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Energy-Efficient Directional Charging Strategy for
Wireless Rechargeable Sensor Networks

Donghyun Lee, Cheol Lee, Gunhee Jang, Woongsoo Na, and Sungrae Cho

Abstract—Mobile chargers (MCs) equipped with radio fre-
quency (RF)-based wireless power transfer (WPT) modules have
been suggested as a possible solution to battery constraints
in wireless rechargeable sensor networks (WRSNs). In RF-
based WPT, charging efficiency decreases significantly as the
charging distance increases. Therefore, single-charging consumes
less energy than multicharging because it can generally charge
a sensor node at a closer range. However, when the density
of nodes is high, multicharging may achieve higher efficiency.
We propose an energy-efficient adaptive directional charging
(EEADC) algorithm that considers the density of sensor nodes to
adaptively choose single- or multicharging. The EEADC exploits
directional antennas to concentrate the energy and improve
energy efficiency and identifies the optimum charging points
and beam directions to minimize energy consumption. In the
EEADC, clustering is performed by considering the density of
the sensor nodes. After clustering, the clusters are classified into
single-charging/multicharging clusters according to the number
of sensor nodes in each cluster. Next, the charging strategy
is determined according to the type of cluster. In the case of
a multicharging cluster, the problem is nonconvex. Therefore,
a discretized charging strategy decision (DCSD) algorithm is
proposed. The performance evaluation indicates that EEADC
outperforms two existing methods in terms of power consumption
and charging delay by 10% and 9%, respectively.

Index Terms—Wireless power transfer, wireless rechargeable
sensor networks, mobile charger, directional wireless power
transfer

I. INTRODUCTION

RECENTLY, the use of wireless rechargeable sensor net-
works (WRSNs) has increased in many fields, such

as smart factories [1], smart vehicles, and smart cities. The
location of the wireless sensor network (WSN) does not
need to be optimized or determined in advance [2]. This
allows for the random placement of rechargeable sensors in
inaccessible terrain or disaster situations. Applications include
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military and environmental purposes. By dropping sensor
nodes in large quantities from airplanes, sensor networks can
be quickly deployed to configure networks such as communi-
cation, surveillance, reconnaissance, and targeting systems [3].
In addition, sensors can be deployed in inaccessible areas that
are biologically or chemically contaminated to provide remote
assistance. However, battery-powered WRSNs often hamper
the smooth functioning of networks because of their limited
energy. Moreover, access to conflict zones or contaminated
environments is limited. To resolve this limitation, research is
being conducted on mobile chargers (MCs) based on vehicles
equipped with a wireless power transfer (WPT) module that
travel to areas where sensor nodes are arranged to charge
sensor batteries.

In particular, owing to the higher energy efficiency, research
employing directional antennas in WPT modules is being
conducted to concentrate transmitted energy onto nodes. In
[4], clustering was performed: an MC charged a cluster head,
which then transferred its energy to its uncharged nodes. This
method resulted in some energy loss owing to the distances
among nodes. In particular, [4] proposed a single-charging
method in which the MC charges one sensor at a time. In
[5], an omnidirectional antenna was used for multicharging.
However, because the omnidirectional antenna transmitted
power in all directions, some energy was wasted. In [6], a
WRSN was charged using a directional antenna via a multi-
charging method. It determines charging points (or anchors)
from candidate charging points by considering the energy
consumption of the MC. The implementation in [7] was tested
in [6]. Unlike [6], [7] minimized the charging delay at the
given anchors.

However, multicharging is not always the best option. It
may lead to a lower power transfer efficiency if the sensors
are located far from the MC, even if they are densely deployed.
Therefore, the charging method (i.e., single or multicharging)
should be chosen adaptively based on the current topology
of the sensors. In this study, we propose a mobile charging
strategy, referred to as the energy-efficient adaptive directional
charging (EEADC) algorithm, which determines whether to
use the single-charging or multicharging method according to
the node density. Unlike [6], [7], EEADC determines the
optimum charging points, beam directions, charging power,
and charging time by considering the node density to minimize
the overall energy consumption. EEADC consists of two
stages. In the first stage, clustering is performed by considering
the density of sensor nodes using the well-known mean-shift
algorithm [8]. After clustering, each cluster is classified as
a single-charging or multicharging cluster according to the
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number of sensor nodes it contains. The charging strategy
(single-charging/multicharging), which includes the charging
point, beam direction, charging power, and charging time, is
then determined according to the type of cluster. In the second
stage, if a cluster is classified as a multicharging cluster, the
problem of determining the charging strategy is nonconvex.
Thus, in this study, an efficient discretized charging strategy
decision (DCSD) algorithm is proposed. The DCSD divides
the problem into two subproblems, and candidate charging
points are obtained by solving the first subproblem. In the sec-
ond subproblem, the point with the lowest energy consumption
among the candidate charging points is selected as the optimal
charging point.

This study provides the following main contributions.
• To the best of our knowledge, the EEADC algorithm is

the first attempt to consider single-charging/multicharging
strategies adaptively. In our work, because the charg-
ing strategy is dynamically determined according to the
charging efficiency, we can always achieve the same
charging efficiency or better than single charging, and
reduce energy waste due to overuse of multicharging.

• Instead of using the K-means algorithm, which is
employed in the majority of MC clustering methods,
EEADC exploits a mean-shift algorithm considering node
density to determine single/multicharging clusters.

• In the case of a multicharging cluster, because the prob-
lem of finding the optimal charging point, beam direc-
tion, charging power, and charging time is a nonconvex
problem, the DCSD algorithm is proposed to solve the
problem efficiently.

The remainder of this paper is organized as follows. In Sec-
tion II, we present a literature review of charging strategies for
wireless rechargeable sensor networks. Section III introduces
the basic charging and network models, basic assumptions,
and the adaptive charging scheduling problem. Section IV
describes EEADC and DCSD. Section V presents the simu-
lation results of EEADC in terms of energy consumption and
charging delay. The conclusions are presented in Section VI.

