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Abstract—Future wireless and mobile network services require
to accommodate highly dynamic downlink (DL) and uplink (UL)
traffic asymmetry. To this requirement, the third generation
partnership project (3GPP) introduced the enhanced interference
mitigation and traffic adaptation (eIMTA) strategy, which enables
flexible allocation of subframes for DL and UL traffic in the time-
division-duplexing scheme. However, the service may experience
severe intercell cross-link interference, especially in a dense
environment. In this study, we developed an optimal duplexing
framework that serves various traffic demands effectively. In the
proposed framework, deep-reinforcement-learning processes are
implemented at base stations (BSs) for obtaining the optimal
radio frame configuration (RFC) policies that maximize the long-
term system utility in terms of interference reduction, DL and
UL rates. The training process at each BS considers the traffic
demand state and previous RFCs of different BSs. Training
processes were coordinated in a single-leader multi-follower
Stackelberg game that guarantees convergence. We obtained the
Stackelberg equilibrium as system utility, i.e., the data rate is
maximized, and accordingly, interference is minimized, with the
optimal RFC setup. Extensive simulations illustrate that our
proposed framework outperforms the existing schemes in terms
of data-rate improvement and interference reduction.

Index Terms—Duplexing control, Radio frame configuration,
Intercell interference, Reinforcement learning, Deep Q-learning,
Stackelberg game.

I. INTRODUCTION

ACCORDING to the latest Cisco visual networking index
report [1], global mobile data traffic was forecast to

grow seven-fold from 2017 to 2022 because of the massive
explosion of connecting devices. To manage this sudden surge,
small-cell-based wireless and mobile networks (WMNs) have
drastically increased [2]. The dense deployments of small cells
can provide higher downlink (DL) rate, uplink (UL) rate,
and lower latency by shortening the distance between user
equipment (UE) and base stations (BSs) [2].

In addition, the vast diversity of user services, which re-
quires various traffic demands from the network, leads to the
inevitable highly dynamic DL and UL traffic. For instance,
user-behavior measurements from a live mobile network in
the city of Vienna, Austria, have been presented that the
user traffic demand varies significantly over different time
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of a day as well as different network cells [3]. In reality,
many people desire to watch live broadcast or share user
created streaming of exciting events such as live performances,
football matches, cultural festivals, or exhibitions, over social
media channels. Responsively, network providers must accom-
modate this dynamic nature of user traffic with a practical
duplexing strategy that can configure radio frames dynamically
to serve various user demands in real-time and in the best
manner. Since the deployment of LTE-Advanced Release 12
(LTE Rel-12) [4], the enhanced interference mitigation and
traffic adaptation (eIMTA) strategy has been introduced to
offer flexible DL and UL traffic adaptations for TDD systems
[4]. The eIMTA provides seven radio frame configuration
(RFC) patterns with different allocations of 10 successive radio
subframes. Accordingly, each BS can dynamically adapt RFC
based on a link-direction selection criteria, e.g., aggregated
traffic demand ratio of DL over UL.

Despite these advantages, the coexistence of different link
directions over the same frequency resources in adjacent BSs
causes severe intercell interference. Typical intercell interfer-
ence schemes in TDD WMN systems are shown in Fig. 1,
which includes downlink-to-downlink (DL–DL), uplink-to-
uplink (UL–UL), downlink-to-uplink (DL–UL), and uplink-
to-downlink (UL–DL) interferences. In macro deployment
schemes, the cross-link interference, especially the DL–UL
interference, is a critical problem due to the conflict in the
direction and imbalance between DL and UL transmission
powers. Consequently, the gain of the adaptive TDD RFC may
completely vanish owing to the appearance of the intercell
interference. Thus, the effective management of the trade-off
between the fulfillment of traffic demand and mitigation of
intercell interference is an emerging challenge for network
providers.

In this paper, we propose an optimal duplexing framework
based on the reinforcement learning (RL) algorithm and Stack-
elberg game theory. The distinct contributions of this study are
as follows.

1) Based on the standard TDD RFCs specified in LTE
Rel-12 [4], we modeled the network environment with
various traffic demands and interference penalties into
realizable states. By using the state realizations of the
traffic demand model and interference penalty model, we
utilized deep RL algorithms for obtaining the optimal
TDD RFC policies at every BS. Each BS aims to
maximize the gain in terms of achievable data rate and
interference reduction.



(a) Macro cell versus small cell schemes (b) Small cell versus small cell schemes

Fig. 1. Intercell interference schemes in TDD WMN systems.

2) To achieve a rapid system convergence, we further
enhanced the learning processes within a coordination
scheme. In this scheme, a single-leader multi-follower
Stackelberg game [5] was modeled, in which the leader
is the macro BS (MBS) and followers are small BSs
(SBSs). The equilibriums of the Stackelberg game were
obtained through the deep RL processes, which decide
the optimal TDD RFCs for maximum data-rate and
interference-reduction objectives.

3) Finally, extensive simulations show the convergence and
effectiveness of the proposed framework. Numerical re-
sults illustrate that the proposed framework significantly
improves the system performance up to approximately
30% in terms of the long-term average data rate and in-
terference reduction, compared to the existing schemes.

The remainder of the paper is organized as follows. Sec-
tion II gives a brief review of related work. In Section III,
the system model is described. Section IV briefly presents the
RL algorithm and then describes the training algorithms at
the BSs. In Section V, the coordination scheme between the
training processes is formulated as a Stackelberg game. Simu-
lation results are discussed in Section VI. Finally, Section VII
concludes the paper and outlines future work.

II. RELATED WORK

Extensive studies have been conducted using numerous
approaches to address the duplexing control problem for
WMN systems [6]–[23]. We can divide these into two main
approaches: optimization [6]–[17] and machine learning [18]–
[23].

