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Spatial Deep Learning-Based Dynamic TDD
Control for UAV-Assisted 6G Hotspot Networks

Van Dat Tuong, Wonjong Noh, and Sungrae Cho

Abstract—Compared to static time-division duplexing (TDD),
dynamic TDD (D-TDD) has significantly increased the spectral
efficiency of cellular networks. However, conventional systems
operate based on exact channel state information (CSI), resulting
in high communication overhead and delay. Spatial deep learning
refers to using spatial geographical information as the training
data. This study investigates a spatial deep learning-based D-TDD
scheme for 6G hotspot networks. First, we represent geographical
location information in forms of traffic demand density grid
matrices. Second, we use spatial convolution filters to extract
discriminative features of uplink and downlink service gains and
harms, taking the traffic demand density grid matrices as the
input. Subsequently, extracted feature matrices are processed
with sparse convolution blocks to reduce computation cost for
the classification. Finally, we develop novel deep dueling neural
networks, leveraging the extracted features to efficiently learn
the near-optimal radio slot configurations for all BSs. Numerical
results show that the proposed approach improves average rate
per user by 2.5%, 6%, and 523.3% over those achieved in
state-of-the-art centralized D-TDD, the competitive reinforcement
learning (RL), and greedy approaches, respectively. Additionally,
the proposed approach achieves up to 98.7% of the data rate
performance of the optimum scheme with an exhaustive search
algorithm.

Index Terms—Dynamic time division duplexing (D-TDD), ge-
ographic location information, hot-spot networks, spatial deep
learning, unmanned aerial vehicle (UAV).

I. INTRODUCTION

T IME-division duplexing (TDD), a promising multiplexing
technique in 5G and 6G, can support asymmetric and

coupled transmissions by allocating non-overlapping time slots
for the uplink (UL) and downlink (DL) channels. In general,
TDD schemes can be categorized as static or dynamic. In static
TDD, time-slot configuration is pre-determined and remains
fixed regardless of any arising interference and dynamic traffic
demand requests. As a result, static TDD schemes cannot adapt
to rapid traffic ranges, leading to the inefficient utilization
of radio resources. Moreover, static TDD requires all base
stations (BSs) of a small-cell network to synchronize their
operations in both the UL and DL modes with variations in
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the traffic demand across network cells, which results in sub-
optimal quality of service (QoS) for all user equipments (UEs)
and overall network performance [1].

To address the limitations of static TDD schemes, dynamic
TDD (D-TDD) schemes have been developed. In D-TDD,
each time slot can be dynamically allocated for UL or DL
transmissions, allowing the network to flexibly and promptly
adapt to rapid changes in the traffic demands. Also, D-TDD
allows network cells to operate at different time-slot configu-
rations. Those can achieve improved QoS for all users, such
as lower delay and higher throughput. Because of the benefits
of D-TDD schemes, several researchers have explored their
use for long-term evolution, 5G, and 6G network design [2]–
[4]. However, migrating to a D-TDD system poses several
challenges, such as severe cross-link interference control and
complex signaling control [5]. Therefore, it is necessary to
determine appropriate interference mitigation strategies and
efficient signaling control methods to improve the network
performance for D-TDD systems [6].

Unmanned aerial vehicles (UAVs) plays an important role
in the upcoming 6G and future wireless networks that focus on
spatial data transmissions. To be more specific, the modernest
UAVs are equipped with radio components to establish sta-
ble line-of-sight air-to-ground data transmissions for ground
user devices. With great benefits of a flying object, UAV
can flexibly adjust its trajectory to serve ground users more
efficiently. Moreover, the UAVs can be equipped with high-
resolution cameras and three-dimensional (3D) lidar sensors
that effectively collect the geographical map information of
a large ground area. This geographical map information is
useful for evaluating not only the strength of transmissions
but also the interference between adjacent links. In particular,
UAV-assisted wireless communication has been applied in
industrial Internet of Things systems to effectively process
diverse service requests [7]–[10].

A. Related Work

The existing D-TDD schemes can be categorized into cen-
tralized [11]–[14] and distributed schemes [15]–[17].

Razlighi et al. [11] developed centralized D-TDD schemes
that maximized the rate region for a full-duplex wireless
network by selecting the scheduling mode per time slot, i.e.,
reception, transmission, simultaneous reception and transmis-
sion, or silence (corresponding to DL, UL, combined DL
and UL, or flexible time slot allocation), for every network
node. Ghermezcheshmeh et al. [12] extended the work of
Razlighi et al. [11] and integrated the centralized D-TDD
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TABLE I
COMPARISON OF THE STATE-OF-THE-ART STUDIES

Schemes Objectives Approaches Outcomes/Features Shortcomings

[11] Maximizing the weighted
sum-rate considering half-
duplex and full-duplex trans-
mission nodes

Centralized D-TDD Achieved a near-optimal sum-rate per-
formance

High computation cost and re-
quired full CSI

[12] Maximizing the rate region
of the network with interfer-
ence alignment

Centralized D-TDD Interference alignment helped improve
the performance

High computation cost

[15] Minimizing the inter-cell in-
terference

Fully distributed multi-agent
deep Q-network

Jointly optimized subframe configura-
tion, channel assignment, and compu-
tation offloading

Did not simultaneously guarantee
optimal performance for all net-
work cells

[16] Improving spectral
efficiency for cellular
mMIMO systems

Greedy algorithm Polynomial time Non-optimized spectral efficiency
performance

[18] Mitigating cross-link inter-
ference

Machine learning with
lightweight feedforward
neural network

Reduced computational complexity Required channel estimation with
radio frequency chain model

[19] Maximizing data rate for
dense wireless and mobile
networks

Stackelberg game and
DDPG-based deep learning

Reduced communication costs by esti-
mating interference penalty

The communication overhead
could not be thoroughly mitigated

[20] Quickly adapting traffic pat-
tern for 5G BS

Deep reinforcement learning
based

Timely and efficient radio configuration Only counting UL and DL buffers
of the BSs, non-applicable

[21] Improving radio utilization Deep reinforcement learning
based

Considered mobility and heterogeneous
networks

Time complexity was not provided
to validate with mobility

Proposed Maximizing the sum rate for
UAV-assisted industrial hot-
spot networks

RL-based deep dueling al-
gorithm using geographical
location information

Completely eliminates communication
overhead by using only geographical
information data

The offline training time is large
owing to geographical information
feature extraction

scheme [11] with interference alignment. Pedersen et al. [13]
introduced a novel coordination scheme for TDD radio frame
configurations between neighboring cells, which could help
enhance the D-TDD system performance. Nwalozie et al. [14]
investigated reconfigurable intelligent surfaces-aided D-TDD
schemes, aiming to maximize system spectral efficiency while
minimizing cross-link interference.

