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Abstract—Mobile edge computing and nonorthogonal multiple
access (NOMA) have been considered as promising technologies
that can satisfy rigorous requirements of industrial internet of
things systems. However, system dynamics, including channel
states and computation task requests, may continuously change
NOMA decoding order and computation uploading time, making
it difficult to reduce latency using conventional highly complex
optimization methods. In this study, we investigate a novel scheme
that effectively reduces the average task delay to improve the
quality of service for all users by jointly optimizing subchannel
assignment (SA), offloading decision (OD), and computation
resource allocation (CRA). To deal with the high complexity, the
original multi-server problem is first decomposed into multiple
single-server problems. Subsequently, each single-server prob-
lem is decoupled into CRA and SA/OD subproblems. Using
convex optimization, a closed-form solution is derived for the
optimal CRA action. Concurrently, the optimal SA/OD action
is obtained using a distributed multi-agent deep reinforcement
learning algorithm. Simulation results reveal that the proposed
scheme significantly outperforms the state-of-the-art schemes. In
particular, it reduces the action decision duration by 30 times
while achieving a near-optimal performance of up to 97% of the
optimum under the exhaustive search scheme.

Index Terms—Delay minimization, industrial internet of things,
mobile edge computing, nonorthogonal multiple access, reinforce-
ment learning, resource allocation.

I. INTRODUCTION

THE surge increase in industrial Internet of Things (IoT)
and wireless network technologies has led to the rapid de-

velopment of many computation-intensive and delay-sensitive
applications, such as smart manufacturing, industrial surveil-
lance, and predictive maintenance. Concurrently, IoT devices
are generally computationally constrained, presenting poor
performance when implementing computation-intensive work-
loads. To support users offloading tasks effectively, mobile
edge computing (MEC) was proposed to distribute computing
resources and application services from the core network to
the edge (access) network [1]. Instead of using expensive
and high-latency backhaul links like cloud computing, MEC
promotes the implementation of applications on the access
network to the maximal extent. Thus, it can significantly
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reduce network traffic, network bottleneck, and transmission
costs [2]–[5].

Nevertheless, as the number of IoT devices in an industrial
network rapidly increases, the limited (access) network capac-
ity becomes a major challenge. For example, when numerous
devices upload computation tasks simultaneously, there is
frequent network congestion [6]. To deal with this challenge,
nonorthogonal multiple access (NOMA) has been proposed
for fifth-generation and sixth-generation networks [7]. By
allowing users to simultaneously transmit data over the same
resource block (RB) and employing successive interference
cancellation (SIC) to decode individual user signals, NOMA
can accommodate more users than the conventional orthogo-
nal multiple access technique, resulting in spectral efficiency
improvement and delay reduction [8], [9].

Motivated by the advantages of NOMA and MEC, this
study aims to minimize the average task delay for users in
an industrial IoT network, where the main contributions can
be summarized as follows:
• A joint optimization problem of subchannel assignment

(SA), offloading decision (OD), and computation resource
allocation (CRA) was formulated to minimize the av-
erage task delay for all users. Different from existing
schemes, the formulated problem characterized the in-
teraction between uploading delay and system dynamics,
e.g., channel conditions and computation task requests,
allowing changing SIC decoding order and task uploading
durations at different times. Furthermore, the formulated
problem was nontrivial to solve owing to its nonconvex
objective function and mixed types of variables.

• Because of the high complexity, multi-server problem was
transformed into multiple single-server problems, where
users selected the server with the strongest uplink refer-
ence signal received power. Subsequently, each single-
server problem was decoupled into CRA and SA/OD
subproblems, which were solved iteratively. The optimal
CRA action was obtained in a closed-form expression
using convex optimization, and the optimal SA/OD action
was obtained using a novel multi-agent deep reinforce-
ment learning (MA-DRL) algorithm.

• The complexity of the proposed algorithm was polyno-
mial that proved the feasibility for application in practical
systems. In addition, numerical results demonstrated that
the proposed algorithm reliably converged and presented
a near-optimal performance in terms of average task
delay. Specifically, compared to existing schemes, the
proposed scheme significantly reduced action decision
time to approximately 64 ms, which can satisfy the
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stringent delay constraint of practical systems.
The remainder of this paper is organized as follows. Sec-

tion II provides the literature review. In section III, system
model and problem formulation are described. Section IV
presents our proposed solution. The simulation results are
discussed in section V. Finally, section VI concludes the study.

II. LITERATURE REVIEW

In recent years, the effectiveness of a NOMA–MEC system,
which utilizes the advantages of both MEC and NOMA, has
been demonstrated in various optimization frameworks [10]–
[13]. Ding et al. [10] revealed that employing NOMA can
efficiently reduce latency and energy consumption of MEC of-
floading. Huynh et al. [11] considered a cache-aided NOMA–
MEC scheme, aiming to minimize the overall completion
latency. A block successive upper-bound minimization method
was implemented to solve the joint optimization problem
of offloading and caching policy. Wu et al. [12] proposed
a partial offloading scheme based on NOMA transmission.
The overall completion latency was minimized by jointly
optimizing computation offloading policy and durations for
uploading task and downloading result. Sheng et al. [13]
investigated a delay minimization scheme under differentiated
uploading delay. The optimal offloading policy and resource
allocation were determined using convex optimization incorpo-
rated with semidefinite relaxation, convex–concave procedure,
and matching theory.

