all DF settings such as DF = 14−4, DF = 14−5,
DF = 14 − 6, and DF = 0. In particular, the total reward with
smaller DFs, i.e., DF = 14−6 and DF = 0, fluctuates more than
that with larger DFs, i.e., DF = 14 − 4 and DF = 14 − 5. This
is because smaller DFs provide more opportunities to explore
the continuous action space. In practice, we prefer small DFs
as it provides a greater chance of achieving the highest reward.

C. Performance Comparisons

We save the weights \∗` and \∗
&

of the primary actor
and critic DNNs that provide the highest total reward for
determining the optimal computation offloading policy and
channel resource allocation. For evaluating the performance
of the proposed scheme, we compare it with other schemes
through 100 consecutive episodes, each including 300 time
steps. Fig. 4 plots the fluctuation of the total computational
overhead. From the figure, we can see that the total com-
putational overhead with ACDQN-NOMA is approximately
10%, 46%, and 118% less than those with FRC, RAO, and
FLC, respectively. In particular, compared to the ACDQN-
OMA scheme, the total computational overhead is reduced
significantly by 51%, which demonstrates the effectiveness of
NOMA over OMA in MEC systems.

Fig. 5 shows the impact of the allocated MEC comput-
ing resources on the total computational overhead. For this
evaluation, we vary 5 AD8 from 4 to 10 GHz. As the allocated
MEC computing resources increase, the total computational
overhead decreases slightly in all offloading schemes such
as FRC, DDPG algorithm, proposed scheme with ACDQN
algorithm, and ES algorithm. Specifically, the amount of
reduction becomes smaller. This is because a larger alloca-
tion of MEC computing resources reduces only the remote
execution delay, while the energy consumption and delay for
uploading tasks to the MEC server remain unchanged and they
significantly contribute to the total computational overhead.

4 5 6 7 8 9 10

Allocated MEC computing resources (GHz)

1050

1100

1150

1200

1250

1300

1350

1400

1450

T
o

ta
l
c
o

m
p

u
ta

ti
o

n
a

l
o

v
e

rh
e

a
d

FRC

DDPG

Proposed scheme

ES with =20

ES with =50

Fig. 5. Comparison of the total computational overhead based on the allocated
MEC computing resources: * = 10, (= 5, # = 3, " = 2, and ! = 2.

420 540 660 780 900

Computation task size (KB)

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

T
o

ta
l
c
o

m
p

u
ta

ti
o

n
a

l
o

v
e

rh
e

a
d

FLC

RAO

FRC

DDPG

Proposed scheme

Near optimum (ES)

Fig. 6. Comparison of the total computational overhead with respect to the
size of the computation tasks: * = 10, (= 5, # = 3, " = 2, and ! = 2.

Furthermore, we can see that the proposed scheme outperforms
FRC and DDPG schemes. In particular, the total computational
overhead in the proposed scheme is very close to that achieved
with ES algorithm. For instance, when 5 AD8 = 10 GHz, the
proposed scheme provides a total computational overhead that
is only 1.5% and 2.2% greater than those achieved with ES
algorithm when Ω = 20 and Ω = 50, respectively.

In Fig. 6, we observe the impact of the computation task
size on the total computational overhead. For this evaluation,
we vary &D8 from 420 to 900 KB. As the computation task
size increases, the total computational overhead increases in all
schemes. In particular, the increasing amount in FLC scheme
is significantly larger than those in other schemes. This is
because unlike other schemes, in FLC, all the UEs have to
execute their tasks without any assistance from the MEC
server. Furthermore, we can see that the total computational
overhead in the proposed scheme is less than those provided by
FRC, RAO, FLC, and DDPG algorithm. Specifically, it is very
close to that achieved with ES algorithm. For instance, when
&D8 = 900 KB, the total computational overhead with ACDQN
algorithm is 2769, which is approximately 10%, 43%, 115%,

10 11 12 13 14 15

Total number of UEs

1000

1500

2000

2500

3000

3500

4000

4500
T

o
ta

l
c
o

m
p

u
ta

ti
o

n
a

l
o

v
e

rh
e

a
d

FLC

RAO

FRC

DDPG

Proposed scheme

Near optimum (ES)

Fig. 7. Comparison of the total computational overhead with respect to the
number of UEs: (= 5, # = 3, " = 2 and ! = 2.