Unlike the centralized approaches, Song et al. [15] inves-
tigated the joint optimization problem of subframe config-
uration, channel assignment, and computation offloading in
multicell D-TDD networks. Chowdhury et al. [16] investigated
D-TDD for distributed antenna array massive MIMO systems.
They proved that the performance of D-TDD depends sig-
nificantly on the scheduling of UL and DL transmissions. A
greedy algorithm is developed to solve the scheduling problem
in polynomial time. Cavalcante et al. [17] studied bidirectional
sum-power minimization beamforming to reduce cross-link in-
terference for MIMO D-TDD networks. The authors proposed
an alternating direction method of multipliers to obtain the
optimal beamforming in a distributed manner.

Recently, several machine learning-based D-TDD ap-
proaches [18]–[21] have been developed. Tan et al. [18]
studied general flexible duplexing techniques for 5G and 6G
mobile communication networks. They aimed to minimize
cross-link interference. Two machine learning algorithms are
developed that used lightweight feedforward neural network
to improve the performance while reducing computational
complexity. Tuong et al. [19] aimed to maximize data rate
for dense wireless and mobile networks. A novel framework
combining Stackelberg game and deep deterministic policy
gradient is developed to solve the formulated problem while

reducing communication cost needed to obtain global channel
state information. Bagaa et al. [20] focused on optimizing
UL/DL pattern for 5G New Radio. They proposed deploying
deep reinforcement learning (DRL) at the base station to
quickly adapt to time-varying traffic pattern. Tang et al. [21]
also addressed the TDD configuration problem in 5G vehicular
networks with highly mobile user devices. A novel DRL-
based algorithm was proposed to dynamically allocate radio
resources.

It is highlighted that despite of the great outcomes, state-
of-the-art schemes with centralized, distributed, machine learn-
ing, and game theoretical approaches have a common draw-
back of raising communication overhead for using exact
CSI data. The proposed scheme completely eliminates this
overhead by using only geographical information data. In other
words, the proposed scheme does not depend on exact CSI data
update. Therefore, it is considered a low-overhead solution.

B. Main Contributions

We aim to develop a high-performance D-TDD scheme
that integrates the merits of the centralized and distributed
approaches. Regarding centralized approach, the proposed
D-TDD scheme considers UAV deployment to collect the
geographical map of the network coverage area and obtain the
channel conditions of all data transmissions. The proposed D-
TDD scheme also regards the distributed approach by enabling
each BS to observe its own features of data rate gain for
its subscribed users and inter-cell interference harm toward
its non-subscribed users. Subsequently, the near-optimal radio
configurations are derived distributively for all BSs. The key
novelty and features of the proposed scheme compared to
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the existing approaches are summarized in Table I. The main
contributions of this work can be summarized as follows:
• We formulated an non-convex D-TDD problem that max-

imizes the achievable system rate for the 6G hot-spot
networks while using the spatial geographical location
information instead of explicit channel state information
(CSI), which can be efficiently obtained by UAVs.

• To this end, first, we represented the geographical location
and load information for each network cell based on
traffic demand density grid matrices. Different from the
prior art study [22], the traffic demand density grid
matrices considered summing product of relative distance
between UE and its associated BS with the quantized
traffic demand state. Second, we used spatial convolution
filters to extract discriminative features of UL and DL
service gains and harms. Furthermore, to reduce the
computation cost for further classification, we proposed
to continue processing the feature matrices with sparse
convolutional blocks, e.g., speed-accuracy balancing and
deep feature processing blocks. Third, we developed a
novel deep dueling neural network to efficiently learn the
near-optimal slot configurations for all BSs.

• Through simulations, we confirmed that the proposed D-
TDD framework stably converges under various settings.
The proposed D-TDD scheme also improves average rate
per user by 2.5%, 6%, and 523.3% when it is compared
to the state-of-the-art centralized D-TDD scheme [11],
the competitive reinforcement learning (RL) such as deep
Q-network (DQN), deep double Q-network (DDQN),
and deep double policy gradient (DDPG), and greedy
approaches, respectively. Additionally, the proposed ap-
proach achieves up to 98.7% of the data rate performance
of the optimum scheme with the ES algorithm. There-
fore, the proposed scheme is considered a near-optimal
scheme.

The remaining paper is organized as follows: Section II
introduces the system model and describes the problem for-
mulation. Section III introduces the proposed algorithm based
on deep dueling neural networks. The simulation results are
discussed in Section IV. Section V presents the concluding
remarks and highlights the future research directions.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Model

As illustrated in Fig. 1, we consider a cellular wireless net-
work, in which multiple hot-spots (small-cells) are distributed
in a macro cell coverage area. The BSs are expressed as by 𝑘 ∈
K = {0, 1, . . . , 𝐾}, where 𝑘 = 0 indicates the macro BS (MBS)
and 𝐾 is the total number of hot-spot small-BSs (SBSs). It is
worth noting that practical complex antenna settings for the
BSs only change the expression of computing channel gain
and achievable data rate and they do not affect to the solution.
Therefore, for the sake of simplicity, we assume that each BS
operates with a single antenna. Specifically, the macro base
station (MBS) employs 3D antenna pattern while each small
base stations (SBSs) is equipped with omnidirectional antenna
pattern. UEs are distributed uniformly and independently in