In practical systems, hyperparameters, such as channel
conditions and computation task requests, frequently change,
leading to the challenge of rapidly performing conventional
optimization methods within extremely short periods. In this
context, machine learning-based solutions have been proposed
[14]–[20]. Several studies considered simple schemes with
a single server [14]–[16]. Yang et al. [14] developed a Q-
learning-based framework to reduce energy consumption for
cache-aided NOMA–MEC networks. However, because Q-
learning relies on a look-up Q-table, it can not adapt to large
problems. Considering the advantage of deep neural networks
in evaluating Q-values, the authors in [15] investigated the
offloading delay minimization for a multi-user NOMA–MEC
scenario using Deep Q-network (DQN) algorithm. Chen et al.
[16] developed a cooperative MA-DRL algorithm to learn the
optimal offloading policy, considering each user as an agent.
Based on a sharing policy network, each agent selects its
own action to minimize a mixed cost of consumed power
and latency. This design is not suitable for application in
heterogeneous networks where the gap in policy between
different agents is significant.

Comparing to single-server schemes in the above, multi-
server schemes in [17]–[20] were more practical. Ning et
al. [17] investigated a distributed offloading framework for 5G-
enabled vehicular networks. As a result, spectrum resources
were effectively allocated using a MA-DQN algorithm that
improves quality of service for all users (V2I and V2R users).
Wang et al. [18] considered a distributed offloading scheme,
where helper nodes with rich computation resources can
provide computing services to nearby nodes. An optimization
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Fig. 1. Computation offloading in multi-carrier multi-server NOMA-enabled
mobile edge computing for industrial IoT networks.

problem was formulated to minimize energy and delay cost
by jointly optimizing task scheduling and resource allocation.
In particular, a MA-Q-learning framework was proposed,
which incorporated matching theory for subcarrier allocation
and convex optimization for power and computation resource
allocations. In [19], the energy and delay cost minimization
was conducted for ultra-dense NOMA–MEC networks, where
user clustering was first obtained using a matching algorithm,
and power and computation resource allocations were sub-
sequently determined using a mean field deep deterministic
policy gradient (MF-DDPG) algorithm. Li et al. [20] aimed
at minimizing total cost for a blockchain-empowered IoT
network. They proposed a MA-actor-critic algorithm to learn
the offloading policy, where agents cooperated in a hierarchical
league framework. Despite of the reliable convergence demon-
strated in both schemes [19] and [20], extra communication
overhead incurred in their cooperative scenarios may degrade
the overall performance.

The proposed scheme in this study is very close to the
schemes in [13], [18]–[20]. We summarize the compar-
isons between the proposed scheme and these state-of-the-art
schemes in Table I.

III. SYSTEM MODEL AND PROBLEM FORMULATION

This study considers smart manufacturing systems, e.g.,
smart factories, which can quickly adapt to various mass
productions without changing inherent resources, and thus,
improving productivity and minimizing time to market. To
do this, they adopt a communication system to interconnect
intelligent machines and IoT devices (IoTDs) which imple-
ment lots of industrial applications. In particular, this study
focuses on product tracking and automated robot, which are
delay-sensitive and computing-hungry, aiming to minimize the
system service delay. Furthermore, all devices are assumed
to have power constraints and be aware of the environment,
network information, and control processes in production.
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TABLE I
COMPARISONS BETWEEN PROPOSED SCHEME AND STATE-OF-THE-ART SCHEMES

Scheme Utilized Technique Advantage Disadvantage
Sheng et al. [13] Convex optimization, semidefinite relax-

ation, and matching theory
Considered differentiated uploading delay Considered a single-server scheme and

remained high complexity
Wang et al. [18] Convex optimization, matching theory,

and MA-Q-learning
Guaranteed convergence Used look-up Q-tables and remained high

complexity
Li et al. [19] Matching theory and MA-DDPG under

a mean field game
Achieved reliable convergence Generated extra communication overhead

Li et al. [20] MA-actor-critic under a hierarchical
league framework

Achieved reliable convergence Generated extra communication overhead

Proposed scheme Convex optimization and MA-DQN Considered differentiated uploading delay,
achieved reliable convergence and low
complexity

Did not consider power allocation problem

TABLE II
LIST OF KEY NOTATIONS

Notation Definition
K Set of  access points (APs)
M Set of " IoT devices (IoTDs)
M: Set of IoTDs associating with AP :
M1

:
Set of offloading IoTDs of AP :

S Set of ( subchannels (SCs)
� Computation capacity of each MEC server
5< Computation capacity of IoTD <

?< Transmit power of IoTD <

T Duration of g timing epochs
ℎ<,B,: (C) Uplink channel gain between IoTD < and AP : on SC B

3< (C) Task data size in bits of IoTD < at time C
2< (C) Task workload in CPU-cycles of IoTD < at time C
x(C) Subchannel assignment (SA) vector at time C
x: (C) SA vector of AP : at time C
G<,B,: (C) Assignment of SC B from AP : to IoTD < at time C
f (C) Computation resource allocation (CRA) vector at time C
f: (C) CRA vector of AP : at time C
5<,: (C) CRA of AP : for IoTD < at time C
'<,=,B,: (C) Uplink rate of IoTD < to AP : via SC B under NOMA

interference from IoTD =

'<,B,: (C) Uplink rate of IoTD < to AP : via SC B without NOMA
interference

�<,=,B,: (C) NOMA interference from IoTD = to IoTD <

�<,B,: (C) Intercell interference impacted to IoTD <

C< (C) Time required to locally execute a task of IoTD <

C:< (C) Time required to remotely execute a task of IoTD < at
MEC server :