4/2/2 5/3/2 6/3/3 7/4/3 8/4/4

Number of subchannels (Total/NOMA/OMA)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

T
o

ta
l
c
o

m
p

u
ta

ti
o

n
a

l
o

v
e

rh
e

a
d

Proposed scheme

RAO

FRC

FLC

DDPG

Near optimum (ES)

Fig. 8. Comparison of the total computational overhead with respect to the
number of SCs including NOMAs and OFDMAs: * = 15 and ! = 2.

and 6% less than those provided by FRC, RAO, FLC, and
DDPG algorithm, respectively; and it is only 4% greater than
the near optimum provided by ES algorithm with Ω = 50.

In Fig. 7, we investigate the total computational overhead
by varying the number of UEs. At each time slot, the channel
resource is optimally allocated to a limited number of UEs.
Accordingly, as the total number of UEs increases, the number
of UEs that have to execute their tasks without MEC assis-
tance increases. This causes a regular increase in the total
computational overhead. In particular, as the number of UEs
increases from 10 to 15, the total computational overhead
increases regularly in all schemes, e.g., it increases from 2772
to 4158 in FLC scheme, from 1846 to 3320 in RAO scheme,
from 1409 to 2997 in RFC scheme, from 1341 to 2902 in
DDPG scheme, from 1254 to 2773 in the proposed scheme
with ACDQN algorithm, and from 1181 to 2698 in the near
optimal scheme with ES algorithm (Ω = 50).

Fig. 8 shows the performance comparison by varying the
number of SCs including NOMAs and OFDMAs. We set the
number of UEs to 15 and vary the number of SCs from 4 to
8 with a corresponding increase in the number of NOMA and

1 2 3 4

Maximum number of UEs per NOMA subchannel

0

500

1000

1500

2000

2500

3000

3500

4000

4500

T
o

ta
l
c
o

m
p

u
ta

ti
o

n
a

l
o

v
e

rh
e

a
d

Proposed scheme

RAO

FRC

FLC

DDPG

Near optimum (ES)

Fig. 9. Comparison of the total computational overhead with respect to the
maximum number of UEs per NOMA SC: * = 15, (= 5, # = 3, " = 2,
%tot = 26 dBm.

OFDMA SCs from 2 to 4. In the G-axis, the number of SCs
(, NOMAs # , and OFDMAs " are denoted by ((/#/").
We can see that as the number of SCs increases, the total
computational overhead decreases in offloading schemes such
as the proposed scheme, RAO, FRC, DDPG algorithm, and the
near optimal scheme with ES algorithm (Ω = 50). In addition,
the performance gaps between the proposed scheme and the
existing schemes (RAO, FRC, and FLC) become larger. For
example, when ((/#/") = (4/2/2), the total computational
overhead in the proposed scheme is 3119, which is approxi-
mately 5%, 13%, and 33% less than those with FRC, RAO, and
FLC, respectively, and when ((/#/") = (8/4/4), these gaps
increase to 14%, 38%, and 100%, respectively. Furthermore,
we see that the proposed scheme with ACDQN algorithm
outperforms DDPG algorithm as its performance is close to
the near optimum provided by ES algorithm.

Fig. 9 shows the performance comparison with respect to
the number of co-sharing UEs per NOMA SC. When ! = 1,
it is the same as the scheme employing all OFDMA SCs and
no NOMA SC. When ! is increased from 1 to 3, the total
computational overhead significantly decreases in offloading
schemes such as the proposed scheme, RAO, FRC, DDPG
algorithm, and the near optimal scheme with ES algorithm
(Ω = 50). However, the computational overhead reduces
slightly when ! increases from 3 to 4. This is because the
total transmission power of the co-sharing NOMA UEs is
limited to %tot = 26 dBm (398.1 mW) so that up to three UEs
with transmission powers of 20 dBm (100 mW) or 21 dBm
(125.9 mW) are allowed to share one NOMA SC. From the
figure, we can see that the proposed scheme outperforms the
existing schemes (RAO, FRC, and FLC) and DDPG algorithm.
In addition, the performance of the proposed scheme is close
to the near optimum achieved by ES algorithm.

