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Abstract—Unmanned aerial vehicles (UAVs) have been widely
applied in wireless communications because of its high flexibility
and line-of-sight transmission. In this study, we develop low-
complexity and robust device-to-device (D2D) link scheduling in
UAV-assisted industrial Internet of Things (IIoT) networks. First,
we propose a sparse convolutional neural network (SCNN) model
that uses the geographical map of transmission links as input.
The model consists of three main blocks: generic feature filtering,
speed–accuracy balancing, and deep feature processing. Unlike
other state-of-the-art methods, the proposed SCNN directly
processes the geographical map collected using a connected UAV.
Second, we propose a deep deterministic policy gradient-based
reinforcement learning model that processes the output feature
map from the SCNN to optimize the D2D scheduling decision and
maximize the achievable system rate in the long run. Extensive
simulations revealed that the proposed scheme significantly im-
proved the achievable rate over other benchmark comparison
schemes, such as transmitters and receivers (T&R) density-
based deep learning (DL), ResNet-based DL, VGGNet-based
DL, random scheduling, and all-active schemes, respectively.
The simulations also demonstrated that the proposed scheme
reduces computational complexity. With reduced complexity and
nearly optimal performance, the proposed solution can be more
efficiently applied to large-scale and dense IIoT networks.

Index Terms—Deep deterministic policy gradient (DDPG)-
based reinforcement learning, geographical map, sparse con-
volutional neural network (SCNN), unmanned aerial vehicle
(UAV)-assisted device-to-device (D2D) scheduling, UAV-assisted
industrial internet of things (IIoT) networks

I. INTRODUCTION

W ITH the advent of sixth-generation (6G) technology,
the industrial Internet of Things (IIoT), a network of

smart devices, group of machinery, or various connected sen-
sors with the Internet, is becoming crucial. In IIoT networks,
with numerous connections between IIoT devices operating in
proximity, each device is connected to the wireless Internet,
and the machine-type communication constitutes a major part
of the IIoT [1]. Naturally, for 6G IIoT networks with the inher-
ent characteristic of machine-type communications, device-to-
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device (D2D) communications in representative IIoT services
[2], [3], such as content distribution, sensing- and monitoring-
based control, cooperative carrying, process automation, and
vehicle-to-everything (V2X), have become one of the key
enablers [4]–[6]. The D2D communications provide several
benefits, including cellular traffic offloading gain, a high data
rate, low power consumption, low latency, and reuse gain
when cellular and D2D links can use the same radio resources
simultaneously [6].

One of the most pressing challenges of using D2D com-
munications over IIoT networks involves determining D2D
link scheduling that allows maximum information transmission
while efficiently sharing a spectrum between the links within
a given area. However, some problems must be addressed
before this challenge can be taken up. First, the D2D resource
scheduling in IIoT networks requires channel state information
(CSI) for all links throughout the network. However, the
signal and interference channel gains among D2D transmitters,
their receivers, and neighboring users are difficult to acquire
because of the significantly high cardinality of channel gains.
Moreover, the task of exact estimation and collection of CSI
are expensive and consume resources. The transmission of this
CSI to the local or global control unit requires considerable
power and control overhead. Second, the resource distribution
and interference control between D2D transmissions demand
high computational complexity. Although most existing D2D
schedulers for IIoT networks are algorithmically different, they
carry out numerous mathematical calculations to allocate re-
sources using all the required information, such as the channel
and interference state of the network, imposing considerable
computational complexity. Hence, as the IIoT networks grow,
these factors increasingly become critical issues.

Moreover, unmanned aerial vehicles (UAVs) have been
widely applied in wireless communications because of the
advantage of establishing stable and trusted line-of-sight air-to-
ground links for ground users. With their high mobility and
low cost, UAVs can quickly and effectively serve users as
auxiliary means in remote areas [7]. UAV-assisted mobile edge
computing schemes can also improve secure transmission [8].
Specifically, UAV deployments have found widespread use
in various IIoT scenarios to handle dynamic changes and
service requests effectively. Furthermore, many distributed
algorithms have been proposed to solve these problems in
D2D IIoT networks, which generally lack a centralized control
unit. For example, [9] and [10] proposed approximation-
and randomization-based distributed algorithms. However, the
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available D2D schedulers still lack the simplicity required
for practical implementation [11]. Therefore, in this study,
we propose a fast- and low-complexity D2D IIoT scheduling
scheme based on UAV-assisted system topology information
to maximize the system throughput.

A. Related Work
In this subsection, we provide the related work on schedul-

ing tasks in IIoT networks, which can be divided into two
groups: conventional D2D scheduling research and machine
learning-based D2D scheduling research.