CD< (C) Uploading time of IoTD < (solely utilize a SC)
CD<,= (C) Total uploading time of NOMA paired users < and =
): (C) Overall delay for completing tasks of the users associated

with AP :

As shown in Fig. 1, the network model consists of multiple
access points (APs), each of which is connected to a MEC
server. There are lots of IoTDs distributed around each AP.
We denote APs, IoTDs, and subchannels (SCs) by : ∈ K =

{1, . . . ,  }, < ∈ M = {1, . . . , "}, and B ∈ S = {1, . . . , (},
respectively. Each MEC server represents a processor, whose
computation capacity is limited to � CPU-cycles per second.
The network is assumed to operate over a timing basis, in
which time is partitioned into g timing epochs denoted by
C ∈ T = {1, . . . , g}. Within each epoch, all network parameters
remain unchanged and a computation task may arrive at any
user, requiring to execute locally or offload to a MEC server.
The binary offloading scheme is considered, in which OD is
1 if a user offloads computation to MEC server and 0 if it
executes locally [21]. Key notations used in this study are
listed in Table II.

Moreover, we assume that all APs operate in NOMA to
improve spectrum efficiency and reduce latency. Utilizing
NOMA, multiple IoTDs can transmit data to an AP on
the same RB. Specifically, NOMA superimposes signals of
different IoTDs before transmitting them via a single RB. As
a result, the number of users that can be served concurrently
would be increased. When AP receives the superimposed
signal, SIC is utilized to decode the actual signals. For uplink
NOMA, the SIC decoding order is always from the better
user to the worse user [22], in which the worse user’s signal
is considered as NOMA interference when decoding the better
user’s signal. Furthermore, if many IoTDs are active on one
SC, the SC may become overloaded and the decoding process
can fail. To address this problem, similar to [23], [24], we
assume that each SC is shared by at most two users.

A. System Dynamics

Users, such as industrial robots, frequently move or change
location, varying channel conditions between them and the
APs. In addition, workload of each user typically varies.
Thus, considering system dynamics such as the variation in
channels and computation task requests becomes a necessity.
Let ℎ<,B,: (C) denote the channel gain between user < and AP
: on SC B, affected by path loss, shadowing loss, antenna gain,
and instantaneous fading process. Computation tasks of user
< are denoted by F< (C) , {3< (C), 2< (C)}, where 3< (C) is
the data size in bits and 2< (C) is the workload in CPU-cycles.
The rapid variation in system dynamics makes it challenging
to perform the optimal joint control of SA, OD, and CRA.

We denote SA vector as x(C) , {G<,B,: (C) |∀< ∈ M,∀B ∈
S,∀: ∈ K}, where G<,B,: (C) ∈ {0, 1} represents the assign-
ment of SC B from AP : to user <, i.e., G<,B,: (C) = 1
if user < is assigned SC B of AP : , and G<,B,: (C) = 0
otherwise. In practice, as the number of users is frequently
larger than that of SCs, a user who is assigned a SC should
utilize it to offload task. Consequently, x(C) can represent
OD, in which G<,B,: (C) = 1 implies that user < offloads
computation to the MEC server associated with AP : via
SC B, and

∑
B,: G<,B,: (C) = 0 when user < is assigned no

SC, implying that it executes task locally. The CRA vector
is denoted as f (C) , { 5<,: (C) |∀< ∈ M, : ∈ K}, where
5<,: (C) ≥ 0 represents CRA of AP : to user <.
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B. Task Execution Delay

1) Local Execution: Computation tasks are processed di-
rectly using local IoTDs. Therefore, time required to locally
execute a task of user < is computed as

C< (C) =
(
1 −

∑
:∈K

∑
B∈S

G<,B,: (C)
)+
2< (C)
5<

, (1)

where 5< is the computation capacity of IoTD < in CPU-
cycles per second and (∗)+ represents a non-negative function,
i.e., (∗)+ = 0 if (∗) < 0.

2) MEC Execution: In MEC execution, computation tasks
are processed by MEC servers, instead of local IoTDs. It is
assumed that each user offloads its task to only one MEC
server. Time required to remotely execute a task of user < at
MEC server : is computed as

C:< (C) = G<,B,: (C)
2< (C)
5<,: (C)

. (2)

C. Task Uploading Delay

If a user decides to offload task to a MEC server, there
exists a task uploading delay which depends on its uplink rate.
Consider the following cases:
• With NOMA interference: If a user < shares a SC B of

AP : with a worse user = (ℎ<,B,: (C) ≥ ℎ=,B,: (C)), who is
transmitting data, NOMA decodes the signal of user <
considering the signal of user = as NOMA interference.
In this case, uplink rate of user < to AP : via SC B is
computed as