VI. CONCLUSION

In this study, we investigated the joint optimization problem
of partial computation offloading and channel resource alloca-
tion in NOMA-assisted MEC systems to minimize the overall

computational overhead in terms of energy consumption and
latency. Here, we assumed a dynamic network environment
with time-varying channels, which requires fast and energy-
efficient determination of optimal solutions for different states.
To this end, we proposed a low-complexity DRL algorithm
that uses both actor-critic and DQN methods. We first found
a real-time optimal computation offloading policy, in which
UEs partition computation tasks into multiple subtasks for
simultaneous execution at the UE and MEC server. Second, we
found a real-time optimal channel resource allocation in the
hybrid NOMA–OMA system, in which the network provides
NOMA and OMA SCs to concurrently serve various users with
diverse requirements. Extensive numerical results confirmed
that the proposed ACDQN algorithm reliably converges. It
also outperforms the existing offloading schemes using OMA
and NOMA, and achieves near-optimal performance in terms
of energy consumption and latency-based computational over-
head. As our future work, we will expand this study to
multiserver systems with massive MIMO, in which users
located at the boundary between multiple MEC servers jointly
select the best server, resource, and antenna precoding to
offload their tasks for saving energy and reducing latency.

REFERENCES

[1] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Commun. Surv. Tut., vol. 19, no. 4, pp. 2322–2358, 2017.

[2] P. Mach and Z. Becvar, “Mobile edge computing: A survey on archi-
tecture and computation offloading,” IEEE Commun. Surv. Tut., vol. 19,
no. 3, pp. 1628–1656, 2017.

[3] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella,
“On multi-access edge computing: A survey of the emerging 5G network
edge cloud architecture and orchestration,” IEEE Commun. Surv. Tut.,
vol. 19, no. 3, pp. 1657–1681, 2017.

[4] T. Q. Dinh, J. Tang, Q. D. La, and T. Q. S. Quek, “Offloading in mobile
edge computing: Task allocation and computational frequency scaling,”
IEEE Trans. Commun., vol. 65, no. 8, pp. 3571–3584, 2017.

[5] F. Wang, J. Xu, X. Wang, and S. Cui, “Joint offloading and computing
optimization in wireless powered mobile-edge computing systems,”
IEEE Trans. Wireless Commun., vol. 17, no. 3, pp. 1784–1797, 2017.

[6] T. Zhu, T. Shi, J. Li, Z. Cai, and X. Zhou, “Task scheduling in deadline-
aware mobile edge computing systems,” IEEE Internet Things J., vol. 6,
no. 3, pp. 4854–4866, 2018.

[7] T. X. Tran and D. Pompili, “Joint task offloading and resource allocation
for multi-server mobile-edge computing networks,” IEEE Trans. Veh.
Technol., vol. 68, no. 1, pp. 856–868, 2018.

[8] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, “Mobile-edge com-
puting: Partial computation offloading using dynamic voltage scaling,”
IEEE Trans. Commun., vol. 64, no. 10, pp. 4268–4282, 2016.

[9] Z. Ning, P. Dong, X. Kong, and F. Xia, “A cooperative partial compu-
tation offloading scheme for mobile edge computing enabled Internet of
Things,” IEEE Internet Things J., vol. 6, no. 3, pp. 4804–4814, 2018.

[10] Z. Kuang, L. Li, J. Gao, L. Zhao, and A. Liu, “Partial offloading
scheduling and power allocation for mobile edge computing systems,”
IEEE Internet Things J., vol. 6, no. 4, pp. 6774–6785, 2019.

[11] M. Sheng, Y. Wang, X. Wang, and J. Li, “Energy-Efficient Multiuser
Partial Computation Offloading With Collaboration of Terminals, Radio
Access Network, and Edge Server,” IEEE Trans. Commun., vol. 68,
no. 3, pp. 1524–1537, 2019.

[12] P. Wang, J. Xiao, and P. Li, “Comparison of orthogonal and non-
orthogonal approaches to future wireless cellular systems,” IEEE Veh.
Technol. Mag., vol. 1, no. 3, pp. 4–11, 2006.

[13] N. Nomikos, T. Charalambous, D. Vouyioukas, G. K. Karagiannidis, and
R. Wichman, “Hybrid NOMA/OMA with buffer-aided relay selection
in cooperative networks,” IEEE J. Sel. Topics Signal Process., vol. 13,
no. 3, pp. 524–537, 2019.