As a mainstream approach, the first approach formulates
an optimization problem and then obtains an optimal or
suboptimal solution depending on the performance-complexity
trade-off. The dynamic adaptation of TDD RFCs in outdoor
picocell systems has been analyzed to significantly increase the
data rate than that by the conventional synchronous networks
[6]. A more specific dynamic TDD scheme with the enhanced
local-area small BSs has been investigated using the stochastic
geometry algorithm [7]. The decentralized cooperative scheme

for DL/UL adaptation is feasible in small-cell networks, re-
lying on the exchange process of low-rate signaling among
BSs [8]. Flexible duplexing schemes have been investigated
more deeply in an advanced case of a multichannel DL and
UL transmission [9]. Here, the non-contiguous transmission
strategy is efficiently applied to guarantee that the maximum
interference does not exceed an allowable level. Based on a
general intercell interference model, the joint DL/UL resource
allocation and power control problem in flexible duplexing
schemes is tackled to maximize the minimum level of quality-
of-service (QoS) satisfaction per link [10], [13]. However, the
cross-link interference is assumed to be merely proportional
to the traffic load. This assumption is valid only when each
resource unit has the same chance to be allocated to DL or
UL. The dynamic TDD RFC in multicell scenarios can be
optimized by recasting the max–min fairness problem into a
fixed point framework [11].

Moreover, another method has been investigated using
stochastic geometry analysis [12], [14], in which pairs of DL
and UL users who use the same radio resource simultaneously
[12] are determined to enhance data rate as minimizing inter-
user interference in the dynamic duplexing schemes. Bai et
al. [15] introduced a system design and performance aspects
for full-duplexing in 5G small-cell networks. An efficient
reference-signal design, low-overhead channel state informa-
tion feedback, and signaling mechanisms have been proposed
to enable full-duplexing with considerable data rate gains and
significant transmission latency reduction. The intercell radio
frame coordination schemes can also be optimized through
strategic algorithms as in [16], [17], by using a sliding code
book or a cyclic-offset code book.

In practice, WMNs are highly dynamic, where the channels
are frequently changed, leading to time-varying solutions.
As a result, the optimization solutions must be recomputed
every time the system model changes, thus incurring huge
network overhead. The overhead grows dramatically in dense
networks. Fortunately, machine learning techniques can serve
as an effective alternative solution. A multi-agent Q-learning
solution has been proposed to obtain the optimized DL/UL
switching points for TDD femtocell networks [21], in which



each femto BS is an agent, learning the optimal DL/UL switch-
ing policy through trial-and-error search. All agents are non-
cooperative; they consider the local states of traffic demand
and interference, thus each agent guaranteeing a convergence.
However, a system convergence is not guaranteed in which all
agents converge simultaneously. In addition, such a machine-
learning system fails to consider both the dynamic TDD RFC
scheme of the macro BS and the TDD RFCs defined by
3GPP. Another machine-learning framework, called Downlink
to Uplink Ratio Determination (DIANA), was developed to
adjust the TDD RFCs for the hybrid optical-wireless networks
[22]. This framework succeeds in suitably changing TDD
RFC by sensing the traffic changes in the network based on
software-defined networking (SDN) controller knowledge.

Specifically, game theory has been incorporated with RL
to address the problem of self organization in small-cell
networks [18]. The formulated game model considers each
BS as one player, locally learning to optimize transmission
configuration while mitigating the interference. The proposed
model shows a convergence to an epsilon Nash equilibrium
when all small BSs share the same interest. A non-cooperative
game, an extension of that in [18], was formulated, in which
the small BSs are players, and each player learns from its
local traffic load, interference to update DL/UL switching
point [19], or TDD RFC [20]. Similar to [21], none of these
studies considered the dynamic TDD RFC scheme of the
macro BS. Recently, the TDD reconfiguration schemes in TDD
indoor small-cell networks were considered as a multi-agent
Q-learning process, in which the objective is to maximize
the quality-of-experience (QoE) for UEs [23]. However, this
method does not guarantee convergence.

While some excellent works have been proposed to address
the TDD control problem, they are under recognizable re-
strictions. Methods following the optimization approach hardly
adapt to changes in the network model owing to their heavy
computations. In contrast, the methods following the machine-
learning approach can adapt gradually to the network changes;
however, none of the existing studies has considered the
dynamic TDD RFC scheme of the macro BS in addition to
guaranteeing system convergence. Therefore, we are motivated
to research and develop an optimal duplexing solution for
WMN systems.

III. SYSTEM MODEL

In this section, we first analyze the network model, and then
discuss the traffic demand, interference penalty, and spectral
efficiency.

A. Network Model

A typical TDD WMN model consists of three major entities:
MBSs, SBSs, and UEs. Each SBS connects directly to one
local MBS and communicates with the local MBS via the Xn
interface. SBSs do not communicate with each other directly;
however, they can communicate via connections through the
MBS. For simplicity, all BSs are assumed to operate on a
single channel band.

Fig. 2. Wireless and mobile networks from a system-model perspective.

Fig. 2 illustrates an WMN system model, where each
hexagon is one MBS coverage area, comprising one MBS,
K connected SBSs, and U served UEs, operating in the TDD
mode. We assume that all SBSs work in a synchronized man-
ner, i.e., they update TDD RFCs simultaneously. Moreover,
the updating timescale of each BS is assumed to be one radio
frame. Let K = {k | k = 0, 1, . . . , K} denote the set
of indices of K + 1 BSs in one MBS coverage area, where
k = 0 indicates the MBS and k > 0 indicates the SBS k.
Let U = {u | u = 1, 2, . . . , U} denote the set of indices
of U served UEs, where U is the number of subscribed UEs.
The UEs scan to associate to a BS, which has the maximal
received signal strength indication (RSSI). Let φu,k denote
the association between UE u and BS k, where φu,k = 1
indicates that UE u associates with BS k; otherwise φu,k = 0.
We assume that all BSs operate in the closed-access mode,
implying that each BS has its own subscribed UEs, and no
handover is considered.

In the network, each BS selects a TDD configuration from
a set of 7 LTE TDD RFCs [4], as shown in Fig. 3. We assume
that there are T time slots, each of which is denoted by t, with
t = 0, 1, . . . ,T − 1. Let C = {0, 1, ..., 6} denote the set of 7
TDD RFCs specified in [4], and ck(t) ∈ C is the TDD RFC of
BS k at time slot t. Note that different TDD RFCs direct the
BS to serve DL and UL traffic at different subframes, leading
to the ability to adapt to various traffic demands.