II. RELATED WORK

The most important issue regarding WRSNs is the efficient
use of the limited energy available to maintain the network [9].
Wireless power transmission and MCs have been introduced to
overcome this limitation. In this regard, many related studies,
including this study, have focused on various efficiencies. To
the best of our knowledge, Wang et al. proposed the first
technique to use a fixed charger with directional antennas
[10]. They proposed a radio frequency (RF)-based WPT in
which a base station (BS) with multiple directional antennas
charged the sensor nodes. In [11], a fixed charger employing
a directional antenna was presented, wherein the charger
placement was optimized using a charging utility algorithm.
Zhihua et al. [12] proposed the use of mobile directional
chargers to charge WRSNs. The charging area formed a
grid based on the directions of the antennas. However, the
grid was optimized without considering energy consumption.
In contrast, a charging method that charges multiple nodes

simultaneously referred to as the multicharging method was
proposed in [10]–[12]. In [13], the authors attempted to solve
the energy problem in WRSNs that provide mobile multimedia
services. In these WRSNs, nodes far away from other nodes
always use a higher amount of energy to transmit data.
As a result, there is a high probability that the available
residual energy will be low. In [13], the authors attempted
to balance the energy among the nodes of WRSNs through
appropriate routing and charging algorithms and proposed
a method for obtaining a fast convergence value using an
efficient algorithm. In [14], the authors attempted to charge the
nodes of large-scale WRSNs using a multihop method. How-
ever, the single-charging problem approach resulted in poor
scalability regarding large-scale WRSNs. In [14], clustering
was performed, and the nodes were charged using a multihop
method. The goal was to minimize the number of nodes that
became inoperable because of battery exhaustion. In [15], the
goal was to maximize the charge compensation during the
MC’s visits to the WRSNs. The scheduling problem for the
MC, presented in [15], was NP-hard, and an approximation
algorithm was proposed. Various approximation ratios were
set, and the calculation speed was determined accordingly.
The authors in [16] presented a multicharging method. The
charging utility was defined to minimize the expiration time
of the WRSN nodes, and aimed to maximize the WRSN’s
utility. In addition, the energy consumption of the MC was
minimized by minimizing the length of the charging tour. To
achieve this, an approximation algorithm was first proposed to
solve the problem without considering the energy limitations
of the MC. An efficient heuristic algorithm that considers the
energy constraints of the MC was also proposed.

Yanjun et al. [17] aimed to charge the batteries of wearable
devices remotely. In this study, an MC was not involved;
a fixed charger was used, and the aim was to deploy the
charger efficiently by minimizing the distance between the
charger and any wearable devices to ensure that the energy
of the devices was not exhausted. This study proved that the
proposed problem was NP-complete, and a greedy-heuristic
algorithm and an approximation algorithm were proposed
to solve the problem. The authors in [18] considered the
Mine Internet of Things in two dimensions. Several MCs
were used in this study in combination with a distributed
cooperative algorithm to solve the problem effectively in this
situation. The distributed cooperative algorithm divided the
roadway into several sections, and each MC was responsible
for one section. The algorithm was verified through various
simulations according to the length of the sections and the case
in which an MC battery constraint existed. In [19], WRSNs
were charged through a hybrid-mode–based model named
MERSH. The WRSNs were maintained by combining the
advantages of existing online and offline scheduling methods.
In MERSH, the nodes can send a charge request to the MC
when the residual energy falls below a certain level. The route
is optimized whenever a request arrives. When the energy of
the nodes changes to high dynamics, MERSH dynamically
adjusts the charging time of each node.

In [20], scheduling was optimized by considering multiple
MCs at the same time. First, the study aimed to minimize the
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energy consumption of the MCs while guaranteeing that the
energy of all sensors was not exhausted. This problem was
represented by mixed-integer linear programming. Second,
the problem was solved by reducing the computation time
using the decomposition method. The problem was divided
in two—MC moving time and charging time—and repeatedly
solved. In [21], the number of MCs was minimized when
considering multiple MCs. First, the study aimed to ensure that
all sensors did not run out of battery power. Second, each MC
minimized the use of its remaining energy at the end of each
visit. To solve this problem effectively, an algorithm based
on the fairness of all sensors was proposed. The algorithm
was verified through simulations based on the length of the
sections, number of sensors, and number of chargers.

In [22] and [23], several MC scheduling problems were
addressed. In [22], the sensor nodes were charged only when
their energy fell below a certain level. Each node had a
specified charging time window and was charged within that
window. Moreover, in a large-scale network, using a single
MC to charge all nodes was difficult; therefore, multiple MCs
were used. In the study, the problems were solved using
genetic algorithms. In [24], several MCs moved to various
charge sensor nodes. Unlike other studies, the MC movement
paths were fixed, and adjustments were made to MC speed.
This study aimed to minimize the time required to complete
charging. The problem was defined using an approximation
strategy that divided each path into discretized segments.
By converting the problem to Lagrangian duals, an efficient
distributed algorithm was proposed.

In the aforementioned schemes, the MC does not consider
the density of the sensor nodes. Only single-charging or mul-
ticharging is considered. If charging is performed considering
the density of the sensor nodes, the energy consumption can
be further reduced. Therefore, the scheme proposed in this
study adaptively considers the density.

III. ADAPTIVE DIRECTIONAL CHARGING SCHEDULING
PROBLEM

We consider a WRSN where sensor nodes are fixed in
a factory or terrain that sense the surrounding environment
[25], [26]. In [1], the sensor nodes were driven by energy
harvesting and were built for real-time condition monitoring of
high-power equipment in a factory. However, it is inefficient
to install an energy-harvesting device for each sensor in a
large-scale WSN, and because energy harvesting is sensitive
to the environment, providing a stable energy supply is im-
possible. This problem can be solved by utilizing a wireless
mobile charger (WMC), which can periodically provide stable
power. Therefore, we propose EEADC for efficiently charging
sensor nodes through a WMC using a directional antenna.
EEADC 1) analyzes the topology of the network and then
determines whether single-charge or multicharge conditions
apply according to the charging efficiency, 2) in the case of
multiple charging, the optimum charging point is determined
using the proposed DCSD algorithm, and 3) the WMC moves
along the Hamiltonian cycle and charges the sensor nodes.

Fig. 1. Overall network model.

In this section, we investigate an adaptive directional charg-
ing scheduling (ADCS) problem. The notations used in this
study are listed in Table I.

A. Charging Model

In this study, we employ an RF-based WPT, which transmits
power according to the following Friis model [27]:

PR =
GTGRγ

Lp

(
λ

4π (D + β)

)α

PT , (1)

where PR, GT , and GR are the received power, transmitted
antenna gain, and received antenna gain, respectively. Further-
more, Lp is the polarization loss, γ is the efficiency of the
rectifier in the receiver module, λ is the RF wavelength, β is
a parameter used to adjust the Friis free-space equation for
short-distance transmission, α is the path-loss coefficient, D
is the distance between the transmitter and the receiver, and
PT is the transmitted power.