[14] X. Shao, C. Yang, D. Chen, N. Zhao, and F. R. Yu, “Dynamic IoT device
clustering and energy management with hybrid NOMA systems,” IEEE
Trans. Ind. Inform., vol. 14, no. 10, pp. 4622–4630, 2018.

[15] M. Zeng, A. Yadav, O. Dobre, and H. V. Poor, “Energy-efficient joint
user-RB association and power allocation for uplink hybrid NOMA-
OMA,” IEEE Internet Things J., vol. 6, no. 3, pp. 5119–5131, 2019.

[16] M. Hedayati and I. Kim, “On the Performance of NOMA in the Two-
User SWIPT System,” IEEE Trans. Veh. Technol., vol. 67, no. 11, pp.
11 258–11 263, 2018.

[17] X. Ma, Y. Zhao, L. Zhang, H. Wang, and L. Peng, “When mobile
terminals meet the cloud: computation offloading as the bridge,” IEEE
Netw. Mag., vol. 27, no. 5, pp. 28–33, 2013.

[18] A. Kiani and N. Ansari, “Edge computing aware NOMA for 5G
networks,” IEEE Internet Things J., vol. 5, no. 2, pp. 1299–1306, 2018.

[19] Y. Wu, B. Shi, L. P. Qian, F. Hou, J. Cai, and X. Shen, “Energy-efficient
multi-task multi-access computation offloading via NOMA transmission
for IoTs,” IEEE Trans. Ind. Inform., vol. 16, no. 7, pp. 4811–4822, 2019.

[20] Y. Ye, L. Shi, H. Sun, R. Q. Hu, and G. Lu, “System-Centric Computa-
tion Energy Efficiency for Distributed NOMA-Based MEC Networks,”
IEEE Trans. Veh. Technol., vol. 69, no. 8, pp. 8938–8948, 2020.

[21] M. Eliodorou, C. Psomas, I. Krikidis, and S. Socratous, “Energy Effi-
ciency for MEC Offloading with NOMA through Coalitional Games,”
in Proc. IEEE GLOBECOM, Waikoloa, HI, USA, 2019, pp. 1–6.

[22] S. Mao et al., “Joint Communication and Computation Resource Opti-
mization for NOMA-Assisted Mobile Edge Computing,” in Proc. IEEE
Int. Conf. Commun. (ICC), Shanghai, China, 2019, pp. 1–6.

[23] Z. Ding, J. Xu, O. A. Dobre, and H. V. Poor, “Joint power and time
allocation for NOMA–MEC offloading,” IEEE Trans. Veh. Technol.,
vol. 68, no. 6, pp. 6207–6211, 2019.

[24] H. Li, F. Fang, and Z. Ding, “Joint resource allocation for hybrid
NOMA-assisted MEC in 6G networks,” Digit. Commun. Netw., vol. 6,
no. 3, pp. 241–252, 2020.

[25] Y. Wu, L. P. Qian, K. Ni, C. Zhang, and X. Shen, “Delay-minimization
nonorthogonal multiple access enabled multi-user mobile edge compu-
tation offloading,” IEEE J. Sel. Topics Signal Process., vol. 13, no. 3,
pp. 392–407, 2019.

[26] L. P. Qian, Y. Wu, J. Ouyang, Z. Shi, B. Lin, and W. Jia, “Latency
Optimization for Cellular Assisted Mobile Edge Computing via Non-
Orthogonal Multiple Access,” IEEE Trans. Veh. Technol., vol. 69, no. 5,
pp. 5494–5507, 2020.

[27] M. Sheng et al., “Delay-aware computation offloading in NOMA MEC
under differentiated uploading delay,” IEEE Trans. Wireless Commun.,
vol. 19, no. 4, pp. 2813–2826, 2020.

[28] Y. Wu, K. Ni, C. Zhang, L. P. Qian, and D. H. K. Tsang, “NOMA-
assisted multi-access mobile edge computing: A joint optimization of
computation offloading and time allocation,” IEEE Trans. Veh. Technol.,
vol. 67, no. 12, pp. 12 244–12 258, 2018.

[29] Z. Ding, D. W. K. Ng, R. Schober, and H. V. Poor, “Delay minimization
for NOMA-MEC offloading,” IEEE Signal Process. Lett., vol. 25, no. 12,
pp. 1875–1879, 2018.