'<,=,B,: (C) = � log2

(
1 +

?<ℎ<,B,: (C)
�<,B,: (C) + �<,=,B,: (C) + f2

)
,

(3)

where � is the SC bandwidth, ?< is the transmit power of
IoTD <, f2 is the additive white Gaussian noise power
spectral density, �<,=,B,: (C) = ?=ℎ=,B,: (C) is NOMA
interference, and �<,B,: (C) is the intercell interference,
which is calculated as

�<,B,: (C) =
∑

:′∈K\:

∑
>∈M\<

G>,B,:′ (C)?>ℎ>,B,: (C). (4)

.
• Without NOMA interference: A user < has no NOMA

interference in one of the following cases: (i) it solely
occupies a SC B, (ii) it shares a SC B with a better user
= (ℎ<,B,: (C) < ℎ=,B,: (C)), and (iii) it shares a SC B with
a worse user = (ℎ<,B,: (C) ≥ ℎ=,B,: (C)) but user = finishes
transmitting or does not transmit its signal. In these cases,
uplink rate of user < without NOMA interference is
computed as

'<,B,: (C) = � log2

(
1 +

?<ℎ<,B,: (C)
�<,B,: (C) + f2

)
. (5)

Considering an AP : , if a user < solely utilizes a SC B, its
task uploading time is computed as

CD< (C) = G<,B,: (C)
©­«1 −

∑
=∈M\<

G=,B,: (C)
ª®¬
+

3< (C)
'<,B,: (C)

. (6)

Otherwise, if SC B is shared by a pair of users, e.g., < and
= with ℎ<,B,: (C) ≥ ℎ=,B,: (C), the signal of user = is decoded
without NOMA interference, resulting in a task uploading time
computed as

CD= (C) = G<,B,: (C)G=,B,: (C)
3= (C)

'=,B,: (C)
. (7)

To precisely compute task uploading time of user <, the
following two derivation scenarios are considered:

• Scenario S1

(
3< (C)

'<,=,B,: (C) ≤
3= (C)

'=,B,: (C)

)
: In this scenario, user

< finishes uploading no later than user =; hence, it
experiences NOMA interference throughout its uploading
process. Accordingly, task uploading time of user < is
computed as

CD,S1
< (C) = G<,B,: (C)G=,B,: (C)

3< (C)
'<,=,B,: (C)

. (8)

• Scenario S2

(
3< (C)

'<,=,B,: (C) >
3= (C)

'=,B,: (C)

)
: During the upload-

ing process of user =, user < experiences NOMA inter-
ference. However, after user = finishes uploading, user <
uploads its remaining data without NOMA interference.
Therefore, task uploading time of user < is computed as

CD,S2
< (C) = G<,B,: (C)G=,B,: (C)

3 ′< (C)
'<,B,: (C)

+ CD= (C), (9)

where 3 ′< (C) = 3< (C) − '<,=,B,: (C)CD= (C) is the remaining
data of user < when user = finishes uploading.

Note that uploading time of user = is computed the same in
scenarios S1 and S2, i.e., CD,S1

= (C) = CD,S2
= (C) = CD= (C). Thus, total

task uploading time of paired users, < and =, is computed as

CD<,= (C) =
{
C
D,S1
< (C) + CD,S1

= (C) if scenario S1,

C
D,S2
< (C) + CD,S2

= (C) if scenario S2.
(10)

D. Problem Formulation

This study aims at minimizing the average task delay of
all users across g offloading epochs. To reduce the high
complexity of the multi-server problem, we assume that each
user selects its serving AP with the strongest reference signal
received power in the uplink. Following this, each AP : is
selected by a number of users, forming its user group denoted
by M: . Because each user selects only one AP with the
strongest uplink signal, there is no intersection between user
sets. Based on deterministic user sets, the multi-server problem
can be divided into distributed single-server problems, each of
which is for an AP as follows:

min
x: (C) ,f: (C)

g∑
C=1

): (C)
|M: |

, (11)

s.t. C1 : G<,B,: (C) ∈ {0, 1},∀< ∈ M: ,∀B ∈ S,
C2 :

∑
B∈S

G<,B,: (C) ≤ 1,∀< ∈ M: ,

C3 :
∑
<∈M:

G<,B,: (C) ≤ 2,∀B ∈ S,

C4 : 5<,: (C) ≥ 0,∀< ∈ M: ,

C5 :
∑
<∈M:

5<,: (C) ≤ �,
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where x: (C) , {G<,B,: (C) |∀< ∈ M: ,∀B ∈ S} is the SA of
AP : , f: (C) , { 5<,: (C) |∀< ∈ M: } is the CRA for associated
users of AP : , and ): (C) is the overall delay for completing
tasks of these users. As per the binary offloading scheme,
for each user, the local and MEC computations cannot be
carried out simultaneously. Based on the derivations of the
task execution and uploading delays, the local execution time
is 0 (not contribute to the overall delay) if offloading task, and
the uploading time and the MEC execution time are both 0 (not
contribute to the overall delay) if local computing. Therefore,
): (C) can be computed as follows:

): (C) =
∑
<∈M:

©­«C< (C) +
∑
B∈S

(
C:< (C) + CD< (C) +

∑
=∈M: |=><

CD<,= (C)
)ª®¬ ,

(12)

where CD< (C) is the task uploading time of user < who solely
utilizes one SC, and CD<,= (C) is the task uploading time of
NOMA paired users < and =. Constraints C1 and C2 describe
SA action that any user is assigned at most one SC. Constraint
C3 states that any SC is shared by at most two users. More-
over, constraints C4 and C5 indicate that the total allocated
computation resources do not exceed the computation capacity
of each MEC server.