1) Conventional D2D Scheduling in IIoT Networks: Ex-
isting approaches to achieve wireless link scheduling that
maximizes system throughput are primarily based on non-
convex combinatorial mathematical and greedy heuristic opti-
mization. Wu et al. [12] proposed a synchronous distributed
maximal scheduler, FlashLinQ, which measures the signal-to-
interference ratio and determines distributed link scheduling
through a yielding procedure of T&R. FlashLinQ provides an
overall system architecture, including i) timing and frequency
synchronization; ii) peer discovery; iii) link management;
and iv) channel-aware distributed power, data rate, and link
scheduling. However, the scheduler was based on the greedy
heuristic search. Moreover, for neighbor discovery, the sched-
uler used single tone-based signaling, making it difficult to
ensure the minimum information transfer. Naderializadeh et al.
[13] suggested a new link-scheduling approach, information-
theoretic link scheduling (ITLinQ), which first defined a new
concept of information-theoretic independent sets (ITISs).
These indicate a set of links capable of transmitting simul-
taneously and are information-theoretically optimal (within a
constant gap) to deal with each other’s interference as noise.
The ITLinQ schedules these links, forming an ITIS at a given
time. Shen et al. [14] designed a new approach called FPLinQ
that coordinates link-scheduling decisions with power control
among the interfering links. To determine the link scheduling
and power allocation, FPLinQ uses a fractional programming
approach. Compared with FlashLinQ and ITLinQ, FPLinQ
does not require design parameter tuning. Zeng et al. [15] pro-
posed a degrees-of-freedom based distributed link-scheduling
method, maximizing the approximated system throughput.
The proposed method uses the local CSI from neighboring
nodes. However, the CSI is assumed to be accurate over a
long channel coherence time. Ibrahim et al. [16] presented
a distributed link-scheduling algorithm to minimize energy
consumption under a throughput constraint. Users send simple
control indicators to share the local CSI. The sharing of these
CSI indicators could cause collisions. However, the distributed
scheduling algorithm successfully identifies the optimal D2D
links using certain collision reduction strategies for this local
CSI sharing.

2) Machine Learning-Based D2D Scheduling in IIoT Net-
works: Previously, the mathematical optimization-based con-
ventional techniques required accurate CSI estimation and
high computational complexity. Machine learning -based wire-
less link-scheduling techniques have been proposed to over-
come these issues. Neogi et al. [17] formulated a multi-
player multi-armed bandit (MP-MAB) problem to solve the

power and resource allocation problem for D2D users. The
problem considers a realistic situation in which the channel
gains are unknown at the base station (BS) and are referred
to as partial CSI. Cui et al. [18] suggested D2D scheduling
based on convolutional neural networks (CNNs). The model
comprises a neural network architecture that facilitates the
spatial learning of geographical locations of D2D nodes and
achieves a throughput close to that currently achieved by the
state-of-the-art algorithm without using explicit CSI. The re-
sults demonstrated that the location information could be effi-
ciently exploited to obtain nearly optimal solutions for wireless
networks. Lee et al. [19] designed graph-embedding-based
link scheduling. A fully connected directed graph is built,
where nodes and edges denote D2D pairs and interference
links between D2D pairs. Then, the model determines a low-
dimensional feature vector for each graph node. The graph-
embedding procedures exploits only the distance information
for communication and interference links without using the
accurate CSI. Then, link scheduling is trained in a supervised
manner using the result of the graph embedding. Jamshidiha et
al. [20] proposed fully unsupervised framework-based link
scheduling in a random network that consists of users with
the same transmission powers. The proposed approach defines
an interference graph and transforms it into a low-dimensional
stochastic latent representation using a variational graph au-
toencoder, which is significantly more scalable than existing
graph-based approaches. In addition, using a Gaussian mixture
model, this approach clustered users in the representation
domain and activated a random user from each cluster in each
time slot. Liu et al. [21] suggested a novel link scheduling
algorithm that jointly optimizes the system throughput and age
of information. This study used graphic location information
obtained from a global positioning satellite, from which the
necessary CSI to schedule links is implicitly determined. The
neural network can learn direct link scheduling from the
graphic location information without estimating the CSI. In
contrast to [18], the objective function of this approach cannot
be represented explicitly; thus, directly determining its solution
using gradient-based numerical approaches is difficult.

B. Motivations, Contributions, and Paper Organization

To the best of our knowledge, none of the existing work
has considered a deep learning (DL) solution that efficiently
exploits the architecture of the CNN in learning geographical
information for the scheduling problem in wireless D2D
networks. In this study, we propose a novel sparse CNN
(SCNN)-based DL algorithm for wireless D2D transmissions.
Table I summarizes the key features of the proposed approach
and key differences between it and the existing approaches.
Moreover, the main contributions of this study are summarized
as follows.

• We developed a low-complexity and robust D2D link-
scheduling scheme that maximizes the achievable system
rate. This is accomplished using a novel neural net-
work architecture that employs geographic information
from the T&R and an implicit interference estimation
among neighboring links. The geographical information
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TABLE I
SUMMARY OF KEY FEATURES AND DIFFERENCES (MACHINE LEARNING-BASED DEVICE-TO-DEVICE (D2D) SCHEDULING)

Schemes Objectives Machine Learning techniques Main outcomes/Features Shortcomings

[17] Maximize the cumulative sum
rate of D2D users

Distributed learning with fair-
ness

D2D users reuse resources of cel-
lular users without hindering com-
munications

No equilibrium is guaranteed for
the scheme for multiple D2D users

[22] Accurately approximate the
WMMSE algorithm for the
optimal power allocations

Supervised learning with a
fully connected neural net-
work

Real-time resource management
and rigorous theoretical analysis

Computational complexity of using
deep neural networks remains high

[18] Maximize sum rate and fair-
ness over wireless networks
via link scheduling

Unsupervised learning with
CNNs and fully connected
neural networks

Exploit the location information of
T&R instead of the perfect CSI

Computational complexity of using
deep neural networks is not opti-
mized

[19] Maximize throughput of the
overall D2D network via wire-
less link scheduling

Deep learning with KNN
neighbor graph

Utilize the distances of commu-
nication and interference links in-
stead of the accurate CSI

Need to determine the distances
of communication and interference
links

[20] Maximize sum rate for a wire-
less network via link activa-
tion

Unsupervised learning with a
KNN interference graph and
variational graph autoencoder