Fig. 1 shows the network model for the proposed system.
The sensor nodes are assumed to be deployed in a two-
dimensional (2D) field. Each sensor node, ni, sends a charging
request REQi = {Bi, Bmax, ni, xi, yi} to the BS when the
charge level in its battery is lower than the threshold Bth. Bi

and Bmax are the current battery level of the i-th node and its
maximum battery capacity of the sensor node, respectively.
xi and yi denote the position of the ith node. The set of
nodes is given by N = {n1, n2, n3, ..., nN}, where N is the
total number of nodes in the network. Upon receiving the
charging requests, the BS schedules the charging strategy and
path of the MC based on the ADCS results. The MC then
travels from the BS along the determined path to charge the
sensor(s) at each charging point (pi) in the network. According
to the scheduling result, the MC adaptively employs the single-
charging method, wherein it directly visits and charges a single
node (single-charging cluster), or the multicharging method,
wherein it visits the appropriate charging point to charge
multiple nodes simultaneously (multicharging cluster).



4

B. Energy Consumption Model

In this study, each sensor node generates data and transmits
the data to the BS in the center of the network. It is assumed
that battery-aware multihop routing is applied to transmit
the sensor data to the BS. Each sensor node expends most
of its available energy when sending and receiving data.
Therefore, we adopt the following battery-aware multihop
energy consumption model [5]:

ei = σ

l ̸=i∑
l∈N

f il +

m ̸=i∑
m∈N

Cm
i · fmi + CBS

i · fBS
i , (2)

where ei is the energy consumption rate of node i, σ
represents the energy consumption rate for receiving one data
unit, and f li is the data flow rate from sensor l to sensor
i.

∑m ̸=i
m∈N C

m
i · fmi + CBS

i · fBS
i is the energy required

for transmission, where Cm
i and CBS

i represent the energy
consumption rate for transmitting one data unit from node
i to sensor node m and to the BS, respectively. fmi and
fBS
i are the transmit flow rates from sensor i to sensor m

and BS, respectively. The sensor nodes use the multihop
routing protocol when their battery level is lower than that
of the neighboring sensor nodes, whereas the one-hop routing
protocol is used to send data directly to the BS when the
battery level is higher than that of neighboring sensor nodes
[28]. The energy consumption rate of the sensor nodes is
assumed constant.

C. Directional Charging Scheduling Problem

In our model, we assume that the charging efficiency
increases linearly as the number of nodes increases. In [27], the
relative gap between the sum of the individual charging power
and the simultaneous charging power was demonstrated to be
small. Moreover, the charging efficiency of RF-based charging
technology is extremely low (if the distance between the sensor
node and the charging point is greater than 20 cm, the RF-
charging efficiency is 1% [29]), whereas as the number of
nodes increases, the charging efficiency increases linearly [30].
Therefore, the objective function is expressed in a relaxed form
without constraints as follows. We first define the adaptive
directional charging scheduling problem as follows:

min Etotal(P) = EM (P) +
∑
pi∈P

EC(pi), (3)

where P = {p1, p2, ..., pP } represents a set of charging points
available to the MC, P is the number of charging points,
EM (P) represents the quantity of energy consumed to move
the MC when the selected charging points (p1, p2, ...pP ) are
visited, and EC(pi) represents the energy consumption of the
i-th point to be charged.

Furthermore, we make the following assumptions.
• Similar to [6], the MC battery capacity is large enough

to charge all nodes on the network without interruption.
• The carrier frequency of the transmit RF signal is 900

MHz, and the receiving antenna gain of the sensor is
GR = 1 dBi.

TABLE I
SYMBOLS AND DEFINITIONS

Symbol Definition
PT Transmitted power
PR Received power
GT Transmitted antenna gain
GR Received antenna gain
γ Efficiency of rectifier in receive module
Lp Polarization loss
λ RF wavelength
D Distance between transmitter and receiver
α Path-loss coefficient
β Adjustment parameter for short-distance transmission
N Set of sensor nodes
ni Each sensor node
N Number of sensor nodes
xi, yi Coordinates of sensor node ni

Bi Residual battery level of sensor node ni

Bmax Battery capacity of normal sensor node
Badv

max Battery capacity of advanced sensor node
REQi Charging request by sensor node ni

P Set of charging points
pi Each charging point
P Number of charging points
R Maximum cluster radius
C Set of clusters
Cj Each cluster
cxj , cyj Coordinates of charging point for Cj

d⃗j Directional beam vector at Cj

uj , vj Element of directional beam vector at d⃗j
θ Beamwidth angle
Tj Charging time at Cj

PR
ij Power received by ni from Cj

PT
j Transmitted power at Cj

• After the MC arrives at a charging point, it completely
charges all neighboring sensor nodes and moves to the
next charging point.

• To better focus on the problem proposed in this study, the
directional beam of the MC is assumed to be uniformly
sectored [6], [10].

• The charging efficiency increases with the number of
receiving nodes, and the objective function is expressed
in a relaxed form without constraints.

• To better focus on the problem proposed in this study,
we assume that there are no obstacles in the path of the
mobile charger [5], [25].

IV. ENERGY-EFFICIENT ADAPTIVE DIRECTIONAL
CHARGING (EEADC) ALGORITHM

To solve the adaptive charging scheduling problem in III,
we propose an energy-efficient adaptive directional charging
(EEADC) algorithm. The EEADC consists of the following
procedures:

1) Clustering of sensor nodes in the given topology (with-
out determining charging points, only grouping),

2) Determining the charging strategy, which includes
charging type (single-charging/multicharging), charging
point, beam direction, charging power, and charging
time,

3) Path selection for the MC along the charging points.
In Fig. 2, in the first step, BS analyzes the topology by

collecting location information and status information from
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Fig. 2. Three-step procedures of EEADC algorithm

sensor nodes. In the second step, find charging points, charging
beam directions and charging time considering the remaining
battery level of each node in the cluster. Finally, the charging
path is determined.