B. Traffic Demand Model

The network model supports a wide diversity of user
services and various traffic demands. Each BS maintains DL
buffer partitions, where each partition stores the DL traffic
demand of one UE [21]. In addition, each UE has a UL buffer
to store its UL traffic demand, and all buffers are assumed to be
sufficient for this purpose. We denote qDL

u (t) and qUL
u (t) as the

DL and UL queue lengths of UE u at time slot t, respectively.
The DL and UL residual bit numbers at time slot t of BS k are
QDL

k
(t) and QUL

k
(t), respectively. Then, the value of DL/UL



Fig. 3. TD-LTE uplink–downlink configuration patterns.

traffic demand ratio (TDR) at time slot t for BS k is given by

ψk(t) =
QDL

k
(t)

QUL
k
(t)
=

∑
u∈U

qDL
u (t)∑

u∈U

qUL
u (t)

, φu,k = 1. (1)

For any BS k, the traffic arrivals follow the Poisson arrival
process with aggregated DL rate λDL

k
and aggregated UL rate

λUL
k

. The DL and UL packet sizes in bits are fixed, and can be
denoted as δDL

k
and δUL

k
, respectively. We respectively denote

Pm(k) and Pn(k) as the probabilities of m arrived DL packets
and n arrived UL packets for BS k in time interval T as

Pm(k)=
(λDL

k
T)m

m!
exp(−λDL

k T), (2)

Pn(k)=
(λUL

k
T)n

n!
exp(−λUL

k T). (3)

The TDRs of all BSs are realistic time-varying ratios; hence,
we can model them as finite-state Markov chains (FSMC)
[24]. Because seven TDD RFCs serve six DL/UL TDRs from
40%/60% to 90%/10%, we can partition and quantize the
value of random variable ψk into six discrete levels [1, 2,
3, 4, 5, 6], i.e., TDR = 1, 2, . . . , 6 if ψk ∈ (0, 45%/55%],
(45%/55%, 55%/45%], . . ., (85%/15%, ∞), respectively. Each
level corresponds to a state of the Markov chain, and thus
it forms six-element state-space D = {1, 2, . . . , 6}. The
TDR state realization of ψk at time slot t can be denoted as
dk(t). According to certain transition probabilities, the received
TDR dk(t) varies from one state to another when one time-slot
elapses. The transition probability that dk(t) jumps from one
state xk to another state yk at time slot t can be denoted as
Θxk ,yk (t). The DL/UL TDR state transition probability matrix,
Ψk(t), is defined as

Ψk(t) = [Θxk ,yk (t)]6×6, (4)

where Θxk ,yk (t) = Pr(dk(t + 1) = yk | dk(t) = xk) and xk, yk ∈
D.

C. Interference Penalty Model

One of the main objectives of this work is to mitigate
interference between BSs. In the network model, interference

consists of intercell and intracell interferences, where intercell
interference considers the forward-link interference (FLI) and
cross-link interference (CLI). As all BSs operate on a single-
channel band, the intracell interference is well-mitigated.
Hence, we modeled an interference penalty (IP) according to
the level of the intercell interference only. As a result, the
objective turns into the minimizing of the IP of the BSs.

Each TDD RFC is constructed from 10 subframes, as shown
in Fig. 3, where each subframe indicates resource allocation
for a DL or UL traffic direction, depending on its predefined
character. In one frame, character U indicates an allocation for
UL traffic, D indicates an allocation for DL traffic, and S in-
dicates a switch from DL to UL traffic. Specifically, switching
subframe S is divided into three consecutive portions. The first
is one small DL portion, the second is the gap portion, and last
is one small UL portion. There are nine sub-configurations of
the special subframe, in which the DL portion occupies almost
the entire subframe. Thus, for simplicity, we assume that S also
indicates an allocation for DL traffic.

At a subframe time slot, if two adjacent BSs are under a
traffic asymmetry, e.g., BS k1 serves subframe D while BS
k2 serves subframe U, a severe CLI is formulated between
them. In contrast, if two adjacent BSs are under a traffic
symmetry, e.g., both BS k1 and BS k2 serve subframe D, an
FLI is formulated between them. We observed that the number
of similar and different subframes between TDD RFCs can
present a level of intercell interference. We propose a novel
algorithm, namely IP of Configurations (IPC), to estimate the
IP of BSs based on their TDD RFCs. We denote Ĩ(ck1, ck2 )

as the IP of BS k1 during one frame, considering intercell
interference from neighboring BS k2, where ck1 and ck2 are
their TDD RFCs. The value of Ĩ(ck1, ck2 ) can be calculated as

Ĩ(ck1, ck2 ) = wFF(ck1, ck2 ) + wCC(ck1, ck2 ), (5)

where F(ck1, ck2 ) and C(ck1, ck2 ) represent the numbers of sim-
ilar and different subframes between ck1 and ck2 , respectively,
and wF and wC specify the weights of the penalty for FLI and
CLI, respectively. In the dynamic TDD schemes, the value
of wC should be larger than that of wF because cross-link
channels are highly contradictory to each other, while forward-
link channels are nearly in the same direction.

Based on the predefined LTE TDD RFCs, we formulated
the values of F(ck1, ck2 ) and C(ck1, ck2 ) as listed in Tab. I.