The distributed problem expressed in (11) is a mixed-integer
and nonconvex optimization problem because of the binary
and numerical variables as well as the nonconvex objective
function. In general, this type of a problem is NP-hard,
typically requiring exponential time complexity to find the
optimal solution [25]. Furthermore, owing to system dynamics,
numerous system states are generated over time, leading to
the challenge of applying an one-shot optimization solution in
practice. To address this problem, we focus on developing a
novel efficient solution.

IV. PROPOSED SOLUTION

Considering the large action space including SA x: (C) and
CRA f: (C), we decompose the problem expressed in (11) into
CRA and SA subproblems. First, it is transformed into a local
CRA subproblem, aiming to optimize CRA for each AP when
SA is given and C< (C), CD< (C), and CD<,= (C) become constants.
The CRA subproblem is formulated as follows:

min
{f: (C) |∀:∈K}

z(f: (C)) ,
g∑
C=1

∑
<∈M1

:

∑
B∈S

C:< (C), (13)

s.t. C4,C5,

where M1
:
⊂ M: is the set of offloading users of AP

: , determined when SA is given. The subproblem (13) is
a typical convex problem, which is solved by Lagrangian
dual decomposition using the Karush–Kuhn–Tucker (KKT)
conditions. Afterward, under CRA of each AP, the problem
expressed in (11) is transformed to the SA subproblem as

min
{x: (C) |∀:∈K}

g∑
C=1

): (C)
|M: |

, (14)

s.t. C1,C2,C3.

A. A Closed-form Solution for CRA

Constraints C4 and C5 are convex. In addition, the second-
order derivatives of the objective function expressed in (13)
are non-negative as follows:

m2z(f: (C))
m 5 2
<,:
(C)

=
22< (C)
5 3
<,:
(C)

> 0,∀< ∈ M1
: , (15)

m2z(f: (C))
m 5<,: (C)m 5=,: (C)

= 0,∀<, = ∈ M1
: , < ≠ =. (16)

Because the Hessian matrix of the objective function expressed
in (13) is diagonal with strictly positive elements, it is positive-
definite. Therefore, the CRA subproblem is a convex optimiza-
tion problem. We derive its Lagrangian dual function as

L(z, a, ^) =
∑
<∈M1

:

2< (C)
5<,: (C)

+ a
©­­«

∑
<∈M1

:

5<,: (C) − �
ª®®¬

−
∑
<∈M1

:

^< 5<,: (C), (17)

where a and ^ = {^< |∀< ∈ M1
:
} are the Lagrangian

multipliers (a ≥ 0, ^< ≥ 0 ∀< ∈ M1
:
). The derivatives of

the Lagrangian dual function w. r. t. f: (C) are calculated as

mL(z, a, ^)
m 5<,: (C)

= − 2< (C)
5 2
<,:
(C)
+ a − ^<,∀< ∈ M1

: . (18)

Applying KKT conditions, the optimal values for a, ^, and
f: (C) are obtained as follows:

^∗< = 0,∀< ∈ M1
: , (19)

a∗ =
©­­«

1
�

∑
<∈M1

:

√
2< (C)

ª®®¬
2

, (20)

5 ∗<,: (C) =
�
√
2< (C)∑

<∈M1
:

√
2< (C)

,∀< ∈ M1
: . (21)

B. MA-DRL Algorithm for SA

The SA subproblem (14) can be characterized as an RL
task based on a markov decision process (MDP) model. We
propose to train the optimal SA using DRL, an emerging
tool in wireless network control. The single-agent DRL model
can be used, in which a centralized agent collects related
information from all APs, and trains the overall SA action
by iteratively interacting with the environment. It has some
drawbacks. First, it increases the time required to decide an
SA action because the centralized agent must wait for related
information from all APs. Second, the sizes of state and action
spaces are large as they are proportional to the number of APs
and users, resulting in a long time for training the optimal
SA action. To tackle these drawbacks, we design a MA-DRL
model in which each AP employs a DRL agent to train its own
optimal SA action. The state space, action space, and reward
function of the MDP model are defined as below.
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1) State space: At time epoch C, a state is formulated for
each AP : as

S: (C) , {h(C), d: (C), c: (C), x(C−)}, (22)

where h(C) , {ℎ<,B,: (C) |∀< ∈ M,∀B ∈ S,∀: ∈ K} is
the channel gain state vector, d: (C) , {3< (C) |∀< ∈ M}
and c: (C) , {2< (C) |∀< ∈ M}, such that 3< (C) ← 0
and 2< (C) ← 0 for all < ∉ M: (C), are the vectors of
task size and workload states, respectively, and x(C−) is
the overall SA state vector updated at the beginning of
time epoch C. Here, each AP updates its channel and SA
states to other APs using a wired link connection.

2) Action space: At time C, after formulating state S: (C),
DRL agent of AP : takes an SA action as

a: (C) , x: (C), (23)

where x: (C) = {G<,B,: (C) |∀< ∈ M: ,∀B ∈ S} is the
SA focusing on the users who associate with AP : .
Following this, the dimension of the action space is
significantly reduced that improves the scalability.