Ground industrial 

hot-spot network

UAVs collecting 

geographical location 

information

Grid of location 

information of 

BSs and UEs

Fig. 1. Illustration of UAV-assisted industrial hot-spot networks.

each cell. We denote the UEs as 𝑢 ∈ U = {1, . . . ,𝑈},
where 𝑈 is the number of UEs. Based on the reference signal
received power (RSRP), each UE selects the BS providing the
maximal RSRP as the service BS and sets the corresponding
association indicator value to 1, denoted by 𝜅𝑢,𝑘 = 1. All BSs
are assumed to reuse the same frequency resource. However,
each BS serves its subscribed UEs using orthogonal frequency-
division multiplexing transmissions. We denote the orthogonal
sub-channels of each BS as 𝑠 ∈ S = {1, . . . , 𝑆}, where
𝑆 is the number of orthogonal sub-channels. Therefore, the
transmissions of UEs that are associated with the same BS
exhibit orthogonality, which eliminates intra-BS interference.
Nevertheless, inter-BS interference exists between UEs asso-
ciated with different BSs. We assume that several UAVs are
employed to cooperatively and sufficiently cover the network
area. They collect geographical location information that is
processed to build a grid of location information of all BSs
and UEs.

Each network cell is assumed to operate in TDD mode
with a fully dynamic and flexible frame configuration. In other
words, all network cells can independently and dynamically
switch time slot configurations for UL or DL transmissions.
We consider the radio frame configurations, as indicated in
Release 16 of 3GPP’s Technical Specification (TS) 38.211
[23]. As per this standard, there exist five settings of the sub-
carrier spacing and slot duration, determined using a numerol-
ogy parameter 𝜇 ∈ {0, . . . , 4}, corresponding to 15 × 2𝜇 kHz
and 1/2𝜇 ms, respectively. Fig. 2 illustrates the radio frame
configurations when 𝜇 = 0, sub-carrier spacing is 15 kHz, and
slot duration is 1 ms. The number of symbols in each slot and
number of sub-frames in each radio frame are set as 14 and 10,
respectively. As 5G NR allows symbol-level configurations,
we can change the slot patterns for each network cell to adapt
to changes in the UL and DL traffic demand.

B. Problem Formulation

We consider a static power scheme, which assumes the
same UL transmission power for all UEs, and the same DL



4

1 radio frame = 10 sub-frame = 10 slots = 10 ms

1 sub-frame = 1 slot = 1 ms

1 slot = 14 symbols = 1 ms
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Fig. 2. Radio frame configurations: 𝜇 = 0.

transmission power for all BSs. The sub-channel resources
are uniformly and independently allocated to UEs. Let 𝑝𝑈𝐿

𝑢,𝑘,𝑠

and 𝑝𝐷𝐿
𝑢,𝑘,𝑠

denote the transmission power in the UL and DL
between UE 𝑢 and BS 𝑘 on each sub-channel 𝑠, respectively. If
sub-channel 𝑠 is allocated to UE 𝑢, the assignment indicator
𝜂𝑢,𝑘,𝑠 is set as 1; otherwise, it is set as 0. Considering the
significant heterogeneity in the network model, the channel
power gain of the transmission between UE 𝑢 and BS 𝑘 over
sub-channel 𝑠 may be affected by nearby transmissions. Path-
loss and fading models are applied to reflect the transmissions
between MBS and MBS, MBS and SBS, MBS and UE, SBS
and SBS/UE, and UE and UE. Specifically, the channel power
gain is computed as follows:

𝑔𝑠𝑢,𝑘 = |ℎ
𝑠
𝑢,𝑘 |

2𝛼𝑢,𝑘 , (1)

where ℎ𝑠
𝑢,𝑘

is the small-scale fading component, and 𝛼𝑢,𝑘 is
the large-scale path-loss component.

According to 5G New Radio settings [24], each slot format
is within a number of consecutive time slots denoted by 𝑁 ,
which corresponds to a transmission time interval. Let 𝑥𝑘,𝑛 |𝑛 ∈
N = {1, . . . , 𝑁} denote the slot configuration at time 𝑛 of
BS 𝑘 , 𝑥𝑘,𝑛 can take one of the three values {−1, 0, 1}, which
represent UL, flexible, and DL configurations, respectively.
The combined variable for the slot configurations of all BSs
is defined as x = {𝑥𝑘,𝑛 |𝑘 ∈ K, 𝑛 ∈ N}. The UL and DL signal
to interference plus noise ratios at time 𝑛 of UE 𝑢 considering
BS 𝑘 can be defined as in (2) and (3), respectively:

Υ𝑈𝐿𝑢,𝑘,𝑛 =
1(𝑥𝑘,𝑛=−1) 𝜅𝑢,𝑘𝜂𝑢,𝑘,𝑠𝑔

𝑠
𝑢,𝑘
𝑝𝑈𝐿
𝑢,𝑘,𝑠∑︁

𝑣∈U\{𝑢}

[
(1(𝑥𝑙𝑣 ,𝑛=−1) 𝐼𝑣,𝑘,𝑠 + 1(𝑥𝑙𝑣 ,𝑛=1) 𝐼𝑙𝑣 ,𝑘,𝑠

]
+ 𝜎2

,

(2)
and

Υ𝐷𝐿𝑢,𝑘,𝑛 =
1(𝑥𝑘,𝑛=1) 𝜅𝑢,𝑘𝜂𝑢,𝑘,𝑠𝑔

𝑠
𝑢,𝑘
𝑝𝐷𝐿
𝑢,𝑘,𝑠∑︁

𝑣∈U\{𝑢}

[
1(𝑥𝑙𝑣 ,𝑛=−1) 𝐼𝑣,𝑢,𝑠 + 1(𝑥𝑙𝑣 ,𝑛=1) 𝐼𝑙𝑣 ,𝑢,𝑠

]
+ 𝜎2

,

(3)
where 1(∗) is a binary function such that 1(∗) = 1 if ∗ is true,
otherwise 1(∗) = 0, 𝑙𝑣 is the BS serving UE 𝑣, 𝐼𝑣,𝑘,𝑠 and