User clustering helps reduce the
complexity of deep neural net-
works

Only one user is allowed to be
activated in each cluster

[21] Optimize the age of informa-
tion and throughput for D2D
links

Deep learning with CNNs and
fully connected neural net-
works

Learn mapping from the geograph-
ical location for optimal scheduling
under a stationary randomized pol-
icy

Computational complexity of using
deep neural networks remains high

Proposed Optimize link scheduling to
maximize the achievable rate
for D2D links

SCNN-based deep determinis-
tic policy gradient

Exploit geographical map input in-
stead of the perfect CSI and opti-
mize computational complexity of
using deep neural networks

Effects on cellular users have not
been investigated

is collected using a UAV, and instead of requiring ex-
pensive CSI, the inter-link interference is estimated as
the discriminated feature extracted from the geographical
map input using deep neural networks. This approach is
advantageous in that it implicitly estimates the interlink
interference and reduces communication overhead for
updating the CSI.

• First, we propose an SCNN model that takes the geo-
graphical map of transmission links as input. The model
has three main blocks: generic feature filtering (GFF),
speed–accuracy balancing (SAB), and deep feature pro-
cessing (DFP). In contrast to the state-of-the-art methods,
the proposed method directly processes the geographical
map of transmission links as input.

• Second, we propose a deep deterministic policy gradient
(DDPG)-based reinforcement learning model that pro-
cesses the output feature map of the SCNN to optimize
the wireless scheduling policy and maximize the achiev-
able system rate in the long run.

• Extensive simulations prove that the proposed approach
significantly improves the achievable rate and reduces
computational complexity. In particular, the proposed
scheme provided a nearly optimal system rate and
achieved 26.5%, 51.7%, 202.4%, 349.6%, 814.6%, and
1713.0% higher rates compared with the transmitters
and receivers (T&R) density-based DL, ResNet-based
DL, VGGNet-based DL, random, and all-active schemes,
respectively. Furthermore, for deep neural network com-
putations, the proposed approach used 21.9%, 131.3%,
and 293.8% lower floating-point operations per second
(FLOPS) compared with the density-based DL, ResNet-
based DL, and VGGNet-based DL, respectively. These
performance gains increase as IIoT networks become
larger or denser.

Fig. 1. System model: UAV-assisted D2D communications in an IIoT network.

The remainder of this paper is organized as follows. Sec-
tion II describes the system model and problem formulation.
Sections III and IV present the proposed low-complexity and
robust link scheduling algorithm based on DL. Next, the
performance evaluation is discussed in Section V. Finally, we
present the conclusions in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Model

As illustrated in Fig. 1, we consider a single UAV-assisted
D2D system, which is highly complex owing to multiple
heterogeneous communication links. Within the scope of this
work, we focus on D2D communications and do not consider
cellular communications that may exist with aerial or ground
BSs. Cellular communications can also be considered when
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the frequency resource is fully reused, and the difference in
the altitude between BSs and user terminals is not significant.
The network model consists of 𝑁 independent D2D links
with the corresponding T&R. We let T = {1, . . . , 𝑁} and
R = {1, . . . , 𝑁} denote the sets of T&R, respectively. The
transmitter–receiver distance lengths of all links are indepen-
dent and identically distributed (i.i.d.) and follow a Gaussian
distribution.

We consider a network model operating in a time-slot
manner. In each time slot, the scheduling policy x is char-
acterized by the binary variable {0, 1} (i.e., x = {𝑥𝑖 (𝑡) |𝑖 =

1, . . . , 𝑁, 𝑥𝑖 (𝑡) ∈ {0, 1}}), where 𝑥𝑖 (𝑡) = 1 indicates that link 𝑖

is scheduled, and 𝑥𝑖 (𝑡) = 0 indicates otherwise. Based on the
advantage of flying objects, UAVs can serve ground terminals
including D2D equipment, by readily establishing line-of-
sight air-to-ground links. Thus, D2D equipment can obtain
the scheduling decision through control signals sent from their
serving UAVs. We let 𝑝𝑖 denote the fixed transmission power
of link 𝑖 each time it is activated. Furthermore, 𝑔𝑖, 𝑗 (𝑡) ∈ C
denotes the complex channel gain of receiver 𝑖 from transmitter
𝑗 , that is, 𝑔𝑖,𝑖 (𝑡) is the channel gain of link 𝑖 from transmitter 𝑖
to its corresponding receiver 𝑖. All transmission links are free
to reuse frequency bandwidth 𝑊 . As an important metric for
evaluating network performance, the achievable rate Φ𝑖 (𝑡) of
link 𝑖 at time slot 𝑡 is computed based on Shannon’s formula
[23] as follows:

Φ𝑖 (𝑡) = 𝑊 log2

©«
1 +

|𝑔𝑖,𝑖 |2 (𝑡)𝑝𝑖𝑥𝑖 (𝑡)∑︁
𝑗≠𝑖

|𝑔𝑖, 𝑗 |2 (𝑡)𝑝 𝑗𝑥 𝑗 (𝑡) + 𝜎2

ª®®®®¬
, (1)

where 𝜎2 is the additive white Gaussian noise power spectral
density, assumed to be the same for all receivers.