3) Reward function: The step reward, A: (C), for each DRL
agent : is taken as the negative of the average delay
of the users who associate with AP : . Based on the
observed state, S: (C), and the instant action, a: (C), the
step reward is computed as

A: (C) , −
): (C)
|M: |

. (24)

Specifically, intercell and NOMA interferences and up-
link rates of the associated users of AP : are calculated
based on h(C), x(C−), and a: (C). Here, x(C−) and a: (C)
are combined to determine an immediate overall SA.
Moreover, offloading users in M1

:
are updated based

on a: (C). Subsequently, the optimal CRA is calculated
using (21). Finally, the step reward is computed, which
requires d: (C) and c: (C) for calculating task execution
delay and task offloading delay.

We relax and transform the SA subproblem expressed in
(14) to an RL task problem as follows:

max
{a: (C) |∀:∈K}

E

[
g∑
C=1

WCA: (C)
]
, (25)

where WC is the discounting factor and constraints C1–C3 are
ensured by checking generated action, a: (C), before process-
ing. For each DRL agent in (25), it is trained toward the
optimal action that maximizes its long-term reward, i.e., the
expectation of the negative of the long-term average delay.
According to [26] and [27], state components including h(C)
and {d: (C), c: (C)} can be modelled into Markov chains. To
be more specific, they can be specified based on deterministic
levels of channel gains and computation task types, respec-
tively. At each epoch, channel state and computation task
request jump from one state to another state based on tran-
sition probability matrices. Considering a specific industrial
network, e.g., a smart factory network, we assume that the
transition probability matrices ares pre-defined. Following this,
we can model the Markov chains offline on a cloud server.

Accordingly, offline training for each agent is implemented
on the cloud server based on the modelled Markov chains
of channel states and computation task requests. The training
result is updated to each AP to make its action online that
significantly shortens the action decision time.

Under constraints C1–C3, the SA action space for each
DRL agent is discrete. Therefore, value-based DRL algo-
rithms, such as DQN and deep SARSA, can be deployed to
train SA action. Compared to deep SARSA, DQN is an off-
policy algorithm, which may require more time to converge.
However, training with DQN frequently provides higher return
than with deep SARSA owing to its efficient sampling [28].
In this study, a DQN-based algorithm is investigated to train
distributed DRL agents at the APs. The proposed MA-DRL
algorithm can be described as follows:
• First, each DRL agent : is initialized with a replay

buffer of size �, primary DQN Q: , and target DQN
Q̂: with weight matrices \: and \̂: , respectively. Pri-
mary and target DQNs have the same neural network
structure, comprising two fully connected hidden layers
implemented together with input and output layers. In
addition, each hidden layer has � neurons, and utilizes
rectified linear unit (ReLU) as the activation function.

• The training process iterates some steps. It begins by re-
ordering users as descending channel gain and resetting
initial states, S: (0), for all DRL agents. For each decision
step C, each DRL agent obtains current state, S: (C),
and determines its SA action a: (C) based on n−greedy
strategy. The strategy starts with a reasonably randomized
action (probability n is initially large and close to 1) and
gradually moves to a strategic action (probability n is
decayed in each step until a small value close to 0).
Once SA action is decided, the SIC decoding order of
all users is updated based on the re-ordered user list and
the updated NOMA user pairs. Subsequently, CRA action,
f: (C), is calculated based on (21). Performing SA action
a: (C), step reward, A: (C), and evolved state, S: (C +1), are
observed. The experience tuple (S: (C), a: (C), A: (C), S: (C+
1)) is saved in the replay buffer. As the replay buffer size
is fixed, when memory becomes full, a new experience
replaces the oldest one. The experiences will be used as
local training data.

• In the learning procedure, each DRL agent samples a
random mini-batch of � experiences from the replay
buffer (� << �), and feeds into DQNs, where Q-values
act as the output. A target Q-value [29] is defined as

H: = A: (C) + WQ: (S: (C + 1), a: (C + 1); \: ), (26)

where a: (C + 1) = argmaxa: Q̂: (S: (C + 1), a: ; \̂: ). Each
DRL agent aims to minimize the following loss function:

! (\: ) = E
[
(H: − Q: (S: (C), a: (C); \: ))2

]
. (27)

The gradient with respect to primary weight, \: , of Q-
value loss is calculated as follows:

∇\: ! (\: ) = E[H: − Q: (S: (C), a: (C); \: )×
∇\:Q: (S: (C), a: (C); \: )] . (28)
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The stochastic gradient descent algorithm can be used to
minimize the loss function by performing gradient de-
scent to update primary weight matrix \: . Target weight
matrix is soft updated with learning rate d after every �
steps as \̂: ← d\: + (1 − d)\̂: .

• Finally, training process of each DRL agent is complete
when it satisfies the stop condition: the maximum number
of iterations is reached or the update amount in the
primary weight is less than a predefined threshold value.
Thereafter, the optimal weight, \∗

:
, of each DRL agent is

returned for subsequent exploitation. In the exploitation
phase, each AP : can rapidly decide the optimal SA
action, x∗

:
(C) = argmaxa:Q: (S: (C), a: ; \

∗
:
), using primary

DQN Q: once it observes a state, S: (C). Afterward, the
optimal CRA action is obtained using (21).