A. Mean-shift based Clustering

First, EEADC forms clusters based on the density of
the sensor nodes. EEADC adopts a mean-shift clustering
algorithm [8], as indicated in Algorithm 1. The mean-shift
algorithm is an algorithm that repeats until convergence of the
process of determining the coordinate average value of nodes
within an effective radius R from the center of the cluster
is reached. Therefore, the mean-shift algorithm automatically
determines the appropriate number of clusters and there is
no need to calculate the number of clusters. According to
Algorithm 1, the EEADC selects a candidate cluster head p1

randomly from the available sensor nodes, and it is treated as
the center of the cluster (line 5). Then, the drift mean point
(average coordinate point) pmean of the sensor nodes within R
from the previous cluster center point, p, is computed (line
8). Next, a new cluster center is created by updating p by
pmean (line 9). If the updated p is the same as the previous p,
that is, p has converged (lines 6–13), a cluster is created that
contains all nodes within the range R from p (lines 14–16).
This process is repeated until the set N of the sensor nodes is
empty. In this step, the cluster centers are not charging points;
they are used only for grouping the sensor nodes.

The K-means clustering algorithm can be utilized for our
model. However, it cannot directly control the node densities
of the clusters. Instead, the mean-shift algorithm is considered
in our model because the node density of clusters can be
adjusted immediately through R. Therefore, the mean-shift
algorithm has a higher likelihood of producing multicharging
clusters to achieve better energy efficiency.

1p is not necessarily a sensor node.

Algorithm 1 Mean-shift clustering algorithm
1: Input: Set of sensor nodes N, cluster radius R
2: j = 1 // Cluster index
3: while N ̸= ∅ do
4: Convergence = false
5: Select initial point p ∈ N
6: while Convergence = false do
7: ppre ← p
8: Calculate drift mean point pmean of the sensor

nodes within R from p.
9: p← pmean

10: if p = ppre then
11: Convergence = true;
12: end if
13: end while
14: Cj ← All sensor nodes within range R from p.
15: C = C

⋃
Cj

16: N = N− Cj

17: j = j + 1
18: end while
19: return cluster set C

B. Determining the charging strategy

After clustering, it is necessary to determine the
charging strategy, which includes charging type (single-
charging/multicharging), charging point, beam direction,
charging power, and charging time. The charging strategy is
assigned depending on the following conditions.

1) In the case of a single-charging cluster with only one
sensor node, the node is charged through the single-charging
method. In this case, the charging point approximately be-
comes the location of the single sensor node and is expressed
as follows:

pj = (cxj , cyj) ≈ (xi, yi), ni ∈ Cj , (4)

where cxj and cyj are the x, y coordinates of the charging
point of the jth cluster, pj .
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Fig. 3. Charging point, beam direction, charging power, and charging time
in the multicharging case.

2) In the case of multicharging clusters, we should minimize
the energy consumption and charging time of the MC at each
charging point as follows:

(P1) min PT
j · Tj , (5)

where PT
j and Tj are the transmitted power of the MC and

the charging time in the j-th cluster, respectively. Charging
times for all clusters, Tj , must be greater than 0.

Tj ≥ 0 (6)

As shown in Fig. 3, the directional beam vector of the j-
th cluster is d⃗j = (uj , vj). Here, θ represents the beamwidth
angle. All nodes in the cluster must be within the charging
range of the directional beam. To reflect this condition, we
introduce an additional vector s⃗ij , which can be expressed as

s⃗ij = (xi − cxj , yi − cxj), ∀ni ∈ Cj , Cj ∈ C, (7)

where s⃗ij represents a vector from the charging points of the
j-th cluster to the i-th sensor node, that is, the vector from
the charging point to the i-th sensor node in the j-th cluster.
Therefore, the following conditions hold:

d⃗j · s⃗ij
∥d⃗j∥ ∥s⃗ij∥

≥ cos
θ

2
, ∀ni ∈ Cj , Cj ∈ C, (8)

where a⃗ · b⃗ is the inner product of a⃗ and b⃗, and ∥d⃗∥ is the
norm of d⃗. Condition (8) represents a constraint indicating
that the angle between d⃗j and s⃗ij should be less than θ/2,
which ensures that the i-th sensor node is located within the
path of the charging beam irradiating the j-th cluster. Because
all nodes in the cluster must be fully charged, the following
constraint should be added:

PR
ij · Tj ≥ Bmax −Bi, ∀ni ∈ Cj , Cj ∈ C, (9)

where PR
ij represents the power received by the ith node in

the j-th cluster. By substituting (1) into (9), we obtain

GTGRγ

Lp

(
λ

4π (dist(i) + β)

)2

PT
j · Tj ≥ Bmax −Bi, (10)

where dist(i) is the Euclidean distance between the i-th
node and the j-th cluster charging point, which is given

by
√

(xi − cxj)2 + (yi − cyj)2. In (10), GT , GR, γ, Lp, λ, β,
and PT

j are constants similar to those in (1). Thus, these
constants can be represented by a single constant ρ.

ρ =
PT
j G

TGRλ2γ

16π2Lp
(11)

Therefore, by substituting ρ and dist(i) into (10), we obtain
the following.

Tj ·
ρ

(
√

(xi − cxj)2 + (yi − cyj)2 + β)2
≥ Bmax −Bi,

(12)

(Bmax −Bi) · (
√
(xi − cxj)2 + (yi − cyj)2 + β)2

− Tj · ρ ≤ 0. (13)

Therefore, if Tj = 0, then there is no node remaining in the
cluster that requires charging.

Additionally, (8) can be transformed by multiplying by the
denominator of the left term as follows.

∥d⃗j∥ ∥s⃗ij∥ · cos
θ

2
− d⃗j × s⃗ij ≤ 0, ∀ni ∈ Cj ,Cj ∈ C. (14)

To avoid a hazardous condition, the following constraint
should be added.

PT
j ≤ Pmax (15)

Then, the optimal solution of the charging point p∗j , beam
direction d⃗j∗, charging power PT

j
∗, and charging time T ∗

j for
the j-th cluster becomes

(P1) (p∗j , d⃗j
∗, PT

j

∗
, T ∗

j ) = argmin
pj ,d⃗j ,PT

j ,Tj

PT
j · Tj , (16)

s.t. (6), (13), (14), and (15)

which is derived from (5). However, the Hessian matrices of
(13) and (14) are not positive definite, and therefore, (P1) is a
nonconvex problem. Thus, it can be solved using a subgradient
descent method after converting it into a convex form through
a Lagrangian dual function. In the problem to be solved, the
variables to be determined are pj , d⃗j , PT

j and Tj . To convert
to a Lagrangian dual form, Lagrangian multipliers need to be
introduced. In our problem, these are ψj ≜ {ψij}, µj ≜
{µij}, ηj ≜ {ηij}, and σj . The Lagrangian dual form of
problem (P1) can then be expressed as follows.