B. Problem Formulation

Because of severe inter-link interference, the achievable
system rate is poor if all transmission links are activated
simultaneously. Therefore, the wireless scheduling problem in
any given transmission period is determining the subset of
links to be activated to maximize the system rate. This study
aims to maximize the weighted sum rate of all users over the
long term. The weighting coefficients are specified based on
link preferences, which are assumed to remain unchanged dur-
ing a specific period. The corresponding wireless scheduling
problem is formulated as follows:

max
x

𝑇−1∑︁
𝑡=0

𝑁∑︁
𝑖=1

𝛾𝑡𝑤𝑖Φ𝑖 (𝑡), (2)

s.t. 𝑥𝑖 (𝑡) ∈ {0, 1},∀𝑖 = 1, . . . , 𝑁, (2a)
Φ𝑖 (𝑡) ≥ (Φ𝑖)min,∀𝑖 = 1, . . . , 𝑁, (2b)

where 𝛾 is a discounting factor and 𝑤𝑖 ∈ (0, 1) represents a
weighting coefficient that reveals the preference of transmis-
sion links; that is, the more-preferred links are more likely to
be scheduled. Constraint (2a) indicates the binary domain of
the scheduling decisions. In constraint (2b), (Φ𝑖)min represents

the minimum data rate that link 𝑖 must achieve to guarantee
the quality of service.

The formulated problem is a discrete optimization that is
difficult to solve owing to a complicated scheduling pol-
icy. It may derive numerous interactions between adjacent
links, making the interlink interference unpredictable. The
conventional optimization approach often requires perfect CSI
to solve this problem, which is impractical for large-scale
wireless D2D networks. Another approach is to use machine
learning-based optimization, which has the advantage of a
rapid decision-making time. Several practical problems re-
main when considering the state-of-the-art studies [22] and
[18], which proposed DL-based solutions for the wireless
scheduling problem. First, as [22] used a fully connected
neural network that directly takes CSI as input, the overall
complexity grows rapidly with the number of transmission
links. Second, although [18] addressed the previous problem
by processing the geographical map of transmission links as
input, direct CSI was still used in the training process. In
addition, [18] increased the computational cost because the
original geographical map had to be transformed into T&R
density grids before inputting it into the deep neural network.
The following section introduces the architecture of SCNNs
that help process geographical maps to extract discriminative
features efficiently and obtain the optimal wireless scheduling
policy using an SCNN-based DL framework.

III. SPARSE CONVOLUTIONAL NEURAL NETWORKS

A. Fundamentals of Convolutional Neural Networks

Generally, a CNN is constructed from multiple convolu-
tional, pooling, and fully connected layers. The convolutional
process involves a convolutional kernel and input map. Partic-
ularly, the feature map is obtained by summing the products of
the kernel weights and their corresponding input map values
over spatial locations. We let 𝜐𝑥,𝑦 denote the convolutional
result at the spatial location (𝑥, 𝑦). Similar to [24], 𝜐𝑥,𝑦 can
be mathematically computed as

𝜐𝑥,𝑦 =

𝑎∑︁
𝑖=1

𝑏∑︁
𝑗=1

𝜔𝑖, 𝑗X𝑥+𝑖,𝑦+ 𝑗 +𝜛, (3)

where (𝑎 × 𝑏) represents the kernel size, 𝜔𝑖, 𝑗 denotes the
kernel weight at location (𝑖, 𝑗), X𝑥+𝑖,𝑦+ 𝑗 denotes the matching
input map value, and 𝜛 indicates a bias value added to the
convolutional result. Subsequently, 𝜐𝑥,𝑦 can be applied to the
activation functions to obtain the class label. Several activation
functions are frequently used in CNNs for fast training and
high accuracy: sigmoids, tangents, and rectified linear units
(ReLUs) and their variants, such as the randomized ReLU,
parametric ReLU, clipped ReLU, and leaky ReLU.

Grouping convolution was proposed as an improvement
that allows a deep CNN architecture to work over multiple
memory-constrained GPUs in ResNeXt [25], Deep Roots
[26], and ShuffleNet [27]. Grouping convolution demonstrates
higher classification accuracy and lower complexity than
conventional CNN architectures. A convolutional operation
is performed in each group by dividing the depth of the
input map of multiple layouts into multiple groups to derive
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Input GFF SAB DFP

3x3 conv + clipped 

ReLU

3x3 depthwise conv + 

clipped ReLU

1x1 conv + clipped 

ReLU

2x2 maxpool (stride 2)

3x3 depthwise conv + 

clipped ReLU

1x1 conv + bn

1x1 conv + clipped 

ReLU

concat 3x1,1x3 conv + 

clipped ReLU

1x1 conv + clipped 

ReLU

2x2 maxpool (stride 2)

2x2 maxpool (stride 2)

GFF SAB DFP

1x1 conv + clipped 

ReLU

1x1 conv + ReLU

3x3 grouped conv + 

clipped ReLU

1x1 conv + bn

Classification

3x3 depthwise conv + 

clipped ReLU

1x1 conv + bn

1x1 conv + ReLU

3x3 grouped conv + 

clipped ReLU

1x1 conv + bn

Fig. 2. Illustration of sparse convolutional architecture.

several unconstrained feature maps. Subsequently, the overall
feature map was obtained by concatenating these independent
feature maps in a grouping convolutional layer. In particular,
the filter kernel for all groups must be the same size. The
number of filters in each group can vary depending on the
neural network architecture. In the simplest scenario, the
grouping convolutional layer has a single filter in each group
is called the depthwise convolutional layer, which enhances
the performance of a CNN in resource-constrained devices
[28]. Considering that there are Ω filter groups, according
to [24] and [29], the grouping convolution operation can be
mathematically expressed as follows:

𝜐𝑥,𝑦 = 𝜐𝑥,𝑦,1 ⊕ . . . ⊕ 𝜐𝑥,𝑦,𝜙 ⊕ . . . ⊕ 𝜐𝑥,𝑦,Ω, (4)

where 𝜙 ∈ [1,Ω], ⊕ denotes the concatenation operation,
and 𝜐𝑥,𝑦,𝜙 =

∑𝑎
𝑖=1

∑𝑏
𝑗=1 𝜔𝑖, 𝑗 ,𝜙X𝑥+𝑖,𝑦+ 𝑗 represents the convolu-

tional result of group 𝜙 at spatial location (𝑥, 𝑦) with kernel
weight 𝜔𝑖, 𝑗 ,𝜙 .

