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Resource Management, Security, and Privacy Issues
in Semantic Communications: A Survey

Dongwook Won, Geeranuch Woraphonbenjakul, Ayalneh Bitew Wondmagegn, Anh Tien Tran, Donghyun Lee,
Demeke Shumeye Lakew, and Sungrae Cho

Abstract—Resource management, security, and privacy stand
as fundamental pillars for the reliable and secure operation of
efficient semantic communications (SC) system. By addressing
these aspects, SC system can pave the way for efficient resource
utilization, improved network efficiency, enhanced communica-
tion performance, and protection of sensitive information. In
this study, we begin by presenting the background of SC and
reviewing several existing studies in this field. Subsequently,
we provide a comprehensive and exhaustive survey of resource
management, security, and privacy in SC. We identify and
highlight existing challenges and open research challenges related
to resource management, security, and privacy in SC in order to
spur further investigation in these areas.

Index Terms—Semantic communications, Resource manage-
ment, Security, Privacy

I. INTRODUCTION

A. Background

According to the classic information theory established by
Claude Shannon in 1948 [1], advances in communication
systems have been driven by exploring new spectrum uti-
lization methods and developing new coding schemes. The
evolution from 1G to 5G in wireless communication has
focused on achieving higher capacity, reliability, and lower
latency while reducing the uncertainty related to the accurate
reception of exchanged data. This relentless pursuit has led
to a continuous race for wider bandwidths and higher fre-
quency bands. However, future wireless systems like 6G must
address the complex and stringent requirements of emerging
applications such as the metaverse, holographic teleportation,
and digital twins [2]. The interconnection of these applications
will generate a staggering amount of data on the order of
zettabytes. Additionally, these applications need to support
massive connectivity over limited spectrum resources while
requiring lower latency. This poses significant challenges to
5G systems, such as channel capacity nearing the Shannon
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limit [3], [4], source coding efficiency close to the Shannon
information entropy/rate distortion function limit [5], and
scarcity of spectrum resources [6]. Consequently, the necessity
for a paradigm shift from Shannon’s legacy becomes evident to
accommodate the demands of next-generation communication
systems, emphasizing the need for innovative approaches to
meet future challenges.

The need for a paradigm shift from Shannon’s legacy is evi-
dent given the limitations of current communication systems in
handling the complex requirements of future applications. This
shift has led to the emergence of SC. According to Shannon
and Weaver’s seminal work [7], communication can be divided
into three levels: the technical level (Level A), the semantic
level (Level B), and the effectiveness level (Level C).

• Technical Level (Level A): This level addresses the tech-
nical problem of accurately transmitting symbols from
the transmitter to the receiver. It is primarily concerned
with the fidelity of signal transmission, which has been
the focus of traditional communication systems guided
by Shannon’s information theory.

• Semantic Level (Level B): This level focuses on how pre-
cisely the transmitted symbols convey the intended mean-
ing. SC extracts content-related, task-oriented features
from raw data and transmits them. This approach reduces
communication resource overhead, such as bandwidth
and power consumption, while ensuring the meaningful
exchange of information.

• Effectiveness Level (Level C): This level considers the
impact of the received information on the receiver’s goal,
emphasizing how effectively the meaning influences the
desired outcome. Communication at this level is referred
to as goal-oriented communication.

Traditional communication systems primarily operate at
Level A, but the emerging demands of 6G applications necessi-
tate a shift to Levels B and C. This paradigm shift is crucial for
the development of 6G systems, which must support massive
connectivity, low latency, and efficient data processing to meet
the stringent requirements of next-generation applications.

B. Motivation

Traditional resource allocation schemes focus on the phys-
ical characteristics of messages, such as their size, processing
capacity, and bandwidth requirements, aiming to minimize
resource usage and maximize efficiency. However, SC requires
resource management at the semantic level, necessitating a
redefinition of performance metrics and a redesign of resource
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allocation methods to enhance performance and efficiency
from the SC perspective [8]. Resource management in SC is
crucial due to its unique challenges and requirements. This
includes not only allocating communication resources such
as bandwidth and transmission power but also prioritizing
semantic-aware transmission to ensure that more semantically
significant information is sent within a given network condi-
tion. While existing literature, including surveys, briefs, and
tutorials, have explored facets of SC, there is a significant re-
search gap in the domains of resource management. Therefore,
a comprehensive survey is needed to address these aspects
effectively.

Distinctively, SC introduces novel security and privacy chal-
lenges compared to traditional communication systems. It is
important to understand the potential vulnerabilities in differ-
ent components of an SC system, such as the encoder/decoder,
KB, and transmission channel, in order to propose effective
countermeasures. Examining security and privacy concerns in
detail will help identify risks and allow for the development
of reliable techniques to enhance the protection of sensitive
semantic information and user privacy. Despite SC’s potential,
comprehensive surveys on its security and privacy aspects are
limited, highlighting the need for systematic and thorough
exploration of these topics.

To bridge the gap in understanding resource management,
security, and privacy in SC, this survey first constitutes a
tutorial on resource management, including concepts and
taxonomy. It then provides a comprehensive survey of resource
management, security, and privacy, along with the redefined
performance metrics used to evaluate SC network systems, by
extensively reviewing the available literature. Additionally, it
identifies and discusses challenges, open problems, and future
research directions in these areas. By offering a thorough
review of these aspects, the survey provides valuable insights
and knowledge to researchers and practitioners in the field.
Overall, this survey plays a crucial role in advancing the under-
standing and development of resource management, security,
and privacy in SC.