Remark 1. Considering the concept drift issue caused by the
change in the relationship between input and output data over
time, the following points should be accounted. First, instead
of using a static data distribution for training, the proposed
model employs DRL agents to dynamically collect training
data as the experiences through interacting with the environ-
ment. Thus, it allows changing the relationship between input
and output data over time. Second, the replay memory with
a fixed size always updates the most recent experiences for
training. Third, although the training process is implemented
offline on the cloud, new experiences can be periodically
updated from APs to the cloud in the exploitation phase that
improves training the model. Based on these observations, the
proposed model can effectively address the concept drift issue.

C. Complexity and Feasibility

There are  DRL agents, each corresponding to an AP. As
all DRL agents are trained in parallel, the overall complexity
is calculated as the complexity for each DRL agent.
• For sorting users based on the channel gains, we utilize

the quick sort algorithm with the overall complexity
O((("log("))).

• For selecting SA action a: (C), the complexity depends on
the neural network structure if a: (C) is a strategic action,
and it is O(1) if a: (C) is a random action. From (22),
input size (state vector size) of each DQN is 2("( +").
Furthermore, because all APs operate in NOMA with at
most two users allowed to share a SC, the maximum num-
ber of users that each AP can serve is 2(. This implies
that |M: | ≤ 2(, ∀: ∈ K. From (23), output size (action
space size) is (2(∗()2 = 4(4 because SA action, a: (C), is
a binary vector. Considering the sizes of input, output, and
hidden layers and ReLU activation in two hidden layers,
the complexity of selecting a strategic action a: (C) using
a DQN is O(2("( + ") ∗ � + � ∗ � + � ∗ 4(4 + 2�),
which can be simplified into O(� ("( +2(4 +" +�)).
The complexity of computing CRA is O(2() because the
maximum number of offloading users is 2(.

• For learning procedure, each DRL agent performs gra-
dient descent on Q-value loss. Each learning step is
implemented over � samples, and it utilizes both primary
and target DQNs to determine Q-value loss. Therefore,

the complexity of each learning step is O(2�� ("( +
2(4 + " + �)).

Assuming that training process is implemented over Ω
episodes, the overall complexity of the proposed algorithm is
computed as O(Ωg(("log"+2�� ("( +2(4+"+�)+2()).
In the online decision phase, output SA action is obtained
using primary DQN as x∗

:
(C) = argmaxa:Q: (S: (C), a: ; \

∗
:
)

and CRA action is obtained based on SA action using (21).
Therefore, the complexity of an online decision is only
O(("log" + � ("( + 2(4 + " + �) + 2(). Overall, the
complexity of the proposed algorithm is polynomial that
proves the feasibility for application to practical systems.

V. SIMULATION RESULTS

A. Parameter Settings

Extensive simulations were performed using Pytorch with
Python 3.7.3 on a PC, which was powered by CPU Intel
Core i5-8500, GPU Nvidia GTX 1050 Ti, and a memory
of 250 GB. The network model represented a factory area
of 300 m × 300 m, where 4 APs, each connected to a
MEC server, were uniformly distributed. The baseline set-
ting comprised 20 IoTDs, including both industrial robots
and surveillance cameras. They were uniformly distributed
within the factory area, ensuring a minimum distance of 2
m from each AP. The transmit power of all IoTDs was
fixed at 100 mW. Each AP employed three SCs, wherein
each SC provided a 2 MHz bandwidth. To make the factory
network noisy, we utilized Rayleigh fading with a shad-
owing deviation of 10 dB, elevated non-line-of-sight path-
loss 140.7 + 36.7log103 (km), and Gaussian noise with a
noise figure of 9 dB. These network settings may generate
some transient communication failures. Furthermore, compu-
tation tasks of users were uniformly selected from a set as
{(100, 0.8); (125, 1.0); (150, 1.2); (175, 1.4); (200, 1.6)} (KB,
G-cycle). The architecture of the deep neural network and
hyperparameters for DRL model significantly affect to the
performance of the algorithm. Therefore, we carefully chose
DRL parameters for simulations based on [29], which pro-
posed DQN algorithm with common settings. In addition, we
changed some settings for various performance evaluations,
e.g., replay memory size �, learning rate d, discounting factor
W, and batch size �.

B. Convergence Analysis

When communication failures occur, DRL agents may not
know exactly the channel state. Thus, it is a challenge for them
to train the optimal policy based on communication failure
experiences. In this study, we assume that network condition is
good enough with less communication failures. Furthermore,
a prioritized replay memory is utilized to filter communication
failure experiences in the training process. This helps improve
the convergence and the quality of training result. In Fig. 2, we
elucidated the convergence of the proposed algorithm under
various batch sizes: � = 16, � = 32, and � = 64. For the
first 3000 training episodes (each includes g = 300 epochs),
the overall task delay gradually decreased from approximately
300 to 110 s. Subsequently, it fluctuated in a deterministic
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Fig. 2. Convergence of the proposed algorithm in terms of the average delay.
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Fig. 3. Delay comparison over 50 consecutive epochs.

range between 90 and 130 s. This fluctuation occurred because
the training process was based on system dynamics, including
various channels and computation task requests of all users.
In addition, the achievable average delay with � = 32 was
slightly lower and more stable than those with � = 16 and
� = 64. Specifically, comparing to � = 16, � = 32 can
provide more accurate estimation of the gradient. Furthermore,
comparing to � = 64, � = 32 is more noisy, offering a
regularizing effect and lower generalization error, and makes it
easier to fit one batch worth of training data in GPU memory.
Therefore, the DRL model obtained by training with � = 32
was used for further performance evaluation.