B. Sparse Convolutional Blocks

To achieve a high-speed and accurate classification, we
designed the CNN architecture based on three main blocks:
GFF, SAB, and DFP, as illustrated in Fig. 2. The input map is
sequentially processed in GFF, SAB, and DFP blocks. First,
generic features are extracted using the GFF block. Then, the
output from the GFF block is processed to balance the speed
and accuracy in the SAB block. Subsequently, the output from
the SAB block is subjected to a multilayer transition before
arriving at the DFP block, where useful deep and distinct
features are extracted to improve the classification accuracy.

The GFF block directly processes the input map using two
depthwise convolutional layers, two pointwise convolutional
layers, one regular convolutional layer, and one max-pooling
layer. First, the generic features of the input map are extracted
using a 3 × 3 kernel. Then, the features are processed with a
3 × 3 depthwise kernel for feature map compression. After
a pointwise convolutional stage, a 2 × 2 max-pooling layer
with a stride of (1,2) is deployed to reduce the computational

cost in the subsequent layers. Finally, a 3 × 3 depthwise
kernel followed by a pointwise convolutional layer with batch
normalization is applied to further filter the low-cost features.
Batch normalization tends to reduce the internal covariate
shift. In the GFF block, the clipped ReLU is used for all
convolutional layers, except for the last pointwise layer, as
a low-cost activation function.

The SAB block handles the output feature map of the
GFF block to balance the speed–accuracy tradeoff. First, a
pointwise convolutional layer is deployed to expand the feature
map for better feature extraction. Next, grouping convolu-
tional layers with asymmetrical kernels, 3 × 1 and 1 × 3,
are employed to generate independent feature maps that are
combined and then processed with a pointwise convolutional
layer. Afterward, the feature map is connected to a 2 × 2
max-pooling layer with a stride of (1,2) for computational
reduction. The feature map is expanded again with a pointwise
convolutional layer. Finally, a 3 × 3 depthwise kernel and a
pointwise convolutional layer with batch normalization are
applied to extract discriminative features. Similar to the GFF
block, the clipped ReLU is applied for all convolutional layers
except the last pointwise layer. In the SAB block, although
grouping and depthwise convolutional layers help extract more
discriminative features to improve the classification accuracy,
the deployed pointwise convolutional layers slightly increase
the computational cost. Moreover, depthwise convolutional
kernels with many free parameters may lead to suboptimal
performance when used in deep layers [30]. Therefore, a
DFP block must be implemented to process the feature map
efficiently in deep layers.

To reduce the computational cost of the convolutional
operations, we transform the feature map before it goes to the
DFP block using multilayer transition. First, the feature map
is processed using a pointwise convolutional layer and a 3× 3
depthwise kernel. Afterward, another pointwise convolutional
layer and a 2 × 2 max-pooling layer with a stride of (1,2)
are employed to reduce the dimension of the feature map
for complexity reduction. The feature map arrives at the DFP
block, where it is processed using the grouping convolutional
layers. After extracting features with a pointwise convolutional
layer, more features are independently generated using 3 × 3
grouping convolutional layers. These features are linearly
combined using a pointwise convolutional layer. Subsequently,
a 2 × 2 max-pooling layer with a stride of (1,2) is applied to
reduce the computational complexity. The final output feature
map is delivered with more discriminative features using two
pointwise and 3 × 3 grouping convolutional layers. It can be
observed that deeper DFP block layers result in more extracted
discriminative features.

IV. SCNN-BASED DEEP LEARNING FOR OPTIMAL
WIRELESS SCHEDULING

A. Efficient Feature Extraction

By employing high-resolution and high-speed cameras,
UAVs can regularly capture and collect geographical infor-
mation for network coverage areas, containing the location of
T&R of all D2D links. For simplicity, we assume that the
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geographical map is ready to be used at the UAVs, where
each geographical map is a grid image containing node pairs
of transmitters and their corresponding receivers. Using the
geographical map as input, a feature map can be achieved us-
ing convolutional layers connected for classification. Thus, we
can accurately specify the optimal scheduling decision using
only the geographical map input. Generally, deploying deep
hierarchical network layers improves classification accuracy
because more layers help extract discriminative features more
efficiently [31]. However, it also increases network complexity
and operational costs.

The proposed algorithm employs SCNNs for low-
complexity and robust feature extraction. The network judi-
ciously performs volume convolution that combines two types
of convolutional layers, depthwise and regular, to achieve
higher classification accuracy while making the network more
lightweight. The proposed network leverages SCNNs with
three primary blocks: GFF, SAB, and DFP. Depthwise con-
volutional layers are deployed in the SAB block to enhance
the relevant feature output of the GFF block and balance the
accuracy and time complexity. Furthermore, the DFP block
employs a cascade structure of regular convolutional layers to
mine more discriminative features from the SAB block. The
aim is to prevent the loss of essential details in the geograph-
ical map. In addition, the problem of interblock feature loss
can be addressed while allowing inter-block feature sharing
by deploying skip connections between the subblocks of SAB
and DFP.