𝐼𝑣,𝑢,𝑠 denote the interferences from UE 𝑣 to BS 𝑘 and UE 𝑢,
respectively, 𝐼𝑙𝑣 ,𝑘,𝑠 and 𝐼𝑙𝑣 ,𝑢,𝑠 denote the interferences from
BS 𝑙𝑣 to BS 𝑘 and UE 𝑢, respectively, and 𝜎2 is the additive
white Gaussian noise power spectral density. The interferences
are computed as follows:

𝐼𝑣,𝑘,𝑠 = 𝜅𝑣,𝑙𝑣𝜂𝑣,𝑙𝑣 ,𝑠𝑝
𝑈𝐿
𝑣,𝑙𝑣 ,𝑠

𝑔𝑠𝑣,𝑘 , (4)

𝐼𝑙𝑣 ,𝑘,𝑠 = 𝜅𝑣,𝑙𝑣𝜂𝑣,𝑙𝑣 ,𝑠𝑝
𝐷𝐿
𝑣,𝑙𝑣 ,𝑠

𝑔𝑠𝑘,𝑙𝑣 , (5)

𝐼𝑣,𝑢,𝑠 = 𝜅𝑣,𝑙𝑣𝜂𝑣,𝑙𝑣 ,𝑠𝑝
𝑈𝐿
𝑣,𝑙𝑣 ,𝑠

𝑔𝑠𝑢,𝑣 , (6)

and
𝐼𝑙𝑣 ,𝑢,𝑠 = 𝜅𝑣,𝑙𝑣𝜂𝑣,𝑙𝑣 ,𝑠𝑝

𝐷𝐿
𝑣,𝑙𝑣 ,𝑠

𝑔𝑠𝑢,𝑙𝑣 , (7)

where 𝑔𝑠
𝑘,𝑙𝑣

and 𝑔𝑠𝑢,𝑣 indicate the direct channel power gain
from BS 𝑙𝑣 to BS 𝑘 and from UE 𝑣 to UE 𝑢, respectively. The
UL and DL transmission rate at time 𝑛 of UE 𝑢 considering
BS 𝑘 can be computed as follows:

𝑅𝑈𝐿𝑢,𝑘,𝑛 = 𝑊 × log2

(
1 + Υ𝑈𝐿𝑢,𝑘,𝑛

)
, (8)

and
𝑅𝐷𝐿𝑢,𝑘,𝑛 = 𝑊 × log2

(
1 + Υ𝐷𝐿𝑢,𝑘,𝑛

)
, (9)

where 𝑊 is the sub-channel bandwidth.
We aim to maximize the achievable sum rate of the network

by optimizing the slot configurations of all BSs. The corre-
sponding optimization problem is mathematically formulated
as follows:

max
x

𝑈∑︁
𝑢=1

𝐾∑︁
𝑘=0

𝑁∑︁
𝑛=1

(
𝑅𝑈𝐿𝑢,𝑘,𝑛 + 𝑅

𝐷𝐿
𝑢,𝑘,𝑛

)
, (10)

s.t. 𝑥𝑘,𝑛 ∈ {−1, 0, 1},∀𝑘 ∈ K;∀𝑛 ∈ N , (10a)

where x = {𝑥𝑘,𝑛 |𝑘 ∈ K, 𝑛 ∈ N} is the target variable
as slot configurations of all BSs. To be more specific, the
slot configuration of each BS does not only affect its own
achievable downlink and uplink rate but also make interfer-
ence, especially severe cross-link interference, to its adjacent
BSs and UEs. Therefore, the sum rate objective function in
formula (10) is nonlinear in terms of the integer variable
x [25]. According to [26] and [27], the formulated problem is
a nonlinear combinatorial integer programming optimization
problem, which is nonconvex and a subclass of NP-hard.

III. PROPOSED SOLUTION

To simplify the formulated multicell problem, we assume
that users maintain their locations for a duration without any
handovers, and the scheduling decisions for UL and DL are
governed by the generated packet. Notably, the upcoming 6G
networks can provide geographical information of the trans-
mission links based on topology captured from high altitudes
using UAVs. In practice, it is more convenient and cost-
effective to collect geographical location information than the
explicit CSI. Also, the geographical location information can
be efficiently exploited to estimate the channel environment,
which is typically characterized by signal and interference
strength. Specifically, the geographical information can include
various factors affecting signal and interference strength, such
as the link distance, blockage, line-of-sight conditions, and
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beamforming trajectory. Therefore, leveraging the geograph-
ical location information can derive a globally near-optimal
solution for the formulated problem.

A. Traffic Demand Density Grid Input

Assuming that the location of users does not significantly
change during a transmission period 𝑇 , the UE–BS association
is maintained during the transmission period, and no handover
occurs across BSs. Notably, the coverage area of the BSs may
overlap, and the coverage area for each BS may include both
its own subscribed users and the subscribed users of adja-
cent BSs. Therefore, the slot configuration and corresponding
scheduling decisions made by a BS to serve DL or UL requests
not only cater to its subscribed users but also induce inter-cell
interferences for the subscribed users of adjacent BSs. This
interference effect can be learnt from geographical location
information by using convolution neural networks.