D. Spectral Efficiency

Given the realization of DL/UL TDR and TDD RFC states
of other BSs, each BS decides a TDD RFC. Then, it observes
a return in terms of the DL and UL rates. We adopted a
block fading model, which includes one each of large-scale
and small-scale fading components [25], [26]. The channel
gain at time slot t is obtained as follows.
• For the DL from BS k to UE u,

gk ,u(t) = |hk ,u(t)|2αk ,u (6)

• For the UL from UE u to BS k,

gu,k(t) = |hu,k(t)|2αu,k, (7)



TABLE I
NUMBER OF SIMILAR AND DIFFERENT SUBFRAMES BETWEEN

TDD CONFIGURATIONS

RFC No. 0 1 2 3 4 5 6

(FLI |CLI) (F |C) (F |C) (F |C) (F |C) (F |C) (F |C) (F |C)

0 10 | 0 8 | 2 6 | 4 7 | 3 6 | 4 5 | 5 9 | 1

1 8 | 2 10 | 0 8 | 2 7 | 3 8 | 2 7 | 3 9 | 1

2 6 | 4 8 | 2 10 | 0 7 | 3 8 | 2 9 | 1 7 | 3

3 7 | 3 7 | 3 7 | 3 10 | 0 9 | 1 8 | 2 8 | 2

4 6 | 4 8 | 2 8 | 2 9 | 1 10 | 0 9 | 1 7 | 3

5 5 | 5 7 | 3 9 | 1 8 | 2 9 | 1 10 | 0 6 | 4

6 9 | 1 9 | 1 7 | 3 8 | 2 7 | 3 6 | 4 10 | 0

where hk ,u(t) and hu,k(t) are the small-scale fading compo-
nents at time slot t; αk ,u and αu,k are the large-scale fading
components, which do not change over the time slots.

In this study, we assume that all BSs do not change DL
transmission power, and all UEs have the same UL transmis-
sion power. Let Pk denote the DL transmission power of BS k,
and p denote the UL transmission power of UEs. The signal-
to-interference-plus-noise ratio (SINR) of DL and UL traffic
at time slot t are calculated with both FLI and CLI as follows:

• For the DL from BS k to UE u,

Υk ,u(t) =
gk ,u(t)Pk∑

l∈K\{k }

gl,u(t)Pl +
∑

v∈U\{u }

gv,u(t)p + σ2
(8)

• For the UL from UE u to BS k,

Υu,k(t) =
gu,k(t)p∑

l∈K\{k }

gl,k(t)Pl +
∑

v∈U\{u }

gv,k(t)p + σ2
, (9)

where σ2 is the additive white Gaussian noise power spectral
density, which is assumed to be the same at all receivers.

During one radio frame, each BS was assumed to serve one
UE with its single channel band. Then, system rate (Sk(F))
of BS k during one radio frame F can be expressed as a
weighted sum of DL rate (Sk ,u(t)) within DL subframes and
UL rate (Su,k(t)) within UL subframes as follows.

Sk(F) = wDSk ,u(t) + wUSu,k(t)

= wD

∑
FD

Wk log2(1 + Υk ,u(t))

+ wU

∑
FU

Wk log2(1 + Υu,k(t)), (10)

where wD and wU are the weights of the DL and UL, and
they specify how much DL and UL rates contribute to the
system rate; FD and FU are the sets of DL and UL subframes
in frame F; Wk is the single channel bandwidth; and u is the
served UE of BS k.

IV. DEEP REINFORCEMENT LEARNING FOR DUPLEXING
CONTROL

In this section, we first introduce RL and deep Q-learning
algorithms and then describe the learning algorithms of the
MBS and SBSs.

A. Overview of RL and Deep Q-learning

RL is a robust machine learning technique, which aims to
maximize long-term rewards [27]. An RL agent learns to take
action by interacting with the environment. The outstanding
features of RL are trial-and-error search and delayed reward.
Trial-and-error search presents a trade-off between exploration
and exploitation based on a specific probability, while delayed
reward indicates that the agent can consider either an immedi-
ate or cumulative rewards in the long run in the value function.
This flexibility can be achieved by setting discounting factors
to cumulative rewards [28]. In RL, the environment can be
described as a Markov decision process (MDP), in which the
state space, state transition probability, and reward function are
not necessarily required [27]. We can classify RL into model-
based and model-free based on the existence of environmental
state-transition probability. Model-based RL must perform
supervised learning with an inherent model [29], [30]. In
contrast, model-free RL can learn parameters from zeros.
Some recent studies have shown that model-free reinforcement
can handle deep neural networks effectively [30]–[32]. The
raw state representations of complex systems can be inputted
directly to the neural networks for training.

Q-learning is a typical model-free RL algorithm [33], which
stores Q-value for each state-action pair. The Q-value can
be implemented using a look-up table or evaluated by a
nonlinear approximator, i.e., a deep neural network. Deep
Q-learning is introduced initially to teach machines to play
games without human control [34]. It uses neural networks
to process the raw state representation input directly. The key
idea of the deep Q-learning algorithm is to approximate the
Q-value by using a deep neural network, so-called the deep
Q-network (DQN). Given neural network parameters θ, the
Q-value function can be represented by Q(s,a; θ), in which s
and a are the state vector and action, respectively. The neural
network is trained by updating θ to approximate the Q-value
based on the interacting experiences of the agent. Mnih et
al. [30] proved that deep Q-learning is more advantageous
than conventional Q-learning with higher performance and
faster convergence. However, the performance of the deep Q-
learning algorithm might not be stable owing to the use of
a nonlinear approximator. Therefore, an advanced version of
deep Q-learning, namely deep double Q-learning [35], was
developed to address this issue, and it shows the following
three improvements.

1) Feature set: We determined the state features to feed
into the multilayer deep convolution networks, which
utilize hierarchical layers of tiled convolution filters, to
exploit the local spatial correlations and make it possible
to extract high-level features from raw input data [27],
[36]. As such, all features of each state are trained in
the deep convolution neural network.



2) Experience replay mechanism: The algorithm stores in-
teraction experience tuples, ex(t) = 〈st,ast ,rt, st+1〉, into
a replay memory pool, M(t) = {ex(1), . . . , ex(t)}. The
learning process was performed using random samples
from the memory pool rather than directly using the
consecutive samples as in Q-learning. This allows the
network to learn efficiently by randomly considering any
experience instead of focusing on the immediate expe-
rience. The algorithm also breaks down the correlations
between observations to achieve better stability.

3) Target Q-network: We adopted a second neural network
for updating the target Q values. In the training process,
value estimations can be out of control if one network
is used for both estimated and target Q values. Thus,
another target network was set to reduce the correlations
between the target and estimated Q-values, and it can
improve the stability of the algorithm.