B. Wireless Scheduling Decision Training

The output feature map can determine the optimal wireless
scheduling decision using a fully connected network with
numerous parameters for accurate classification. To optimize
the computational complexity, we developed a DDPG-based
model that properly learns the optimal wireless scheduling
policy. Notably, it is difficult to determine a reinforcement
learning-based model that delivers the best performance. We
select a DDPG-based model for the following reasons. First,
DDPG is an off-policy algorithm that tends to be more cost-
effective than other on-policy models, such as Proximal Policy
Optimization and SARSA, regarding deployment in real-world
scenarios. Indeed, DDPG encourages the agent to explore
more in the action space. Second, DDPG is a policy gradient
method that can significantly reduce unnecessary explorations
of a deep Q-Network model. Thus, it is more appropriate for
large IIoT systems, where the scheduling problem for multiple
D2D links is highly complex. A reinforcement learning agent
is employed at the UAV to iteratively interact with the network
environment and collect training data regarding experiences.
The communication system is modeled as a Markov decision
process model, where the optimal scheduling policy is trained
toward maximizing the long-term reward (e.g., achievable
rate). As illustrated in Fig. 3, the detailed implementation
consists of a D2D network with 𝑁 links, a replay memory
M with size 𝑆, and deep neural networks including SCNN
layers, primary and target actor networks, A and A

′
, with

respective weights, 𝜃A and 𝜃A′ , (initially 𝜃A = 𝜃A′ ), and

primary and target critic networks, C and C
′
, with respective

weights, 𝜃C and 𝜃C′ , (initially 𝜃C = 𝜃C′ ). The algorithm
is coordinated by the UAV agent, which enables control of
the wireless scheduling action of all D2D links. The replay
buffer is initialized as empty and stores the maximum 𝑆

experiences of the agent. When the buffer runs out of memory,
the least recent experience is replaced by the most recent
experience. Additionally, the weights of the primary actor and
critic networks, 𝜃A and 𝜃C, are randomly initialized and copied
to those of the target actor and critic networks, 𝜃A′ and 𝜃C′ ,
respectively.

Because changes in the topology of the geographical map
can frequently occur, the training process should be conducted
for all geographical map inputs to ensure the high performance
of the scheduling output. In this study, we assume that all
changes are captured in the input data and available for
training. Furthermore, the SCNN model can regularly con-
tinue training with newly captured geographical map input if
detected. The training process comprises multiple epochs, each
including 𝑇 time steps. At the beginning of each epoch, the
geographical map input of D2D links is randomly initialized.
Notably, the geographical map of the transmission links is
preprocessed by sparse convolutional layers to extract the
feature map before sending it to the actor and critic networks.
At time 𝑡, the feature map is inputted into the actor and critic
networks as state 𝑆𝑡 . Then, the UAV agent selects a scheduling
decision for all D2D links, 𝐴𝑡 , based on the output of the
primary actor network, A(𝑆𝑡 ; 𝜃A), and 𝜖-greedy strategy that
promotes exploration first (random 𝐴𝑡 ) and gradually enhances
exploitation (𝐴𝑡 = A(𝑆𝑡 ; 𝜃A)) to improve the training speed
and convergence. The exploration probability decayed at a rate
of 0.9999. For exploitation, additional noise is used to restrict
the sub-optimal scheduling action such that the scheduling
action is obtained as 𝐴𝑡 = A(𝑆𝑡 ; 𝜃A) + 𝜑𝑡 , where 𝜑𝑡 could
be Gaussian white noise or Ornstein–Uhlenbeck noise [32].
When the selected scheduling action is applied, the UAV agent
receives a reward, 𝑅𝑡 , and the system evolves to the next state,
𝑆𝑡+1. Based on this observation, the step reward was calculated
in terms of the achievable sum rate as 𝑅𝑡 =

∑𝑁
𝑖=1 𝑤𝑖Φ𝑖 (𝑡).

Additionally, experience tuples ⟨𝑆𝑡 , 𝐴𝑡 , 𝑅𝑡 , 𝑆𝑡+1⟩ are saved
in the replay buffer, from which random mini-batches of
experiences are sampled to update the weights of the actor
and critic networks. n particular, a loss function is formulated
between the estimated and target Q-values as the output of the
primary and target critic networks [33] as follows:

𝐿 (𝜃C) =
1
Λ

Λ∑︁
𝑖=1

(
𝑅𝑡 ,𝑖+𝛾C

′ (
𝑆𝑡+1,𝑖 , 𝐴𝑡+1,𝑖; 𝜃C′

)
−C(𝑆𝑡 ,𝑖 , 𝐴𝑡 ,𝑖; 𝜃C)

)2
,

(5)
where Λ denotes the minibatch size, and ⟨𝑆𝑡 ,𝑖 , 𝐴𝑡 ,𝑖 , 𝑅𝑡 ,𝑖 , 𝑆𝑡+1,𝑖⟩
represents the 𝑖th experience sample collected at time 𝑡. To
minimize the loss, we updated the weight coefficients of the
primary critic network using the Adam optimizer [34]. Similar
to [32], the policy gradient is applied to update the weight
coefficients of the primary actor network, as follows:

∇𝜃A= E
[
∇𝜃AC(𝑆𝑡 , 𝐴𝑡 ; 𝜃C)

]
= E

[
∇𝐴𝑡
C(𝑆𝑡 , 𝐴𝑡 ; 𝜃C) × ∇𝜃AA(𝑆𝑡 ; 𝜃A)

]
. (6)
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Fig. 3. Deep learning algorithm for training the optimal scheduling policy

For stability, the weight coefficients of the target networks are
gradually updated after every 𝐺 steps based on a low learning
rate, 𝜂, as 𝜃A′ = 𝜂𝜃A + (1 − 𝜂)𝜃A′ and 𝜃C′ = 𝜂𝜃C + (1 − 𝜂)𝜃C′ .