[30] J. Zhu, J. Wang, Y. Huang, F. Fang, K. Navaie, and Z. Ding, “Resource
Allocation for Hybrid NOMA MEC Offloading,” IEEE Trans. Wireless
Commun., vol. 19, no. 7, pp. 4964–4977, 2020.

[31] Q.-V. Pham et al., “Coalitional games for computation offloading in
NOMA-enabled multi-access edge computing,” IEEE Trans. Veh. Tech-
nol., vol. 69, no. 2, pp. 1982–1993, 2019.

[32] Y. Ye, R. Q. Hu, G. Lu, and L. Shi, “Enhance Latency-Constrained
Computation in MEC Networks Using Uplink NOMA,” IEEE Trans.
Commun., vol. 68, no. 4, pp. 2409–2425, 2020.

[33] P. Yang et al., “Latency optimization for multi-user NOMA-MEC
offloading using reinforcement learning,” in Proc. IEEE 28th Wireless
Opt. Commun. Conf., Beijing, China, 2019, pp. 1–5.

[34] L. P. Qian, Y. Wu, F. Jiang, N. Yu, W. Lu, and B. Lin, “NOMA
assisted Multi-task Multi-access Mobile Edge Computing via Deep
Reinforcement Learning for Industrial Internet of Things,” IEEE Trans.
Ind. Inform., 2020.

[35] N. Maurice, Q-V. Pham, and W-J. Hwang, “Online Computation Of-
floading in NOMA-based Multi-Access Edge Computing: A Deep
Reinforcement Learning Approach,” IEEE Access, vol. 8, pp. 99 098–
99 109, 2020.

[36] L. Xiao, X. Wan, C. Dai, X. Du, X. Chen, and M. Guizani, “Security
in mobile edge caching with reinforcement learning,” IEEE Wireless
Commun. Mag., vol. 25, no. 3, pp. 116–122, 2018.

[37] L. Xiao, X. Lu, T. Xu, X. Wan, W. Ji, and Y. Zhang, “Reinforcement
Learning-Based Mobile Offloading for Edge Computing Against Jam-
ming and Interference,” IEEE Trans. Commun., vol. 68, no. 10, pp.
6114–6126, 2020.

[38] K. N. Doan, M. Vaezi, W. Shin, H. V. Poor, H. Shin, and T. Q.
Quek, “Power allocation in cache-aided NOMA systems: Optimization

and deep reinforcement learning approaches,” IEEE Trans. Commun.,
vol. 68, no. 1, pp. 630–644, 2019.

[39] M. Al-Imari, P. Xiao, M. A. Imran, and R. Tafazolli, “Uplink non-
orthogonal multiple access for 5G wireless networks,” in Proc. IEEE
11th ISWCS, Barcelona, Spain, 2014, pp. 781–785.

[40] Z. Yang, Z. Ding, P. Fan, and N. Al-Dhahir, “A general power allocation
scheme to guarantee quality of service in downlink and uplink NOMA
systems,” IEEE Trans. Wireless Commun., vol. 15, no. 11, pp. 7244–
7257, Nov. 2016.

[41] Y. Wen, W. Zhang, and H. Luo, “Energy-optimal mobile application
execution: Taming resource-poor mobile devices with cloud clones,” in
Proc. IEEE INFOCOM, Orlando, FL, USA, 2012, pp. 2716–2720.

[42] X. Chen, “Decentralized computation offloading game for mobile cloud
computing,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 4, pp. 974–
983, Apr. 2014.

[43] Y. Pochet and L. A. Wolsey, Production planning by mixed integer
programming. Springer Science & Business Media, Berlin, Germany,
2006.

[44] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT Press, Cambridge, MA, USA, 2018.

[45] H. Y. Ong, K. Chavez, and A. Hong, “Distributed deep Q-learning,”
arXiv preprint arXiv:1508.04186, 2015.

[46] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D.
Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[47] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[48] A. Vaswani et al., “Attention is all you need,” in Proc. 30th Neural
Inform. Process. Syst. (NIPS), Long Beach, CA, USA, 2017, pp. 5998–
6008.

[49] C. He, Y. Hu, Y. Chen, and B. Zeng, “Joint power allocation and channel
assignment for NOMA with deep reinforcement learning,” IEEE J. Sel.
Areas Commun., vol. 37, no. 10, pp. 2200–2210, 2019.