The geographical location information can be represented
in a matrix form as {{l𝑘 |𝑘 = 0, . . . , 𝐾}, {l𝑢 |𝑢 = 1, . . . ,𝑈}},
where l𝑘 ∈ R2 and l𝑢 ∈ R2 are the locations of BSs 𝑘 and
UEs 𝑢, respectively. For each BS, the location information
of the users located in its coverage area are quantized based
on the original continuous location information. Without loss
of generality, we assume that the coverage area of each
BS 𝑘 is a circle of radius 𝑟𝑘 can be divided into multiple
𝑍 smaller circles indexed as 1, . . . , 𝑍 in increasing order,
i.e., a smaller circle is assigned a larger index. Users lo-
cated in smaller circles experience higher received signal
power than those located in larger circles. We quantize the
relative signal strength of the users located in each circle
𝑧 ∈ {1, . . . , 𝑍} by its index 𝑧. Furthermore, we construct grid
matrices of each network cell, in which the BS is located at
the origin, and the subscribed and non-subscribed users are
distributed in the coverage area. The geographical location
information of each network cell is represented using the tuple
⟨(l𝑈1 , . . . , l

𝑈
Ω𝑘
), (l𝐾1 , . . . , l

𝐾
Ξ𝑘
), (l𝑁𝑈1 , . . . , lΦ𝑘

)𝑁𝑈⟩, where Ω𝑘 is
the number of subscribed users of BS 𝑘 , Ξ𝑘 is the number
of adjacent BSs of BS 𝑘 , and Φ𝑘 is the number of non-
subscribed users of BS 𝑘 that are located in the coverage area
of BS 𝑘 . Moreover, we quantize the traffic request of the users
located in the coverage area of each BS. For example, DL
traffic requests are quantized into low, normal, and high levels.
Similarly, UL traffic requests are quantized into low, normal,
and high levels. The objective of such quantization is to ensure
fair QoS for users in terms of DL and UL services. According
to 5G and 6G mobile communication network specifications
[28], [29], the peak data rate per device is at least 10-fold over
that of LTE and 5G networks, respectively, corresponding to
10 Gbps and 1 Tbps. Additionally, assuming each BS serves
traffic requests of only one device, we define the low, normal,
and high traffic request states according to Table II below.

We decompose the geographical location information of
each network cell into four grid matrices, as illustrated in
Fig. 3, considering the traffic requests of the subscribed users
and non-subscribed users. This decomposition aims to extract
both the positive (performance gain in terms of DL and UL
rate achieved by serving subscribed users) and negative effects

TABLE II
TRAFFIC REQUEST STATES

Traffic request state 5G network 6G network
Low < 10 Mbps < 102 Mbps

Normal 10 − 103 Mbps 102 − 105 Mbps
High 103 − 104 Mbps 105 − 106 Mbps

(interferences arising for the non-subscribed users and adjacent
BSs). The first density grid matrix captures DL requests of the
subscribed users and is constructed by counting the quantized
DL requests at each subscribed-user node. The second density
grid matrix pertains to UL requests of the subscribed users
and is constructed by counting the quantized UL requests at
each subscribed-user node. The third grid matrix pertains to
the DL requests at the non-subscribed-user nodes inside the
network cell coverage area. The fourth grid matrix pertains
to the UL requests toward adjacent BSs of the network cell.
Assuming that the network coverage area is in a rectangular
form and located in a specified coordinate system, each grid
matrix is constructed from multiple grid-cells with the unit
size of 1 m × 1 m, divided by rows and columns which
are determined based on the origin’s location, directions of
𝑥− and 𝑦−axis, and the unit size. Moreover, the density grid
values are calculated as the sum product of the quantized traffic
demand requests with the index of the largest coverage circle
containing the corresponding subscribed and non-subscribed
users. For example, the traffic demand quantization values are
set as 1, 2, and 3 to indicate low, normal, and high traffic
demand, respectively. Thus, for a BS 𝑘 and a user located in
a coverage circle with index 𝑧 having a high UL request, the
corresponding UL density grid value is calculated as 3 ∗ 𝑧.

B. Efficient Feature Extraction

Using the traffic demand density grid matrices as the input,
we extract the features pertaining to the DL and UL service
gains and harms using convolution neural networks (CNNs).
Spatial convolution filters are used to screen the traffic demand
density grid matrices and compute the corresponding service
gains and harms. The weights of the convolution filters are
optimized during the training process. The obtained features
are independently computed in parallel on the traffic demand
density grid matrices to minimize the training time. For each
feature extraction, the convolution filter is represented as a
square matrix with a predefined size and trainable weighting
coefficients. As in the research of [22], the values of the convo-
lution filters are determined based on the channel coefficients
received at the corresponding position relative to the serving
BS. Throughout the training process, the weights of the spatial
convolution filters are adjusted to achieve a circular symmetric
pattern with radial decay.

Following the processing with spatial convolution filters,
we obtain grid matrices with the traffic demand gains (for the
subscribed users) and harms (for the non-subscribed users and
adjacent BSs). Owing to the large size and numerous variations
in these matrices, significant computation capabilities are
required for further classification. To address this problem,
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we use sparse convolution blocks, including speed–accuracy
balancing (SAB) and deep feature processing (DFP) blocks
[30], to effectively extract the traffic demand gain and harm
features. Both the SAB and DFP blocks are equipped with
depthwise and pointwise convolution filters to promote feature
extraction while reducing the computation cost for resource-
constrained devices. The SAB block helps balance the speed
and accuracy. However, it may lead to suboptimal performance
when used in deep layers with numerous free parameters.
The DFP block is employed to extract discriminative features
more effectively in deep layers. To prevent inter-block feature
loss, skip connections are employed to enable feature sharing
between the subblocks of the SAB and DFP blocks.

C. Reinforcement Learning Task Formulation

This work considers classification of the near-optimal radio
configuration output for each collected geographical location
map of the network coverage area. To do this, the dedicated
features regarding the achievable data rate gain and inter-
cell interference harm are extracted first. Subsequently, we
develop a RL-based deep dueling algorithm to promote the
classification job, in which the extracted features are the input
and the near-optimal radio configuration output is learnable
as the expected class of the collected geographical map. In
this subsection, we present a novel RL-based model that
deploys classification for mapping a correct slot format with
the derived features of DL and UL service gains and harms.
Notably, the problem formulated in (10) is challenging to
solve in a straightforward manner. Therefore, we transform this
problem into a long-term determination of slot configuration
variables that maximize the sum rate for all users. We consider
the time to be slotted such that a specific duration T is divided
into 𝑇 time slots indexed by 𝑡 ∈ {1, . . . , 𝑇}, resulting in
⌊𝑇/𝑁⌋ + 1 consecutive slot configurations of each BS. The

corresponding problem can be formulated as follows:

max
x
E

[
𝑇∑︁
𝑡=1

𝛾𝑡−1
𝑈∑︁
𝑢=1

𝐾∑︁
𝑘=0

(
𝑅𝑈𝐿𝑢,𝑘,𝑛 + 𝑅

𝐷𝐿
𝑢,𝑘,𝑛

)
𝑛=𝑡%𝑁

]
, (11)

s.t. 𝑥𝑘,𝑛 ∈ {−1, 0, 1},∀𝑘 ∈ K;∀𝑛 ∈ N , (11a)

where 𝛾 is a discounting factor that ensures 𝛾𝑡−1 approaches 0
when 𝑡 is large. 𝑅𝑈𝐿