L(pj , d⃗j , PT
j , Tj ,ψj ,µj ,ηj , σj)

= PT
j · Tj + σj(P

T
j − Pmax)−

∑
ni∈Cj

ψij · Tj +

∑
ni∈Cj

µij{(Bmax −Bi) · (
√
(cxj − xi)2 + (cyj − yi)2 + β)2

− Tj · ρ}+
∑

ni∈Cj

ηij{∥d⃗j∥ ∥s⃗ij∥ · cos
θ

2
− d⃗j · s⃗ij} (17)
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Lagrangian multipliers must be greater than 0. Thus, the
following constraints are added.

ψj ≽ 0, (18)

µj ≽ 0, (19)

ηj ≽ 0, (20)

σj ≥ 0 (21)

In the above constraints, ≽ denotes the componentwise
inequality. Then, the Lagrangian dual function of (P1) is
defined as

(P2) g(ψj ,µj ,ηj , σj) = (22)

min
pj ,d⃗j ,PT

j ,Tj

L(pj , d⃗j , PT
j , Tj ,ψj ,µj ,ηj , σj).

The dual problem is to maximize the dual function over the
Lagrangian multipliers such that

(P3) max
ψj ,µj ,ηj ,σj

g(ψj ,µj ,ηj , σj) (23)

s.t. (18)− (21).

We use the subgradient algorithm to iteratively solve the
problem defined by (23). The Lagrangian multipliers are
updated iteratively as follows:

ψw+1
ij =

[
ψw
ij − Tj∆ψ

]+
, (24)

µw+1
ij = [µw

ij + {(Bmax −Bi)

· (
√

(cxj − xi)2 + (cyj − yi)2 + β)2 − Tj · ρ}∆µ]+, (25)

ηw+1
ij =

[
ηwij + (∥d⃗j∥ ∥s⃗ij∥ · cos

θ

2
− d⃗j · s⃗ij)∆η

]+
, (26)

σw+1
j =

[
σw
j + (PT

j − Pmax)∆σ
]+
, (27)

where [a]+ = max{a, 0}, and w ∈ N+ denotes the index of
iteration. ∆ψ, ∆µ, ∆η, and ∆σ are small step sizes.

Once we determine the charging point and beam direction
after solving (P1), we can easily obtain the charging power PT

j

and charging time Tj . Accordingly, in each iteration, for any
given ψj ,µj ,ηj , σj , the subproblem (P2) can be separated
into the following subproblems:

(P2A) min
pj ,d⃗j

∑
ni∈Cj

ηij{∥d⃗j∥ ∥s⃗ij∥ · cos
θ

2
− d⃗j · s⃗ij}

+
∑

ni∈Cj

µij{(Bmax −Bi) · (dist(i) + β)2} (28)

and

(P2B) min
PT

j ,Tj

(PT
j · Tj + σj(P

T
j − Pmax)−

∑
ni∈Cj

ψij · Tj +∑
ni∈Cj

µij{(Bmax −Bi) · (dist(i) + β)2 − Tj · ρ}. (29)

First, it is necessary to solve the (P2A) problem to determine
the characteristics of the charging point and beam direction.
Then, by using the results of (P2A), the charging power and
charging time can be calculated by solving the (P2B) problem.

However, (P2A) is still a nonconvex problem. Therefore,
we propose an efficient discretized charging strategy decision
(DCSD) algorithm [11], [31] to solve (P2A).

C. Discretized Charging Strategy Decision (DCSD) Algorithm

(P2A) can be restated by finding the charging point and
corresponding beam direction that includes all points tightly
and has the minimum sum of the distances from the center
to all points. To this end, the DCSD algorithm (see Fig. 5 is
listed in Algorithm 2) and proceeds as follows.
− Step 1) Draw the smallest circle containing sensor nodes

in the cluster with radius wrj (lines 2–3). The smallest
enclosing circle problem is solved by the Welzl algorithm
[32], [33]. We define the center point and the radius
of the smallest enclosing circle as (wxj , wyj) and wrj ,
respectively. In our model, the charging direction of
the mobile charger is toward the center of the cluster.
Therefore, all sensors should be included in the charging
beam, and the location of the edge sensor nodes of the
cluster is important when positioning the mobile charger
as close to the cluster as possible. Comparing Fig. 4 (a)
and Fig. 4 (b), it can be seen that the cluster to which
Welzl algorithm is applied can better consider the sensors
at the edge of the cluster and locate the charger closer.

− Step 2) From the smallest enclosing circle, we must
derive fan-shaped circumscribed beams that enclose the
smallest enclosing circle (see Fig. 5(b)). These fan-shaped
beams can be generated by drawing two lines (blue solid
lines) tangent to the smallest enclosing circle, where a
constant angle θ exists between the two tangent lines (line
7).

− Step 3) If we generate these fan-shaped beams and then
connect the centers of the beams, we obtain a circle (the
green solid circle in Fig. 5(c)). We can consider the circle
as the location of the MC and include it in the solution
space for the charging point. However, this solution space
is continuous; thus, it is an NP-hard problem. Therefore,
to calculate the optimal solution, the DCSD algorithm is
used to discretize the solution space.

− Step 4) Fig. 5(d) shows the discretized solution space in
ϵ-intervals. The discretized solution space is defined as

Fig. 4. Smallest enclosing circle using Welzl algorithm
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Fig. 5. Discretized charging strategy decision (DCSD) algorithm.

Ej (line 5). The number of discretized solution points is
⌊2π/ϵ⌋ (line 6). We define the k-th discretized solution
point at the j-th cluster as ekj and compute ekj iteratively
(lines 6–10).

− Step 5) Given the discretized solution points ekj , to solve
(P2A), we move each charging point toward the center
along the discretized line as much as possible while sat-
isfying (14) (lines 15–17). After moving charging point,
(P2B) is solved using the determined charging point. In
(P2B), dist(i) =

√
(cxj − xi)2 + (cyj − yi)2. Because

the charging point (cxj , cyj) and charging power PT
j

are determined, then (P2B) can be converted to a linear
programming (LP) problem that can easily be solved.
Through (P2B), the energy required at each charging
point, CEkj can be calculated (line 18). If the calculated
CEkj is less than CEmin, then the minimum values are
updated (lines 19–25).