Van Dat Tuong received the B.S. degree in Mecha-
tronics from Hanoi University of Science and Tech-
nology, Vietnam, in 2012, and M.S. degree in Com-
puter Science and Engineering from Chung-Ang
University, South Korea, in 2021. From 2012 to
2018, he was a Software Engineer with the Mobile
R&D Center, Samsung Electronics Vietnam, Hanoi,
Vietnam. From 2018 to 2021, he was a recipient
of the Global Korea Scholarship sponsored by the
Korean Government. He is currently pursuing his
Ph.D. degree in Big Data at Chung-Ang University,

South Korea. His research interests include wireless communication, mobile
edge computing, reinforcement learning, and Internet of Things.

Thanh Phung Truong received the B.S. degree in
Electronics-Telecommunications Engineering from
Ho Chi Minh City University of Technology, Viet-
nam, in 2018. He is currently pursuing his Master
degree in Big Data at Chung-Ang University, South
Korea. From 2019 to 2020, he was a FPGA Engineer
with Telecommunication Research and Development
Institute, VinSmart Research and Manufacture Joint
Stock Company, Vietnam. His research interests
include machine learning, computing, cube-sat and
wireless communication.

The-Vi Nguyen received the B.S. degree in Math-
ematics from University of Science, Ho Chi Minh
City, Viet Nam in 2016, and M.S. degree in Com-
puter Science and Engineering from Chung-Ang
University, South Korea in 2021. He is currently
pursuing Ph.D. in Big Data at Chung-Ang Univer-
sity, South Korea. His research interests include ma-
chine learning, optimization, and their applications
in wireless communication.

Wonjong Noh received the B.S., M.S., and Ph.D.
degrees from the Department of Electronics Engi-
neering, Korea University, Seoul, South Korea, in
1998, 2000, and 2005, respectively. From 2005 to
2007, he conducted the Postdoctoral Research with
Purdue University, West Lafayette, IN, USA, and the
University of California at Irvine, Irvine, CA, USA.
From 2008 to 2015, he was a Principal Research
Engineer with the Samsung Advanced Institute of
Technology, Samsung Electronics, South Korea. Af-
ter that, he worked as an Assistant Professor with

the Department of Electronics and Communication Engineering, Gyeonggi
University of Science and Technology, South Korea, and since 2019, he
has worked as an Associate Professor with the School of Software, Hallym
University, South Korea. He received the Government Postdoctoral Fellowship
from the Ministry of Information and Communication, South Korea, in 2005.
He was also a recipient of the Samsung Best Paper God Award in 2010,
the Samsung Patent Bronze Award in 2011, and the Samsung Technology
Award in 2013. His current research interests include fundamental analysis and
evaluations on machine learning-based 5G and 6G wireless communications
and networks.

Sungrae Cho received B.S. and M.S. degrees
in Electronics Engineering from Korea University,
Seoul, South Korea, in 1992 and 1994, respectively,
and Ph.D. degree in Electrical and Computer Engi-
neering from the Georgia Institute of Technology,
Atlanta, GA, USA, in 2002. He is a Professor with
the School of Computer Science and Engineering,
Chung-Ang University (CAU), Seoul, South Korea.
Prior to joining CAU, he was an Assistant Professor
with the Department of Computer Sciences, Georgia
Southern University, Statesboro, GA, USA, from

2003 to 2006, and a Senior Member of Technical Staff with the Samsung
Advanced Institute of Technology (SAIT), Kiheung, South Korea, in 2003.
From 1994 to 1996, he was a Research Staff Member with Electronics and
Telecommunications Research Institute (ETRI), Daejeon, South Korea. From
2012 to 2013, he held a Visiting Professorship with the National Institute
of Standards and Technology (NIST), Gaithersburg, MD, USA. His current
research interests include wireless networking, ubiquitous computing, and ICT
convergence. He has served as the Organizing Committee Chair for numerous
international conferences, such as IEEE SECON, ICOIN, ICTC, ICUFN,
TridentCom, and the IEEE MASS, and as a Program Committee Member for
conferences such as IEEE ICC, MobiApps, SENSORNETS, and WINSYS.
He has been a Subject Editor for IET Electronics Letter since 2018 and an
Editor for Ad Hoc Networks Journal (Elsevier) from 2012 to 2017.