𝑢,𝑘,𝑛
and 𝑅𝐷𝐿

𝑢,𝑘,𝑛
are updated corresponding

to time 𝑡. Specifically, if 𝑡 > 𝑁 , 𝑛 is reset by 𝑛 = 𝑡%𝑁 and
a new slot configuration is applied for each BS with updated
network information, which is assumed to be maintained no
change periodically during each 𝑁 time slots.

An RL-based training process is developed to solve the
problem defined in (11). Specifically, an RL agent is employed
at a high altitude with a UAV to control the optimization of the
slot format variable x of all BSs, with the goal of maximizing
the achievable sum rate in the long term. In RL terminology,
the RL agent iteratively interacts with the environment by
observing the state of the environment denoted by 𝑆(𝑡),
providing instantaneous action 𝑎(𝑡), observing changes in the
environment evolved state 𝑆(𝑡 + 1), and computing its step
reward 𝑈 (𝑡). The objective of this interaction process is to
learn a policy of action selection that maximizes the achievable
reward in the long term. By applying this concept to solve the
problem formulated as (11), we define the following RL terms.

1) State space: The system state is determined based on
the spatial geographical information of each network cell,
characterized by the obtained traffic demand density feature
matrices representing the DL and UL service gains and harms.
In general, changing the service from DL to UL or vice versa
requires a time gap with no service, which can degrade the
system performance in terms of data rate and delay. Therefore,
we also consider the previous selected action to formulate the
system state. The overall system state is defined as follows:

𝑆(𝑡) ← [{𝜒𝑘 (𝜑DL, 𝜑UL, 𝜓DL, 𝜓UL) |∀𝑘 ∈ K}, 𝑎(𝑡 − 1)] , (12)
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Fig. 4. Architecture of the proposed deep dueling algorithm.

where 𝜒𝑘 (𝜑DL, 𝜑UL, 𝜓DL, 𝜓UL) denotes the output traffic de-
mand density features corresponding to network cell 𝑘 .

2) Action space: The action includes the slot format of each
BS, which can take three values, i.e., 𝑥𝑘 (𝑡) ∈ {−1, 0, 1},∀𝑘 ∈
K, corresponding to UL, flexible, and DL service states.
Notably, in flexible slot format, neither UL nor DL services
are provided, resulting in no service gain or interference
generation.

3) Reward function: The sum rate of all users is considered
the reward for the RL agent, defined as follows:

𝑈 (𝑡) =
𝑈∑︁
𝑢=1

𝐾∑︁
𝑘=0

(
𝑅𝑈𝐿𝑢,𝑘,𝑛 (𝑡) + 𝑅

𝐷𝐿
𝑢,𝑘,𝑛 (𝑡)

)
𝑛=𝑡%𝑁

. (13)

4) State transition: After each iteration, the action is known
to the agent and remains as an element of the next state. Addi-
tionally, based on the evolved graphical location information
and traffic demand requests of all users, we use convolution
filters to extract the evolved traffic demand density features
for processing in the next training iteration.

D. Deep Dueling Algorithm

We employ the deep dueling-based learning framework,
which is an off-policy maximum entropy algorithm that offers
both stability and sample-efficient learning. The concept of
dueling neural network is based on Generative Adversarial
Network, which takes two neural networks as the simplified
mathematical models of the human brain. The dueling neural
network structure significantly improves the learning by allow-
ing the networks to differentiate actions from one another dur-
ing the learning process [31]. Adopting dueling neural network
to reinforcement learning with Deep Q-learning algorithm, two
streams of estimating the state-value and advantages for each
action are separated. This algorithm is especially suitable for
high-dimensional tasks with complex state and action spaces
and can effectively address overestimation problems in large-
scale systems. The core concept of the deep dueling algorithm
is to separately estimate the values of the states and advantages
of actions using two streams of neural network layers, and
combine them at the final output layer. For many samples,

in certain states, the action selection has no effect on the
outcome. In such circumstances, the deep dueling algorithm
can avoid the unnecessary estimation of the action value
and focus more on estimating the state value to improve the
convergence and stability. For a given stochastic policy 𝜋, the
value functions of the state–action pair (𝑆, 𝑎) and state 𝑆 can
be expressed as follows:

𝑄 𝜋 (𝑆, 𝑎) = E [𝑈 (𝑡) |𝑆(𝑡) = 𝑆, 𝑎(𝑡) = 𝑎, 𝜋] , (14)

and
𝑉𝜋 (𝑆) = E [𝑄 𝜋 (𝑆, 𝑎)] . (15)

Here, the Q-value function 𝑄(𝑆, 𝑎) is the state–action pair
function that evaluates the value of selecting action 𝑎 in state 𝑆.
Moreover, state value function 𝑉 (𝑆) estimates the effectiveness
of the action in a specific state 𝑆. Assuming action a is taken
under policy 𝜋 with state 𝑆, its advantage value function is
expressed as

𝐺 𝜋 (𝑆, a) = 𝑄 𝜋 (𝑆, a) −𝑉𝜋 (𝑆). (16)

This function obtains a relative value of each action by
decoupling the state value from the state–action pair Q-value
function. Accordingly, E [𝐺 (𝑆, a)] = 0, 𝑎∗ = argmax𝑎𝑄(𝑆, 𝑎),
and 𝑄(𝑆, 𝑎∗) = 𝑉 (𝑆).