In the training phase of deep double Q-learning algorithm,
multiple episodes are implemented. In each episode, a state
is observed, and then the agent selects an action based on
the ε-greedy strategy, which ensures both exploration and ex-
ploitation. The algorithm prefers exploration at the beginning
with a reasonably randomized policy and later slowly moves
toward exploiting a deterministic policy. Next, the system
performs the selected action and observes a reward and next
state. The experience tuple is then saved to the replay memory
for the training process at later steps. Random batches of
experience are sampled from the replay memory and fed into
the neural networks for training. A loss function is formulated
between the estimated and target Q-values. The algorithm then
updates network parameters by minimizing the loss function
at each iteration. Loss function was minimized by mini-batch
Stochastic Gradient Descent (SGD) algorithm, which has the
benefits of computation cost and training speed. Loss function
L(θ) can be presented as follows:

L(θ) = E
〈s,as ,r ,s′〉

[(
ȳ − Q(s,as; θ)

)2]
, (11)

where ȳ is the target Q-value of the target Q-network and θ is
the parameters of the training Q-network. The target Q-value
is calculated as follows:

ȳ = r + γQ
(
s′,argmax

as′

Q(s′,as′ ; θ); θ̄
)
, (12)

where γ is the discounting factor and θ̄ is the parameters of
the target Q-network. Here, θ̄ can be updated every G steps.

In this work, we considered the WMN model under realistic
scenarios, in which the traffic demand of each BS dynamically
changes. Moreover, the duplexing strategies of the neighboring
BSs are strictly related as they can either mutually reduce or
enlarge the interference. As a result, the optimal duplexing
strategy of one BS must consider both the various traffic
demands and duplexing strategies of the other BSs. This leads
to a large number of system states for any BS, especially when
the number of SBSs increases. Moreover, the advantages of
deep double Q-learning algorithm can help solving the large
state-space problems effectively. Therefore, we propose to use
the deep double Q-learning algorithm for training TDD RFC
policies of the BSs.

Algorithm 1 MBS deep double Q-learning algorithm
1: Initialize experience replay buffer.
2: Initialize training Q-network Q with parameters θM .
3: Initialize target Q-network Q with parameters θ̄M = θM .

% Training
4: for episode n = 1, . . . ,N do
5: Observe the environment and formulate the MBS

beginning state Ξ0(1), including
6: DL/UL TDR of MBS.
7: Previous TDD RFCs of all SBSs.
8: for t = 1,2, . . . ,T do
9: Choose an action a0(t) based on ε-greedy strategy.

10: Perform action a0(t)
11: Observe reward R0(t) and next state Ξ0(t + 1).
12: Store experience tuple 〈Ξ0(t),a0(t),R0(t),Ξ0(t+1)〉

into the replay buffer.
13: Sample a random batch of M experience tuples.
14: Calculate target Q-value ȳ of the target Q-network.
15: Calculate the loss L(θM ).
16: Perform SGD on L(θM ) with respect to θM .
17: Update the training Q-network parameters θM .
18: Every G steps, update the target Q-network param-

eters with rate σ.
19: θ̄M = σθM + (1 − σ)θ̄M .
20: end for
21: end for

B. MBS Deep Double Q-learning Algorithm

We consider the time scale over radio frames for MBS
training, in which one time-slot is one radio frame. To obtain
the optimal RFC policy for the MBS, it is necessary to identify
the states, actions, and reward function, as described in the
following subsections.

1) States: The state of the MBS at time frame t is de-
termined by the realization of state d0(t) of random
variable ψ0 and the realization of previous TDD RFC
states {ck(t − 1) | k = 1, 2, . . . , K} of all K SBSs.
Consequently, the state vector of the MBS at time frame
t can be described as follows:

Ξ0(t) = [d0(t), c1(t − 1), . . . , cK (t − 1)] . (13)

2) Actions: The MBS selects a random or specific TDD
RFC for exploration or maximizing the long-term return,
respectively. We denote the action of the MBS as

a0(t) ∈ C = {0, 1, 2, . . . , 6}. (14)

3) Reward function: In this work, we consider the weighted
sum of DL and UL rates to be the reward of the
MBS. Additionally, the reward must have a penalty for
raising intercell interference in the network. Therefore,
we define the reward of the MBS as follows:

R0(t) = S0(t) −
∑

k∈K\{0}
Ĩ(a0(t), ck(t − 1)). (15)

At time frame t, the MBS achieves reward R0(t) when
action a0(t) is performed with observed state Ξ0(t). The



Algorithm 2 SBS deep double Q-learning algorithm
1: Initialize experience replay buffer.
2: Initialize training Q-network Q with parameters θS .
3: Initialize target Q-network Q with parameters θ̄S = θS .

% Training
4: for episode n = 1, . . . ,N do
5: Observe the environment and formulate the SBS be-

ginning state Ξk(1), including
6: DL/UL TDR of SBS k.
7: Previous TDD RFCs of MBS, neighboring SBSs.
8: for t = 1,2, . . . ,T do
9: Choose an action ak(t) based on ε-greedy strategy.

10: Perform action ak(t)
11: Observe reward Rk(t) and next state Ξk(t + 1).
12: Store experience tuple 〈Ξk(t),ak(t),Rk(t),Ξk(t+1)〉

into the replay buffer.
13: Sample a random batch of M experience tuples.
14: Calculate target Q-value ȳ of the target Q-network.
15: Calculate the loss L(θS).
16: Perform SGD on L(θS) with respect to θS .
17: Update the training Q-network parameters θS .
18: Every G steps, update the target Q-network param-

eters with rate σ.
19: θ̄S = σθS + (1 − σ)θ̄S .
20: end for
21: end for

goal is to find the optimal RFC policy for the MBS
to maximize the long-term return. Thus, the duplexing
control problem of the MBS can be expressed as follows:

Rlong
0 = max

a0(t)
E
[ T−1∑
t=0

ξ tR0(t)
]
, (16)

where ξ t approaches zero when t is large enough.
The training algorithm of the MBS is described in Alg. 1.

Here, the MBS collects the status of the current traffic demand
and previous TDD RFCs of SBSs. Then, it assembles the
whole information into a system state and processes it to
obtain a TDD RFC action based on the ε-greedy strategy (see
lines 5–9 in Alg. 1). The network model returns a reward in
terms of achievable system rate and interference penalty, and
the experience is saved to the replay memory (see lines 10–
12 in Alg. 1). DQN parameters θ is updated after performing
gradient descent on the loss of training Q-values with mini-
batch samples of experience (see the last lines in Alg. 1).