To solve (P3) using the subgradient algorithm, (24)–(27),
we repeat the DCSD in each iterative step until the result
converges to obtain the final solution.

After determining charging points for every cluster, the
order in which the charging points are visited is determined
by the shortest distance based on the well-known traveling

salesman problem (TSP). In this step, we use a faster heuristic
TSP algorithm (LKH-TSP) [5], [34].

D. Time Complexity and Convergence Analysis

Because the EEADC is composed of mean-shift clustering
and DCSD, we first analyze the time complexity of the mean-
shift algorithm. The mean-shift algorithm repeats until each
point converges, and the time complexity of the mean-shift
algorithm is known to be O(N2), where N is the number of
sensor nodes in the network [8]. After finding clusters using
mean-shift clustering, the DCSD is repeated at every step of
the subgradient method. The convex problem (P3) can be
solved and converted using subgradient-based methods such
as the ellipsoid method [24] [35]. From [24], if the number
of variables is L, the complexity of the subgradient method
based on the number of repeated iterations is O(L2).

DCSD solves the problem by dividing the circle into ϵ-
intervals. Each cluster is divided into ⌊ 2πϵ ⌋ discretized seg-
ments, and for each segment, the ekj satisfying (14) is
determined. After determining ekj , we can calculate CEkj

from (P2B). Problem (P2B) is an LP, so the solution can be
obtained within polynomial time. Therefore, by solving (P2B)
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Algorithm 2 Discretized Charging Strategy Decision (DCSD)
Algorithm

1: Input: Set of sensor nodes in jth cluster Cj , Beamwidth
θ

2: Calculate smallest enclosing circle for Cj by using Welzl
Algorithm

3: (wxj , wyj), wrj ← center point and radius of smallest
circle, respectively.

4: k = 1, ϵ← discretizing interval
5: Discretized solution space Ej = ∅
6: for k ≤ ⌊ 2πϵ ⌋ do
7: Derive fan-shaped circumscribed beams that enclose

the smallest enclosing circle.
8: ekj ← center point of k-th fan-shaped beam of j-th

cluster.
9: E = E

⋃
ekj

10: k = k + 1
11: end for
12: minimum charging consumed energy CEmin
13: i = 0
14: for ∀ekj ∈ Ej do
15: while Satisfying (14) do
16: Move ekj toward (wxj , wyj)
17: end while
18: Calculate charging consumed energy CEkj from (P2B)

with determined charging point ekj and beam direction
at that point, d⃗kj .

19: if i = 0 then
20: CEmin = CEkj , emin = ekj , d⃗min = d⃗kj
21: else
22: if CEkj ≤ CEmin then
23: CEmin = CEkj , emin = ekj , d⃗min = d⃗kj
24: end if
25: end if
26: i = i+ 1
27: end for
28: (cxj , cyj)← emin, d⃗j ← d⃗min

29: return (cxj , cyj), d⃗j , Tj

and assuming that ⌊ 2πϵ ⌋ is repeated a constant number of times,
we can solve the DCSD within polynomial time.

Therefore, if the time to solve LP is assumed to be V , and in
the worst case, the number of sensor nodes in one cluster is N ,
the time complexity for solving (P3) is O(N2 ·V ·⌊ 2πϵ ⌋). In the
case of mean-shift clustering, the time complexity is O(N2),
and in the worst case, N clusters are created. Finally, the total
time complexity for convergence is O(N2 + V · N3 · ⌊ 2πϵ ⌋).
The convergence analysis based on the number of nodes for
Algorithm1 and Algorithm2 is provided in Fig. 6 and Fig. 7,
respectively.

V. SIMULATION RESULTS

In this section, we analyze the proposed model using simu-
lations. To evaluate the performance of EEADC on various
evaluation metrics, we used Python and MATLAB for the
simulations. The system used for the simulation is an Intel
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Fig. 6. Computational delay of mean-shift clustering algorithm according to
the number of nodes.
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i7-10700, 16GB RAM. The parallel processing and GPU
calculation are not used. The sensor nodes were randomly but
uniformly placed using the python rand function on a 2D field.
Because the mean-shift algorithm is a clustering technique
based on density, it is greatly affected by the distribution of
sensor nodes. This is because if the sensor nodes are biased
in some places, the efficiency of multicharging comes out
abnormally high. Therefore, if the coordinates of the nodes are

TABLE II
SIMULATION PARAMETERS

Parameters Values Parameters Values
PT 5 W GT 4 dBi
GR 1 dBi θ π/2

Bmax 2 J Badv
max 4 J

λ 0.33 m v 5 m/s
ϵ π/90 Lp 1
γ 1 β 0.3
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Fig. 8. Network topology.

determined using a specific distribution, a biased result may be
obtained. To avoid this and to accurately verify the results of
the algorithm, all simulations were run 100 times with different
random seeds and averaged. During this time, because the
charging strategy is determined according to the density of
nodes, the experiments were performed by varying the number
of nodes between N = {500− 1500}, using various network
sizes and using various sensor battery capacities. The moving
speed of the MC was v = 5 m/s, the energy consumed for
the movement was Em = 5 J/m, the transmit power of the
MC was PT

j = 5W , the transmit antenna gain of the MC was
GT = 4 dBi, and the receiving antenna gain of a node was
GR = 1 dBi. The maximum battery capacity of the receiving
node was Bmax = 2 J , and was randomly initialized from
the initial energy range Einit = [40%, 60%] of the sensor
nodes. The number of discretized solution points was 180,
i.e., ϵ = 2. In [31], a node direction angle between −60 ◦ and
60 ◦ in the charging direction was shown to receive significant
charging power. Therefore, the charging angle was set from
−45 ◦ to 45 ◦ to ensure a node receives sufficient power in the
experiments. In addition, γ, Lp, and β used in (1) were set to
1, 1, and 0.3, respectively, and the RF was set to 900 MHz.
Therefore, the RF wavelength was λ = 0.33 m.