The value functions of the state 𝑆 and corresponding action
𝑎 can be evaluated using a dueling neural network, which has
two output streams of the fully connected layers: one for 𝑉 (𝑆)
and the other for 𝐺 (𝑆, 𝑎). Thereafter, the Q-value function can
be estimated when combining outputs of the two streams as

𝑄(𝑆, 𝑎) = 𝑉 (𝑆) + 𝐺 (𝑆, 𝑎). (17)

To specify the unique state and action value functions of a
given Q-value, we can implement the dueling neural network
that combines the state and action value outputs following a
specific mapping as

𝑄(𝑆, 𝑎) = 𝑉 (𝑆) +
(
𝐺 (𝑆, 𝑎) −max

𝑎
𝐺 (𝑆, 𝑎)

)
. (18)

In state 𝑆, given the near-optimal action 𝑎∗ =

argmax 𝑄(𝑆, 𝑎) = argmax 𝐺 (𝑆, 𝑎), we obtain
𝑄(𝑆, 𝑎∗) = 𝑉 (𝑆). Therefore, the Q-value function can
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be simplified by replacing the max operator with an average
operator as follows:

𝑄(𝑆, 𝑎) = 𝑉 (𝑆) +
(
𝐺 (𝑆, 𝑎) = 1

Π

∑︁
𝑎

𝐺 (𝑆, 𝑎)
)
, (19)

where Π indicates the size of the action space. Accordingly, we
directly obtain the Q-value by estimating the value functions
𝑉 (𝑆) and 𝐺 (𝑆, 𝑎) of state 𝑆 and action 𝑎 using a deep dueling
neural network, without any extra modifications.

The architecture of the proposed deep dueling algorithm
is shown in Fig. 4. There are four main components: (i) the
small-cell network environment, (ii) the sparse convolution
filters, (iii) the deep dueling neural network model, and (iv)
a replay buffer memory. The observed current density grid
matrices of all BSs are processed to extract the UL and DL
service gains and harms features using spatial and sparse
convolution filters. Based on the extracted features, state
𝑆(𝑡) is formulated and a slot configuration action 𝑎(𝑡) is
selected using the 𝜖-greedy strategy. Subsequently, the small-
cell network environment is returned with an evolved state
𝑆(𝑡+1) and step reward 𝑈 (𝑡). Tuple ⟨𝑆(𝑡), 𝑎(𝑡),𝑈 (𝑡), 𝑆(𝑡+1)⟩
is saved in the replay buffer memory as a historical experience.
Notably, the store capacity of the replay buffer memory is
limited, and in the absence of any more space, the least
recent experiences are replaced by new ones. To train the
near-optimal slot configuration policy, random experiences are
sampled from the replay memory and processed using the
deep dueling neural networks. The learning process iterates
over several training steps to minimize the Bellman residual
approximation error of the Q-values by using the gradient
descent technique.

L(𝜃) = EΨ𝑡=1
[
(𝑦(𝑡) − Q(𝑆(𝑡), 𝑎(𝑡); 𝜃))2

]
, (20)

where Ψ is the batch size; Q(𝑆(𝑡), 𝑎(𝑡); 𝜃) denotes the out-
put of the main neural network Q for the state–action pair
(𝑆(𝑡), 𝑎(𝑡)); and 𝑦(𝑡) = 𝑈 (𝑡) + 𝛾Q(𝑆(𝑡 + 1), 𝑎(𝑡); 𝜃), 𝑡 ∈
{1, . . . ,Ψ}, is a target Q-value with 𝑎(𝑡) = argmax𝑎Q𝑡 (𝑆(𝑡 +
1), 𝑎; 𝜃). The training process is terminated once the updated
amount for 𝜃 becomes significantly small.

IV. PERFORMANCE EVALUATION

A. Simulation Settings

The parameter settings for networks are summarized in
Table III. We construct a heterogeneous network consisting
of a one-tier macro-cell with outdoor small cells. The SBSs
are uniformly distributed, whereas the UEs are randomly
distributed in the MBS coverage area. Here, each UE selects
its serving cell based on the maximum RSRP in the DL,
with 20 dB range expansion bias for each SBS. We use
Pytorch to build the training framework, in which deep neural
networks are trained using the generated network data. The
parameter settings for deep learning are selected based on
common settings in [31]. The deep dueling mechanism takes
two streams of neural networks, each of them consists of
a hidden layer with size of 128, input and output layers.
The mini-batch size is 64. The replay buffer size is 50,000.
Discounting factor is valued 0.7. A learning rate of 0.9 is
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Fig. 5. Achievable rate per user with different learning rate for training,
𝑈 = 10 and 𝐾 = 4.

applied. Moreover, to avoid timing issues associated with
data collection for supervised learning, the neural network
model is trained offline in a model-free DRL framework, using
generated data of the interaction between an RL agent and the
network environment.

Extensive simulations are conducted to evaluate the perfor-
mance of the proposed duplexing framework under different
parameter settings. The results are compared to those achieved
in existing duplexing schemes:
• Optimum scheme with ES algorithm, which involves a

central controller that collects all the information re-
garding the CSI and traffic demand requests per slot in
the network. Based on this information, the algorithm
determines the optimal slot configurations for all BSs.

• Greedy approach, in which each BS selects a slot format
based on the traffic demand requests of only its subscribed
users. Specifically, by comparing the total traffic demand
requests in the UL and DL transmissions of all subscribed
users, the BS decides to serve either the UL or DL
requests based on the transmission with higher demand.

• Random approach, in which each BS randomly selects
its radio slot configuration.

• Centralized D-TDD scheme [11], in which all BSs and
UEs are iteratively select their UL or DL transmission
until convergence is achieved for the best slot configu-
rations of all nodes. The iteration is based on a binary
matrix that models the relative information of the desired
and undesired links for each node.