C. SBS Deep Double Q-learning Algorithm

Each SBS is deployed a deep double Q-learning algorithm
to learn its optimal RFC policy. We consider that an SBS has
some neighboring SBSs that significantly generate intercell
interference. Then, we set an interference threshold to specify
the neighboring SBSs. As the positions of SBSs in the network
are not frequently changed, we assume that during T time
frames, the neighboring SBSs of any SBS also do not change.
Let Zk = {z1, . . . , zZ } denote the set of Z neighboring SBSs
of SBS k.

Similar to the MBS training, we consider the time scale
over radio frames for SBS training, where one time-slot is
one radio frame. To obtain the optimal TDD RFC policies for
SBSs, it is necessary to identify the states, actions, and reward
function, described as follows.

1) States: The state of SBS k at time frame t is deter-
mined by realizing state dk(t) of random variable ψk

and the previous TDD RFC states {c0(t − 1), cz1 (t −
1), . . . , czZ (t−1)} of the MBS and Z neighboring SBSs.
Consequently, the state vector of SBS k at time frame t
can be described as follows:

Ξk(t) =
[
dk(t), c0(t − 1), cz1 (t − 1), . . . , czZ (t − 1)

]
.

(17)
2) Actions: Each SBS selects a random or specific TDD

RFC for exploration or maximizing the long-term return,
respectively. We denote the action of SBS k as follows:

ak(t) ∈ C = {0, 1, 2, . . . , 6}. (18)

3) Reward function: Similar to the MBS, each SBS receives
a comprehensive reward, which is the weighted sum of
DL and UL rates, in addition to a negative penalty owing
to intercell interference. Therefore, we can define the
reward of SBS k as follows:

Rk(t) =Sk(t) − Ĩ(ak(t), c0(t − 1))
−

∑
z∈Zk

Ĩ(ak(t), cz(t − 1)). (19)

At any time frame t, SBS k achieves reward Rk(t) when
action ak(t) is performed with observed state Ξk(t). The
goal is to find the optimal TDD RFC policy for SBS k
to maximize the long-term return. Thus, the duplexing
control problem of SBS k can be expressed as follows:

Rlong
k
= max

ak (t)
E
[ T−1∑
t=0

ξ tRk(t)
]
, (20)

where ξ t approaches zero when t is large enough.
Alg. 2 is the SBS training algorithm, where each SBS

collects the status of the current traffic demand and previous
TDD RFCs of the MBS and neighboring SBSs. Then, it
assembles the whole information into a system state and
processes it to obtain a TDD RFC action based on the ε-greedy
strategy (see lines 5–9 in Alg. 2). The network model returns
a reward in terms of achivable system rate and interference
penalty, and the experience is saved to the replay memory
(see lines 10–12 in Alg. 2). DQN parameters θ is updated after
performing gradient descent on the loss of training Q-values
with mini-batch samples of experience (see the last lines in
Alg. 2).

V. HIERARCHICAL STACKELBERG GAME

Next, we propose a coordination scheme for training the
MBS and SBSs as a single-leader multi-follower Stackelberg
game [5], in which the leader is the MBS and followers are
SBSs.

The relationship between the MBS leader and its SBS
followers is illustrated in Fig. 4. The RFC policy training



processes of the BSs are adjusted to follow the Stackelberg
game’s hierarchical architecture. The leader and followers
sequentially select their TDD RFCs, which aim to maximize
the long-term return in terms of system rate while mitigating
intercell interference. We consider that each game turn is
scaled to one radio frame. For example, during frame F, the
MBS leader observes traffic demand and TDD RFCs of all
SBSs, and then selects a TDD RFC c0(F +1) based on Alg. 1
at the beginning of frame F + 1. The SBS followers observe
their traffic demands during frame F+1 as well as the RFC of
the MBS leader at this frame along with RFCs of other SBSs
at frame F; they then simultaneously select their TDD RFCs
at the beginning of frame F + 2 based on Alg. 2. These TDD
RFCs are transferred back to the MBS leader for playing a
new turn at frame F + 3. The system will iterate game turns
at the next frames until achieving the game equilibrium.

Generally, a Stackelberg game framework is optimized
by seeking equilibrium, which includes the Nash equi-
librium (NE) among the followers and the Stackelberg–
Nash equilibrium (SNE) between the leader and followers
[5]. Let fk(c0, c1, . . . , ck, . . . , cK ) with k ∈ 1, . . . ,K and
F(c0, c1, . . . , cK ) denote the utility functions of SBS follower
k and MBS leader, respectively. We can define NE and SNE
for our Stackelberg game as follows.

Definition 1. The NE among K SBS followers is a feasible
RFC policy vector (c∗1, . . . , c

∗
k
, . . . , c∗K ), which satisfies

fk(c0, c∗1, . . . , c
∗
k, . . . , c

∗
K ) > fk(c0, c∗1, . . . , ck, . . . , c

∗
K ), (21)

where k ∈ 1, . . . ,K and c0 is a given TDD RFC of the MBS
leader.

Definition 2. The SNE between the MBS leader and SBS
followers is a feasible RFC policy vector (c∗0, c

∗∗
1 , . . . , c

∗∗
K ),

which satisfies

F(c∗0, c
∗∗
1 , . . . , c

∗∗
K ) > F(c0, c∗1, . . . , c

∗
K ), (22)

where (c∗∗1 , . . . , c
∗∗
K ) and (c∗1, . . . , c

∗
K ) are the NEs with respect

to c∗0 and c0, respectively.

Then, we can formulate a general problem to find the game
equilibrium (NE and SNE) as follows:

max
c0

F(c0, c∗1, . . . , c
∗
K ), (23)

s.t. c∗k = argmax
ck

fk(c0, c∗1, . . . , ck, . . . , c
∗
K ). (24)

In our Stackelberg game, the subgame of each SBS follower
(Eq. (20)) optimizes its TDD RFC, considering the TDD RFCs
of the MBS leader and Z neighboring SBS followers. As
the effect of non-neighboring SBS followers on the utility
of one SBS follower is small, we can apply the solution
of the followers in (20) to the game equilibrium problem in
(24). Furthermore, the subgame of the MBS leader (Eq. (16))
optimizes its TDD RFC by considering the TDD RFCs of all
SBS followers. Therefore, the solution of the leader in (16)
achieves the perfect Stackelberg game equilibrium in (23).