V. PERFORMANCE EVALUATION

A. Simulation Setup

Owing to the limitations of collecting data in a real-world
smart industry environment, we investigated and verified the
performance of the proposed scheme using simulations, where
an IIoT network model was generated based on practical
settings and the D2D link lengths were uniformly distributed
between 10 and 100 m. Specifically, we consider a D2D
network in which the locations of all transmitters are uniformly
distributed within a circular area with a radius of 𝑟 = 500 m.
The locations of the receivers are distributed within the area
and satisfy the distance constraint from the corresponding
transmitters. The UAV is assumed to have a projection at the
center point. By learning the optimal scheduling policy based
on the geographical map of transmission links, the UAV plays
a vital role in this network model, in which all transmission
links observe the scheduling decision. Some parameters were
derived from a state-of-the-art study [18] to build the network
model. For example, network settings comprised a channel
bandwidth of 5 MHz at a 2.4 GHz frequency, transmit power
of 40 dBm, and background noise of -169 dBm/Hz. The
maximum number of epochs for the training process was 1000,
with 200 steps each. The learning rate was initially set at
0.01 and gradually reduced to obtain better convergence. All
simulations were conducted using a server powered by an Intel
Core i7-10700 2.90 GHz CPU and Nvidia GTX 1650 GPU,
with a memory of 1 TB. To evaluate the performance of the
proposed solution, we implemented the existing schemes for
comparison.

• T&R density-based DL [18]: This scheme trained the
wireless scheduling decision using the T&R density grid
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Fig. 4. Influence of the main blocks on the achievable rate.

maps constructed from the geographical map of the
transmission links.

• VGGNet-based DL: This scheme trained the wireless
scheduling decision using VGG convolutional networks
[35] instead of the proposed SCNNs.

• ResNet-based DL: This scheme trained the wireless
scheduling decision using residual convolutional net-
works [36] instead of the proposed SCNNs.

• Random: The D2D links were randomly scheduled.
• All-active: All D2D links were activated.

B. Data Rate Performance

Fig. 4 presents the achievable rate when replacing the main
blocks (e.g., SAB and DFP) with their equivalent regular
convolutional layers. We consider the achievable rate per link,
which is the average of 200 consecutive steps in one epoch.
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Fig. 5. Influence of the convolutional layer group sizes on the achievable
rate.

Moreover, the GFF block was not considered because of its
generic feature processing, which resulted in an insignificant
contribution to the overall performance. As observed in the
figure, when the number of links increases, the achievable rate
per link decreases in all settings. Specifically, for the proposed
scheme, which combines GFF, SAB, and DFP blocks, the
achievable rate drops from 15.84 to 7.19 and 5.87 Mbps
when the number of links increases from 1 to 30 and 50,
respectively. This outcome can be explained by interlink
interference, which is more severe when the link distribution is
denser. More importantly, when replacing the SAB and DFP
blocks, the achievable rate decreased faster. Starting from a
similar achievable rate of 15.84 Mbps for the one-link setting
in all architectures, when the number of links is 30, the
achievable rate per link is 6.65 and 6.85 Mbps, respectively, in
architectures with SAB only and DFP only, 8.17% and 5.01%
lower than that in the architecture with both SAB and DFP.
When the number of links is 50, the rate is 5.29 and 5.04 Mbps
in architectures with SAB only and DFP only, respectively,
10.96% and 16.47% lower than that in the architecture with
both SAB and DFP.

Fig. 5 presents the achievable rate for various convolutional
layer group sizes, 𝜇. It is observed that the achievable rate
decreased with an increase in the number of groups. When the
number of links is 30, the average rate per link with 𝜇 = 64 is
7.42 Mbps, 3.2%, 13.3%, and 22.8% greater than rates with
𝜇 = 32, 𝜇 = 16, and 𝜇 = 8, respectively. Similarly, when the
number of links is 50, the rate is 6.20 Mbps with 𝜇 = 64,
5.62%, 30.53%, and 56.96% greater than rates with 𝜇 = 32,
𝜇 = 16, and 𝜇 = 8, respectively. We can see that increasing the
number of groups from 32 to 64 increases the achievable rate
by approximately 6%; however, this requires more trainable
weights. Therefore, the number of groups that can maintain the
performance–complexity tradeoff in practical scenarios must
be carefully selected. Within the scope of this research, we
used a group size of 𝜇 = 32.