Fig. 8 shows the system topology with 1000 nodes arranged
according to a uniform distribution [36], [37]. In Fig. 8 blue
dots within blue circles represent the nodes in multicharging
clusters, and red dots represent single-charging nodes. Because
we used different random seeds for each simulation, the topol-
ogy was different each time. Fig. 9 shows the charging path
generated by applying the well-known LKH-TSP algorithm
[34] in the same network topology. The MC moves along the
shortest straight line to each charging point and charges the
sensor node(s) [5], [25], [38]. The reason why the charging
points are outside the cluster is illustrated in Figure 3.

Fig. 10 shows the energies applicable to our model and
the single-charging method according to R for 1000 nodes. If
R is 0.1–0.4 (m), our model consumes less energy than the
single-charging method. However, when R increases beyond

Fig. 9. Generated charging path obtained by applying the LKH-TSP algo-
rithm.
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Fig. 10. Comparison of energy consumption of the single-charging method
and the proposed model according to the value of R.

0.4 m, the energy consumption rapidly increases because the
RF power decreases rapidly with increasing distance. In mean-
shift clustering, the R value determines the effective range of
the cluster. When using an R value that is too small, almost
all nodes are charged using single charging, which is not very
different from single-charging all nodes. On the other hand, if
R is too large, it must then charge distant nodes. Therefore,
the charging efficiency will decrease. Thus, it is necessary to
use an appropriate R value. Based on Fig. 10, the R value
was set to 0.26 m in the subsequent simulations.

After obtaining the appropriate R value, the mean-shift clus-
tering algorithm is compared with K-means and agglomerative
clustering. A density-based clustering algorithm DBSCAN can
continue to include nodes in a cluster as long as the nodes
are closely listed, allowing the cluster size to grow infinitely.
When such a large cluster is created, the distance between the
nodes of the cluster and the charging point increases, resulting
in lower charging efficiency. Therefore, we exclude DBSCAN.



11

700 750 800 850 900 950 1000

K values of K-means

3.4

3.45

3.5

3.55

3.6

3.65

T
o

ta
l 
C

o
n

s
u

m
e

d
 E

n
e

rg
y
 (

J
)

10
4

Mean-shift based

K-means based

Agglomerative based

Fig. 11. Comparison of the mean-shift, K-means, and agglomerative algo-
rithms.

Fig. 11 shows the differences among these methods. In Section
IV-A, we performed clustering using the mean-shift algorithm
in EEADC because it is difficult for agglomerative and K-
means to determine an appropriate number of clusters. In
addition, even if a specific number of clusters is determined,
the result may be significantly different if the node deployment
is changed, because the value obtained does not consider the
topology of the sensor nodes.

To compare the three clustering methods, first, a simulation
was performed using mean-shift clustering and the number
of specified clusters was calculated. Subsequently, the other
two algorithms were tested in the same range. In Fig. 11,
the number of clusters determined through the mean-shift
algorithm was 850. Therefore, simulations were performed by
setting the number of clusters in the 700–1000 range.

The simulation results show that the EEADC using the
other two clustering algorithms consumes more energy than
the mean-shift algorithm. Even if we specify the same number
of clusters, there is a considerable difference in performance
among the three algorithms. This can be explained by the
different approaches taken by the three algorithms. The K-
means algorithm determines the grouping of each sensor node
based on the nearest cluster head. However, the number of
clusters must be specified before clustering. Therefore, this
process has greater difficulty considering node density than
mean-shift. The agglomerative algorithm is similar to K-
means, and the number of clusters must be determined before
the node topology is analyzed. A multicharging cluster that
considers density increases energy efficiency, but a multicharg-
ing cluster that does not properly consider density increases
energy consumption because of the energy required to charge
any distant nodes. That is, the disadvantages of the K-means
and agglomerative algorithms are 1) difficulty in setting an
appropriate number of clusters, and 2) they do not consider
node density. Therefore, we decided to perform clustering
using the mean-shift algorithm in this study.

The scheme proposed in this paper is compared with the
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Fig. 12. Single-charging method, proposed EEADC, and CEOP [6] are
compared regarding energy consumption versus number of nodes.

single-charging method and the model proposed in [6]. To pro-
vide a fair comparison, the spacing of the grid candidate charg-
ing points in [6] was set to 0.25 m. Fig. 12 shows the differ-
ence in energy consumption as the number of nodes increases.
In this simulation, the field size was set to 25 m × 25 m.
When the number of nodes is small, multicharging clusters
are rarely generated using mean-shift clustering, and there is
little difference in the energy consumption between the single-
charging method and EEADC. However, as the number of
nodes increases, the density of the nodes increases. Therefore,
the number of multicharging clusters and the number of sensor
nodes in each multicharging cluster increase. As the number
of multicharging clusters increases, the energy efficiency of
the proposed EEADC increases and the difference in energy
consumed between EEADC and the single-charging method
increases. In addition, we compare the proposed EEADC with
CEOP [6]. CEOP divides the 2D field into grids and sets the
vertices of the grids as candidate charging points. In CEOP,
among the candidate charging points, the charging points that
charge the sensor nodes most efficiently are selected, and a
directional beam is determined at each point. CEOP appears
to be similar to our scheme. However, CEOP decides the
candidate charging points by partitioning the field into a grid
(implying that it cannot charge near nodes and your charging
points are limited on the grid); thus, it does not take into
account the density of sensor nodes. Moreover, the density
of sensor nodes is low, so even if charging the nodes one
by one, the MC cannot charge near the sensor nodes and the
charging points are limited to the grid. As a result, when the
density of the sensor nodes is low, multicharging becomes
highly inefficient compared to single-charging, and in the
end, CEOP consumes more energy in most cases than the
single-charging method. However, because CEOP essentially
ignores single-charging, it can be regarded as a multicharging
method. Therefore, when the density of the sensor nodes
increases and the multicharging clusters increase, the energy
efficiency increases. In Fig. 12, when the number of sensor
nodes is 1300, CEOP consumes slightly less energy than
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Fig. 13. Single-charging method, proposed EEADC, and CEOP [6] are
compared regarding charging delay versus number of nodes.

the single-charging method. In conclusion, EEADC, which
effectively selects a single-charging or multicharging strategy
according to the node density, achieves the best results. When
the number of sensor nodes is 1000, EEADC achieves 5.8%
better performance than the single-charging method and 7.4%
better performance than CEOP. When the number of sensor
nodes is 1500, EEADC achieves 9% better performance than
the single-charging method and 7.3% better performance than
CEOP.