C. Performance Evaluation

To demonstrate the excellence of the proposed solution, we
compared it with several state-of-the-art schemes, including
the exhaustive search scheme, a random approach, the local
computing, the greedy algorithm, and the matching scheme
MCORA [13].
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Fig. 4. Cumulative distribution function of the delay for different agents.

Fig. 3 presents the average task delay comparison over
a stochastic duration of 50 consecutive epochs. Along the
running time, the average task delay varied in all schemes
owing to the system dynamics, i.e., channel conditions and
computation task requests. The delay overhead in the MA-
DRL, MCORA, and exhaustive search schemes was much
smaller than those in local computing, random approach,
and greedy algorithm schemes. Furthermore, the MA-DRL
algorithm outperformed the matching game-based MCORA
algorithm, and it was comparable to the exhaustive search al-
gorithm. Note that the exhaustive search scheme is considered
the optimum as it screens over all possible actions to find the
action deriving the best service delay.

Fig. 4 shows the cumulative distribution function of the
average task delay for all DRL agents. The results were
obtained by running simulation within 200 consecutive epochs.
It was observed that all agents achieved the average task delay
fluctuated between 0.26 and 0.44 s, and the average task delay
of APs 1 and 4 was slightly better than that of APs 2 and 3.
However, the gap was not significant that demonstrated the
fairness among the APs.

Fig. 5 shows the impact of the number of users on the
service delay. On increasing the number of users, the average
task delay almost remained unchanged in local computing
scheme, whereas it gradually increased in other schemes.
This is because the number of users affects the delay only
when edge computation resources are utilized to assist task
execution. In addition, as edge computation resources reach the
limit, the delay increases when the number of users increases.
From Fig. 5, we also observed that the MA-DRL algorithm
outperformed other schemes: MCORA, greedy algorithm, ran-
dom approach, and local computing, and its performance was
close to the optimum under the exhaustive search algorithm.
For instance, in the case of 30 users, the average task delay was
0.48 s in the proposed scheme, yielding gains of approximately
96% of the exhaustive search scheme and 2%, 33%, 44%, and
67% over the MCORA, greedy algorithm, random approach,
and local computing schemes, respectively.
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Fig. 5. Delay comparison versus the number of users.

Fig. 6. Delay comparison versus MEC computation capacity.

Fig. 6 reflects the average task delay comparison under
different MEC computation capacity. When MEC computation
capacity increased, the average task delay decreased in all
schemes (MCORA, exhaustive search, and MA-DRL). This
is because larger edge computation capacity support faster
execution of offloading tasks; hence, reducing latency. In
addition, we observed the better performance of the proposed
scheme over the MCORA scheme as it was close to the
optimal result of the exhaustive search scheme. For instance,
when the MEC computation capacity was 45 G-cycle/s, the
average task delay in the proposed scheme was 0.272 s, which
is approximately 2% smaller and 3% larger than those in
MCORA and exhaustive search schemes, respectively.

Moreover, action decision times of different schemes are
shown in Table III. It can be seen that the proposed scheme
required more time to decide an action than local computing,
random approach, and greedy schemes. However, it improved
action decision duration by approximately 2 times and 30
times compared to the MCORA and exhaustive search al-
gorithms, respectively. Considering the performance in delay

TABLE III
TIME CONSUMPTION FOR ACTION DECISION

Scheme Decision time
Local computing approach 0.00003 s
Random approach 0.00193 s
Greedy algorithm 0.00472 s
MCORA [13] 0.11548 s
Exhaustive search algorithm 1.84331 s
Proposed MA-DRL algorithm 0.06396 s

reduction and time complexity, the proposed scheme was
found to be the most suitable scheme for industrial systems.
Furthermore, action decision time of the proposed scheme was
less than 100 ms. Based on [30], the proposed scheme can
satisfy delay constraints of a smart manufacturing system.

VI. CONCLUSIONS

In this study, a novel NOMA-enabled computation offload-
ing scheme in industrial IoT systems was investigated to
optimize SA, OD, and CRA, aiming to reduce the service
latency. We considered system dynamics as various channel
variations and computation task requests. To reduce the com-
plexity, the multi-server problem was divided into multiple
single-server problems, each was subsequently decoupled into
CRA and SA/OD subproblems, which were solved iteratively.
The optimal CRA action was obtained in a closed-form ex-
pression using convex optimization. Concurrently, the optimal
SA/OD action was obtained using a distributed MA-DRL
algorithm. Simulation results demonstrated a reliable conver-
gence and superior performance of the proposed scheme over
other schemes: local computing, random approach, greedy
algorithm, and MCORA algorithm. Specifically, the proposed
scheme achieved up to 97% of the optimal performance under
the exhaustive search scheme. The smart factory network is
characterized by the noise medium owing to blocking regions,
metallic reflection surfaces, and unwanted electromagnetic
signal. As a future work, we will further study the effect of
the noise issue on the performance of the proposed scheme
under various network settings using fading models, path loss
models, line-of-sight probability, blocker density, multi-path
delay spread, and mobility.
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