Fig. 6 plots the achievable rate for various frame sizes,
𝜉. It is observed that a greater frame size provides a better
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Fig. 6. Infuence of the frame sizes on the achievable rate.

achievable rate. However, this gap is not apparent when the
number of links is small. For example, when the number of
links is less than 20, the average rate per link is similar for
various frame sizes, such as 𝜉 = 32, . . . , 1024. When the
number of links is 30, the achievable rate with 𝜉 = 1024 is
7.256 Mbps, 0.86%, 2.85%, 4.59%, 6.24%, and 9.08% greater
than rates with 𝜉 = 512, 𝜉 = 256, 𝜉 = 128, 𝜉 = 64, and
𝜉 = 32, respectively. For a greater number of links, 𝑁 = 50,
the achievable rate with 𝜉 = 1024 reaches 5.963 Mbps, 1.58%,
4.98%, 7.33%, 12.19%, and 17.52% better than rates with
𝜉 = 512, 𝜉 = 256, 𝜉 = 128, 𝜉 = 64, and 𝜉 = 32, respectively.
This frame size effect is because the larger input frame sizes
result in a higher resolution that helps extract more distinct
features and yields better performance. Despite the better per-
formance, larger input frame sizes increase the computational
and memory costs. Therefore, the input frame size should be
judiciously selected to balance the performance–complexity
tradeoff. In this study, we used a frame size of 𝜉 = 512.

We conducted a performance comparison between the pro-
posed solution and state-of-the-art schemes in terms of the
achievable data rate. All schemes considered the same 2000
layouts for each setting of the link length distribution (e.g.,
independent lengths between 10 and 100 m), and the lengths
were fixed at 50 m to ensure accurate comparisons.

Fig. 7-(a) and (b) present the achievable rates corresponding
to different link length settings by varying the number of
links. Generally, in both settings, the average rate per link
decreases when the number of links increases because the
numerous links generate severe interlink interference. More-
over, compared with the density-based DL, ResNet-based
DL, VGGNet-based DL, random, and all-active schemes, the
proposed solution significantly improves the achievable rate.
For instance, in Fig. 7-(a), when 50 links exist, and the link
lengths are distributed between 10 and 100 m, the proposed
scheme achieved the average rate per link of 5.88 Mbps,
21.0%, 135.3%, 228.1%, 722.1%, and 1165.9% better com-
pared with density-based DL, ResNet-based DL, VGGNet-
based DL, random, and all-active schemes, respectively. Fig. 7-
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(a) Link length distribution between 10 and 100 m.
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Fig. 7. Achievable rate versus the number of links.

(b) illustrates the rate comparison when all link lengths are
fixed at 50 m, and the achievable rate is similar to that when
the link length distribution is between 10 and 100 m.

Fig. 8-(a) and (b) plot the achievable rates corresponding to
different link length settings by varying the network coverage
sizes (i.e., the network coverage radius 𝑟). For both settings,
the achievable rate decreases when the network coverage area
increases. In Fig. 8-(a), when the link lengths are distributed
between 10 and 100 m and the network coverage radius is
100 m, the achievable rate reaches approximately 6.93, 6.66,
6.35, 6.25, 4.39, and 4.17 Mbps in the proposed, density-
based DL, ResNet-based DL, VGGNet-based DL, random,
and all-active schemes, respectively. In comparison, under
the same link length distribution when the network coverage
radius is 1000 m, the achievable rate is degraded by 26.5%,
51.7%, 202.4%, 349.6%, 814.6%, and 1713.0% in the pro-
posed, density-based DL, ResNet-based DL, VGGNet-based
DL, random, and all-active schemes, respectively. A similar
decrease is observed in Fig.8-(b) when all link lengths are
fixed at 50 m. The reason for this rate reduction trend is the
severe inter-link interference that generates a stronger effect
on the larger network while maintaining the link density.

C. Computational Complexity Analysis

To evaluate the performance of the proposed solution
further, we estimated and compared the complexity of DL
schemes in terms of FLOPS and inference time, as listed in
Table II. Based on the recorded inference time, the proposed
solution provides a shorter inference time than the ResNet-
based DL and VGG-based DL schemes. Compared with the
density-based DL scheme, the inference time is slightly longer
(i.e., 0.138 compared to 0.135 ms). However, the proposed so-
lution requires less computational complexity than the density-
based DL scheme (i.e., 32 MFLOPS in the proposed scheme
compared to 39 MFLOPS in the density-based DL scheme).
This result is because the proposed training model directly
processes the geographical map and delivers the scheduling
decision for all D2D links, whereas the density-based DL
scheme separates training for each link based on the processed

data of the T&R grids. Thus, the proposed scheme saves more
FLOPS to complete the training process; however, it slightly
increases the inference time to deliver the scheduling decision.

TABLE II
COMPUTATIONAL COMPLEXITY OF DEEP LEARNING SCHEMES

(COVERAGE SIZE: 500 M, 𝑁 = 50, LINK LENGTHS: 10 TO 100 M)

Scheme/Approach Proposed Density-based ResNet-based VGG-based
Inference time (ms) 0.138 0.135 0.156 0.143
FLOPS (MFLOPS) 32 39 74 126

VI. CONCLUSIONS

We investigated the wireless scheduling problem in D2D
networks. The proposed solution considers only the geograph-
ical map of the transmission links, which can be collected
using a connected UAV. This new approach is advantageous
because it implicitly estimates the inter-link interference and
reduces the communication overhead for updating the CSI.
We first developed an SCNN-based novel DL solution that
efficiently and effectively extracts distinct features from the
input map. Subsequently, we developed a DDPG-based re-
inforcement learning algorithm that optimizes the wireless
scheduling decision and maximizes the achievable rate in the
long run using the output feature map from the SCNN. Exten-
sive simulations revealed that the proposed solution provided
significantly enhanced performance in terms of the achievable
rate and computational complexity compared with the density-
based DL, ResNet-based DL, VGGNet-based DL, random, and
all-active schemes. Furthermore, the performance gains using
the proposed scheme increase as the link coverage or density
increases; thus, the proposed scheme can be efficiently applied
to large-scale and dense IIoT networks.
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