In Fig. 13, we compare the three models in terms of
charging delay. The results highlight the difference in the
charging delay as the number of nodes increases. The overall
result is similar to the result for energy consumption because
charging time is proportional to energy consumption. As the
number of nodes increases, the difference in the charging delay
between the single-charging method and EEADC increases.
In addition, the charging delay of CEOP is almost always
longer than that of the single-charging method. However, when
the number of sensor nodes increases to 1500 nodes, the
charging delay of CEOP becomes slightly shorter than that
of the single-charging method. The single-charging method
performs charging by solving only the TSP problem without
analyzing the network topology or the charging efficiency.
Accordingly, the computing resources and computation delays
required by the BS for calculating the appropriate charging
points are not incurred. On the other hand, the proposed
EEADC requires these computing resources and the compu-
tation delay to analyze the topology even when all sensor
nodes are sparsely arranged. Therefore, single-charging can
save computing resources in sensor nodes within sparsely
deployed systems, whereas EEADC can increase the charging
efficiency when densely populated systems are involved.

Fig. 14 shows the change in energy consumption according
to the size of the sensor field for a constant number of
nodes. As the size of the field increases, energy consumption
increases in all three models. First, because only single-
charging is always used in the case of the single-charging
method, as the size of the field increases, only the moving
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Fig. 14. Single-charging method, proposed EEADC, and CEOP [6] are
compared with respect to energy consumption versus field size.
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Fig. 15. Single-charging method, proposed EEADC, and CEOP [6] are
compared with respect to charging delay versus field size.

distance of the MC increases. When the size of the field is
not very large, an increase in the moving distance of the
MC does not significantly affect the total energy consumption
and a slight improvement compared to the other two methods
can be observed. In the case of EEADC, as the size of the
field increases, the distance between sensor nodes increases
on average, and the number of multicharging clusters gen-
erated through mean-shift clustering decreases such that the
number of single-charging clusters increases. In other words,
its operation is similar to that of the single-charging method.
In addition, as the size of the field increases, the moving
distance of the MC also increases, as in the single-charging
method. Therefore, the increase in energy consumption as the
size of the field increases is larger than the single-charging
method. However, even when the size of the field increases to
65 m, energy consumption using EEADC is still lower than
that of the single-charging method. This is because although
the node density has decreased, energy-efficient multicharging
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Fig. 16. Single-charging method, proposed EEADC, and CEOP [6] are
compared to analyze energy consumption versus number of nodes in a
heterogeneous WSN system.

clusters are still created. In the case of CEOP, when the field
size is 25 m, it achieves better efficiency than single-charging
although its energy consumption increases as the size of the
field increases. However, CEOP divides the field into grids and
selects candidate charging points. Therefore, even if the size
of the field increases, the distance between candidate charging
points remains constant.

However, because grids are created at fixed intervals without
considering node density, the number of sensor nodes in each
square grid decreases. As previously observed, the energy
efficiency of CEOP increases as the number of sensor nodes
in each grid increases. Conversely, if the number of sensor
nodes in each grid of the same size decreases, the number
of nodes charging at each candidate charging point gradually
decreases, and eventually, the case of charging only one node
increases (only single-charging clusters are present). However,
unlike the single-charging method, because CEOP can be
charged only from a vertex in the grid, the MC will be located
further from a sensor node. Therefore, energy consumption
is greatly increased. As a result, the energy consumption is
greater than that of the single-charging method when the field
size increases beyond 35 m. Fig. 15 compares the charging
delays of the three models according to the size of the field.
The results are similar to the results in Fig. 14.

Battery capacity can be different depending on the type of
node. Therefore, we add an advanced node type with twice
the battery capacity of a normal node to our system model.
The number of advanced nodes accounts for 20% of the
total system nodes, and the battery capacity is 4 J , which
is twice that of normal nodes. We call this type of system a
heterogeneous WSN system.

Fig. 16 shows the change in energy consumption as the
number of nodes increases. In this simulation, the field size
was set to 25 m × 25 m. The maximum battery capacity of
the normal receiving node was Bmax = 2 J , and the advanced
node was Badv

max = 4 J and randomly initialized between
the initial energy Einit = [40%, 60%] of the sensor nodes.
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Fig. 17. Single-charging method, proposed EEADC, and CEOP [6] are com-
pared to analyze charging delay versus number of nodes in a heterogeneous
WSN system.

When the number of nodes is small, CEOP [6] consumes
more energy than the single-charging method because CEOP
chooses the charging point to maximize the energy received
by the sensor node in the charging beam. However, in a
heterogeneous WSN system, an advanced node requires a large
amount of energy. Therefore, if there is an advanced node at
the edge of the charging beam that is far from the charger, the
advanced node needs to be charged at low efficiency even after
all other nodes in the charging beam are charged in CEOP. On
the other hand, EEADC attempts to find the charging point
that requires the least energy to charge a cluster. This creates
charging points within the cluster close to the sensor nodes that
require the most energy. Therefore, if there are 1500 sensor
nodes, EEADC achieves 8.5% better performance than the
single-charging method and 16.3% better performance than
CEOP. In Fig. 17, we compare the three models in terms of
charging delay in a heterogeneous WSN system. The results
highlight the difference in the charging delay as the number
of nodes increases. The overall result agrees with the previous
result. As the number of nodes increases, the difference in
the charging delay between the single-charging method and
EEADC increases

VI. CONCLUSION

In this paper, we propose an energy efficient charging
method for the sensor nodes in WRSNs, based on an MC
employing directional antennas. After mean-drift clustering
that considers the density of the nodes in the network, the
optimal charging point is determined according to the type of
cluster. In particular, in the case of a multicharging cluster,
an efficient discretized algorithm is proposed to solve the
nonconvex problem. The experimental results show that for
most cases, the single-charging method, which charges only
one node at a time, minimizes the energy consumed by
the MC. However, when the density of the nodes is high,
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charging via the multicharging method can reduce the energy
consumption.

In [1], WSN was used for real-time monitoring of high-
power equipment at a power substation in Kentucky. In [1],
122 sensor nodes were deployed to detect early signs of
potential fault conditions in equipment such as transformers
and circuit breakers. It can be considered scalable because we
considered a sufficiently large WRSN in which up to 1500
sensor nodes are deployed in our work. We expect our model
to be useful in larger WRSNs such as power plants, smart
factories and even smart cities.
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