B. Results

Fig. 5 illustrates the convergence of the proposed training
process in terms of the achievable rate per user for different
learning rates, specifically, 1𝑒−2, 1𝑒−3, and 1𝑒−4. As shown
in the figure, convergence is achieved after approximately
300 iterations for the learning rates of 1𝑒 − 2 and 1𝑒 − 3.
For the smaller learning rate of 1𝑒 − 4, the achievable rate
exhibits significant fluctuations. Furthermore, the achievable
rate is higher with a learning rate of 1𝑒 − 3 than those with
the learning rates 1𝑒 − 2 and 1𝑒 − 4. This can be attributed
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TABLE III
SYSTEM-LEVEL SIMULATION PARAMETERS FOR NETWORKS

Parameter Value Parameter Value

Deployment
3GPP case 1 set

Traffic model FTP Model 3(MBS-to-MBS ISD 1 km)
(CF 2 GHz, Speed 3 km/h)

Number of MBS Sectors 3 Channel bandwidth 10 MHz (single channel)
Number of SBSs 12 Fading model Rayleigh
Number of UEs 50 Path-Loss: MBS and MBS 100.7 + 23.5 log10 (𝑑 (km) ) [dB]
Scheduling Proportional fair Path-Loss: MBS and SBS 125.2 + 36.3 log10 (𝑑 (km) ) [dB]
MBS Height 32 m Path-Loss: MBS and UE 128.1 + 37.6 log10 (𝑑 (km) ) [dB]
SBS Height 5 m Path-Loss: SBS and SBS/UE 140.7 + 36.7 log10 (𝑑 (km) ) [dB]
UE Height 1.5 m Path-Loss: UE and UE 140.7 + 36.7 log10 (𝑑 (km) ) [dB]
Noise Figure 9 dB Range Expansion 20 dB
MBS Transmit Power 46 dBm Min. Dist. MBS and SBS ≥ 35 m
SBS Transmit Power 30 dBm Min. Dist. MBS and UE ≥ 35 m
UE Transmit power 20 dBm Min. Dist. SBS and UE ≥ 10 m
SBS Antenna Pattern 0 dB (omnidirectional) Min. Dist. SBS and SBS ≥ 30 m

MBS Antenna Pattern 3D pattern, Placing SBSs and UEs Configuration 1
in Table A.2.1.1-2 in [32] in Table A.2.1.1.2-3 in [32]
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to the non-linear relationship of the achievable rate with
the slot configurations and geographical location information.
Furthermore, with a learning rate of 1𝑒 − 3, the fluctuation
of the achievable rate is considerably smaller, indicating its
higher potential for providing the optimal performance. Based
on these observations, we select the learning rate of 1𝑒 − 3
that gives stable and high performance of the achievable rate.

Fig. 6 shows the cumulative distributions of the achievable
data rates for the proposed scheme, random approach, greedy
approach, state-of-the-art centralized D-TDD scheme [11], and
optimal scheme with ES algorithm. The achievable rate for
the proposed scheme is significantly higher than those of
the random and greedy approaches. Moreover, the proposed
scheme outperforms the centralized D-TDD scheme, while its
performance is close to that of the optimal scheme with the
ES algorithm.

Fig. 7 compares the achievable rates of the proposed scheme
and other schemes for different numbers of users. From the
figure, the achievable rate per user decreases as the number
of users increases. Moreover, the proposed scheme exhibits
greater achievable rates compared to the random and greedy
approaches and centralized D-TDD scheme [11]. Especially,
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the rate performance of proposed scheme is comparable with
that of the optimum scheme using ES algorithm.

Fig. 8 compares the achievable rates of the proposed scheme
and other schemes for different numbers of small cells. The
achievable rate per user increases as the number of small cells
increases. The proposed scheme significantly outperforms the
random and greedy approaches in terms of average rate per
user. It also has slightly higher rate compared to that achieved
in the centralized D-TDD [11] and achieves a performance
comparable with that of the optimum scheme based on the ES
algorithm.

The superiority of the proposed scheme over conventional
deep learning frameworks such as deep Q-network (DQN),
deep double Q-network (DDQN), and deep double policy
gradient (DDPG) are reflected in Figs. 7 and 8. Specifically,
for various settings of number of users and small cells, the
proposed scheme improves the average rate per user by up
to 6% over that achieved using DQN, DDQN, and DDPG
frameworks.

Fig. 9 compares the achievable DL and UL rate of the
MBS and SBS users. In Fig. (a), for the MBS users, the DL
achievable rate with the proposed scheme is higher than that
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with the centralized D-TDD scheme [11], and similar to that
with the optimum scheme. The UL rate of the MBS users are
approximately same with all three schemes. In Fig. (b), for the
SBS users, the DL and UL achievable rate for the comparing
schemes have the same tendency as in the case of MBS users
above, but the achievable rate of the SBS users are higher than
those of the MBS users with all three schemes.

C. Optimality Analysis

According to [33], a Q-learning-based algorithm can
achieve an optimal solution when its training process is
sufficiently implemented with stationary state transition proba-
bilities and bounded step rewards. In this work, the conditions
can be satisfied. First, the state transition of the DL and UL
traffic demand requests at each time slot is stationary when
we consider several specified industrial network systems such
as factorial and smart-farm networks [19]. Second, the step
reward 𝑈 (𝑡) is bounded because the achievable data rate of
all users cannot exceed a threshold value depending on the
transmission power of the BSs and UEs and channel atten-
uation. Therefore, the proposed scheme that adopts dueling
neural network with Deep Q-learning algorithm can achieve
optimal solution of the proposed RL problem, which is near-
optimal slot configurations of the BSs.

V. CONCLUSIONS

This paper develops a near-optimal and low-overhead D-
TDD framework that can support various traffic demands
in UAV-assisted industrial hotspot networks. First, the ge-
ographical location and load information for each network
cell is represented using traffic demand density grid matri-
ces. Second, taking the density grid matrices as the input,
spatial convolution filters and sparse convolution blocks are
employed to extract UL and DL service gains and harms while
reducing the computation cost for further classification. Third,
we develop novel deep dueling neural networks, which can
efficiently learn the optimal slot configurations for all BSs.
The simulation results demonstrated that the proposed D-TDD
framework stably converges, and it achieves near-optimal data
rate for all users as the traffic demand dynamically evolves.
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