Fig. 4. Hierarchical relationship between the MBS and SBSs in the Stackel-
berg game.

VI. PERFORMANCE EVALUATION

In this section, simulations were conducted to illustrate
the performance of the proposed duplexing framework under
different parameter settings and the results were compared
with those of the existing duplexing schemes.

A. Simulation Settings

For the simulation environment, we set up a GPU-based
server empowered by Nvidia GPU version GTX 1050 Ti. In
addition, the server has a CPU Intel Core i5-8500 with 250-GB
memory. We implemented our simulations on Matlab R2019a
[37] with the Reinforcement Learning Toolbox, Python 3.7,
and Windows 10 Education. It provides functions and blocks
for training policies using RL algorithms. The system also
supports the effective training of policies using deep neural
networks such as deep double Q-learning. We extended the
built-in features of the Reinforcement Learning Toolbox to
implement the MBS and SBS deep double Q-learning algo-
rithms.

To evaluate the advantages of the proposed framework, we
additionally consider the following three popular schemes for
a comprehensive comparison:

1) Fixed RFC strategy, wherein all BSs maintain their fixed
RFCs. This scheme installs a TDD RFC for each BS,
and the TDD RFC does not change regardless of the
changes of traffic demand in the network.

2) Random RFC strategy, wherein all BSs arbitrarily select
their own TDD RFC among standard RFCs [4] at the
beginning of every frame.

3) Traffic-matched RFC strategy, wherein the network se-
lects RFCs that best match each traffic demand (Tab. II).
In this scheme, each BS computes the remaining sum of
DL and UL traffic from the associated UEs. Next, BS
chooses the RFC closest to the DL/UL TDR.

We set up a network model, in which all SBSs are uni-
formly distributed around the MBS, while UEs are randomly
distributed within the MBS coverage area. We assume that
the bandwidth of each BS is normalized. The various DL/UL
TDR states, which we defined in section III-B, follow the
Markov model. In our simulations, we used different Poisson
DL and UL arrival rates for investigating the efficiency of the
proposed framework in various scenarios. Based on the gener-
ated arrival-rate datasets, we obtained the transition probability



TABLE II
RECONFIGURATION STRATEGY OF THE TRAFFIC-MATCHED SCHEME

Condition Selected configuration

DL/UL TDR ≤ 45%/55% 0

DL/UL TDR ≤ 55%/45% 6

DL/UL TDR ≤ 65%/35% 1

DL/UL TDR ≤ 75%/25% 3

DL/UL TDR ≤ 85%/15% 2 or 4, randomly

Otherwise 5

between six DL/UL TDR states in three different scenarios,
as follows.
• Network system mostly maintains a DL/UL TDR (Sce-

nario Ψ1), e.g., the networks in smart factories, smart
buildings, and smart offices. Here, the highest probability
remains at the previous DL/UL TDR state.

Ψ1 =



0.4 0.25 0.15 0.1 0.06 0.04
0.2 0.4 0.2 0.1 0.06 0.04

0.08 0.2 0.4 0.2 0.08 0.04
0.04 0.08 0.2 0.4 0.2 0.08
0.04 0.06 0.1 0.2 0.4 0.2
0.04 0.06 0.1 0.15 0.25 0.4


(25)

• Network system tends to change DL/UL TDR by a small
amount to that the level of a neighbor (Scenario Ψ2), e.g.,
the networks of institutions, schools, and campuses. The
highest probability is obtained in the cases of changing
DL/UL TDR state to a neighbor level.

Ψ2 =



0.2 0.4 0.2 0.1 0.06 0.04
0.35 0.15 0.35 0.07 0.05 0.03
0.08 0.35 0.1 0.35 0.08 0.04
0.04 0.08 0.35 0.1 0.35 0.08
0.03 0.05 0.07 0.35 0.15 0.35
0.04 0.06 0.1 0.2 0.4 0.2


(26)

• Network system tends to change DL/UL TDR by a
large amount to a different level (Scenario Ψ3), e.g.,
the networks in specific places such as stadiums, parks,
exhibitions, and convention centers. Here, the highest
probability is the change of the DL/UL TDR state to a
distinct level.

Ψ3 =



0.04 0.06 0.1 0.15 0.25 0.4
0.08 0.04 0.08 0.15 0.25 0.4
0.2 0.08 0.04 0.08 0.2 0.4
0.4 0.2 0.08 0.04 0.08 0.2
0.4 0.25 0.15 0.08 0.04 0.08
0.4 0.25 0.15 0.1 0.06 0.04


(27)

The simulation parameters are summarized in Tab. III.

B. Simulation Results

First, we investigate the effects of the DL and UL weights
on the convergence of the proposed framework, followed
by the performance comparisons with the existing duplexing
strategies in terms of system-rate achievement and intercell

TABLE III
SIMULATION PARAMETERS

Parameter Value Description

Sect 3 The number of sectors of the MBS

K {3, 6, 9, 12} The number of SBSs

Wk 10 MHz The bandwidth of BS k allocated to UEs

P0 46 dBm The transmit power of the MBS

Pk 30 dBm The transmit power of SBS k

p 20 dBm The uploading power of UEs

wF 0.03 The weight of forward-link interference

wC 0.07 The weight of cross-link interference

T 200000 The number of training time frames

γ 0.7 The discounting factor

α 0.9 The learning rate, alphaDecay = 0.9998

ε 0.7 The exploration probability, Decay = 0.9994
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Fig. 5. Convergence performance of the proposed framework with different
parameter settings of the DL and UL rates, for an MBS coverage area with
12 SBSs.

interference reduction. The former TDR transition probability
matrix, in which the network system mostly maintains a
DL/UL TDR, is selected as the baseline. Then, we finally
prove the outstanding performance of the proposed framework
over various TDR transition probabilities.

Fig. 5 shows the convergence of the proposed framework
under different scenarios with different weights of DL and
UL rates, i.e., wD = 0.8,wU = 0.2; wD = 0.6,wU = 0.4;
and wD = 0.3,wU = 0.7. In the first scenario, the network
provider desires to increase DL traffic service to the users.
The second scenario involves a near balance between serving
DL and UL traffic. The last scenario investigates the case
when the network provider wants to earn more profit from
serving UL traffic. In all three scenarios, when the number of
episodes increases, we observe that the total system reward
increases until it reaches a relatively stable value. The system
reward converges to around 440 in the case of the highest
DL weight, while it converges to around 150 in the case
of the lowest DL weight. In the case of balancing DL and
UL weights, the reward converges to around 330. The results
show that our proposed framework can not only converge with
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Fig. 6. Convergence performance of the deep double Q-learning algorithms
of the MBS and SBSs with different parameter settings of the DL and UL
rates, for an MBS coverage area with 12 SBSs.

different weights of DL and UL rates but also support the
network provider to analyze a profiting strategy as relatively
serving biased traffic requests. In particular, the total system
reward reaches the highest in the first scenario; hence, we use
the first settings wD = 0.8,wU = 0.2 for later performance
comparisons.

Fig. 6 presents the convergence performance of the deep
double Q-learning algorithms of the MBS and SBSs. Here,
similar to the convergence analysis of the whole framework,
we considered different scenarios with different weights of DL
and UL rates, wD = 0.8,wU = 0.2; wD = 0.6,wU = 0.4; and
wD = 0.3,wU = 0.7. Fig. 6 shows that the system reward of the
MBS is meager at the beginning of the training process. When
the number of episodes increases, the reward increases and
converges to a relatively stable value. The figure also shows
a similar convergence performance of the SBS deep double
Q-learning algorithm. However, unlike the system reward of
the MBS, the SBS average system reward is higher at the
beginning of the training process. It gradually reduces as the
number of episodes increases. However, the system rate of
the SBSs in the proposed framework is still better than in the
existing duplexing schemes, as discussed later.

Fig. 7 shows the efficiency of our proposed framework
compared to the existing methods such as the fixed TDD RFC
strategy, random TDD RFC strategy, and traffic-matched TDD
RFC strategy. The figure shows that the overall system rate in
our proposed scheme is higher than in the existing schemes.
Specifically, our proposed framework achieves a system rate
of around 450, while the random and fixed TDD RFC schemes
achieve a system rate of around 350. The system rate is lowest
at around 330 in the traffic-matched TDD RFC scheme.

Fig. 8 illustrates the efficiencies of the training algorithms
of the MBS and SBSs over the existing strategies. During
the training processes, we set a decay value for the explo-
ration probability to improve the convergence rate. Then, for
checking the efficiency of the training processes, we selected
the final exploration probability of zero. The results were
extracted from last 6000 time frames. Fig. 8 shows that the
MBS system rate after training with the proposed MBS deep
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Fig. 7. Total achievable system rate of different schemes for an MBS coverage
area with 12 SBSs. (wD = 0.8,wU = 0.2, ε = 0,T = 60000 frames)
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double Q-learning algorithm is more stable than that obtained
by the existing strategies. In addition, the MBS system rate
obtained using our proposed MBS training algorithm is mostly
higher than that obtained using the random TDD RFCs,
fixed TDD RFCs, and the TDD RFCs matching the traffic
demand. Similarly, Fig. 8 shows that the average system rate
of the SBSs obtained using our proposed SBS deep double
Q-learning algorithm is also more stable and significantly
improved as compared with those obtained using the existing
strategies.

In Fig. 9, the mean of the boxplots shows that the overall
intercell interference is reduced more in our proposed frame-
work than when using the existing schemes. The intercell
interference is proportional to the network topology scale. In
particular, the interference is relatively small in the network
topologies with 3 and 6 SBSs, while it dramatically increases
in topologies with 9 and 12 SBSs. Moreover, the ranging
interval of intercell interference in our proposed framework is
much smaller with least outliers than those in the random TDD
RFC, and traffic-matched TDD RFC schemes. In addition, the
interval is comparable to the fixed TDD RFC scheme. In other
words, our proposed framework provides a stable interference



Fig. 9. Comparison of the aggregated intercell interference-reduction perfor-
mances. (wD = 0.8,wU = 0.2, ε = 0,T = 60000 frames)
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Fig. 10. Overall system-performance comparison between our proposed
framework and the existing schemes, considering different transition prob-
abilities of the DL/UL traffic demand ratio. (wD = 0.8,wU = 0.2, ε =
0,T = 60000 frames)

control while the environment is dynamic.
Fig. 10 shows the comparison between the system perfor-

mances of our proposed framework and the existing schemes,
considering the training processes under different scenarios,
such as the traffic demand mostly maintaining the DL/UL
TDR, changing a small amount to a near DL/UL TDR, and
tending to change a large amount to a distinct DL/UL TDR.
The result is computed as the average between 10 simulations.
The figure shows that the total system rate in our proposed
scheme is higher than in the random, traffic-matched, and fixed
TDD RFC schemes. The variance of the total system rate in
our proposed scheme is smaller than those in the random and
traffic-matched TDD RFC schemes. This proves the stability
achievement of our proposed framework.

VII. CONCLUSIONS

In this study, we developed the optimal duplexing frame-
work, which allows the network to adapt radio frames to
various traffic demands while mitigating intercell interference
between the BSs. To deal with the dynamic nature and
uncertainty of the DL and UL traffic asymmetry, we utilized

the deep Q-learning algorithm at each BS for learning its
own optimal TDD radio frame configuration. We further
accelerated the learning processes by implementing a single-
leader multi-follower Stackelberg game, wherein the leader is
the MBS and the followers are the SBSs. Extensive simulations
showed that the proposed framework significantly improves
the system utility by approximately 30% in terms of the long-
term average system rate and interference reduction, compared
to that obtained by the existing algorithms. Future work
will involve adopting the proposed framework into 5G TDD
systems, which utilize the 5G new radio Slot Format [38].
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