C. Scope and Contribution

This paper mainly focuses on resource management, secu-
rity, and privacy in SC to provide a comprehensive overview
of the research landscape. It aims to fill the existing gap in the
literature by not only covering the basics but also delving into
the intricacies of resource management, security, and privacy
in SC. We summarize our contributions as follows:

• Constitute Tutorial: This paper provides a compre-
hensive background tutorial on resource management,
security, and privacy in SC, including concepts and an
overarching framework, as detailed in Section III-A,
Section IV.

• Comprehensive Review: Our survey offers a holistic
review of the existing research on resource management,
security, and privacy in SC. It covers various aspects
of resource management, including semantic-aware infor-
mation transmission, semantic-aware resource allocation,
adaptive and optimal control of semantic compression,

and joint optimization for control and allocation of re-
sources. It also covers security and privacy issues and
their countermeasures in SC. This survey contributes to
the field in a broader and deeper manner compared to
existing surveys. Details are discussed in Section III, IV
and V.

• In-depth Exploration: Unlike existing surveys, our sur-
vey paper delves into the intricacies of resource manage-
ment, security, and privacy in SC. It provides detailed
research findings and explores the challenges and open
issues in these areas. By going beyond the basics, the pa-
per offers a deeper exploration of the research landscape
in resource management.

• Systematic Classification: We provide a taxonomy of
schemes related to resource management, security, and
privacy in SC. It classifies different approaches proposed
in the literature, allowing for a better understanding of
the research landscape.

• Review of Semantic Metrics: We discuss redefined
semantic metrics used in validating the performance of
SC, highlighting the importance of evaluating system
efficiency, effectiveness, and task-oriented performance.

• Identification of Gaps and Future Research Direc-
tions: Our survey identifies gaps in the existing litera-
ture and highlights open research problems. It provides
new insights into both over-explored and under-explored
areas, paving the way for future research directions. By
doing so, the paper contributes to the advancement of
knowledge in resource management, security and privacy
in SC. Details are discussed in Section VI.

D. Organization

As depicted in Fig. 1, this paper systematically covers a
wide spectrum of research on resource management, security,
and privacy in SC. The paper is organized into several key
sections. Starting with Section I, we highlight the importance
and motivation for studying these aspects within the context
of SC. This sets the foundation for the subsequent discussions.
Moving on to Section II, we distinguish our survey from
existing related surveys and tutorials, underscoring its more
expansive exploration of the topics. In particular, this section
underlines our survey’s breadth and depth, emphasizing its
comprehensive approach in capturing the nuances of the
subject.

In Section III, we discuss the conceptual foundations and
general workflow of SC systems, including semantic extraction
and representation, semantic compression, semantic informa-
tion transmission and resource management, semantic decod-
ing, and data recovery and pragmatic function. Each phase is
explained in detail, providing a clear understanding of the en-
tire process of semantic information generation, transmission,
and usage in networked systems. Building on this overview, we
then present a systematic review of the literature on resource
management, security, and privacy schemes proposed for SC
in the research community in Section III, IV and V. Section
IV provides an overview of security and privacy attacks and
reviews them in detail. Additionally, in Section V, we review
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countermeasures against these attacks. Notably, each of these
sections delivers a taxonomy of the different methodologies.

In Section VI, we identify gaps in the existing literature and
open research problems. It suggests several promising future
research directions to advance the field further. Section VII
concludes the paper. We believe that the paper contributes
towards establishing a better understanding of SC and guiding
optimized, secure and privacy-aware development of these sys-
tems. Common acronyms used in this survey are summarized
in Tables I, II, III.

TABLE I
DEFINITIONS OF ABBREVIATIONS

Abbreviation Definition
AD Autonomous Driving
AI Artificial Intelligence
AoI Age of Information
AoII Age of Incorrect Information
AR Augmented Reality
ASR Automatic Speech Recognition
BA Bandwidth Allocation
BLEU Bilingual Evaluation Understudy
BS Base Station
CLM Clinical Language Model
CNN Convolutional Neural Network

TABLE II
DEFINITIONS OF ABBREVIATIONS

Abbreviation Definition
CS Charging Station
CSI Channel State Information
DDPG Deep Deterministic Policy Gradient
DeepJSCC Deep Learning-based Joint Source-Channel Coding
DeepSC Deep Learning-enabled SC
DL Deep Learning
DNN Deep Neural Network
DQN Deep Q Network
DRL Deep Reinforcement Learning
EV Electric Vehicle
GAN Generative Adversarial Network
H2H Human-to-Human
HAR Human Activity Recognition
HARQ Hybrid Automatic Repeat Request
HSC Hybrid Semantic Compression
IoDT Internet of Digital Twins
IoE Internet of Everything
IoT Internet of Things
JSCC Joint Source-Channel Coding
KB Knowledge Base
KG Knowledge Graph
LSTM Long Short Term Memory
MEC Multi-access Edge Computing
MI Model Inversion
ML Machine Learning
M2M Machine-to-Machine
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TABLE III
DEFINITIONS OF ABBREVIATIONS

Abbreviation Definition
MSP Metaverse Service Provider
NGNI Next-Generation Networking Infrastructure
NFV Network Function Virtualization
NOMA Non-Orthogonal Multiple Access
NOMASC Non-Orthogonal Multiple Access based SC
OMA Orthogonal Multiple Access
PERSF-SC Personalized Sailency Fused SC
PSNR Peak Signal-to-Noise Ratio
QKD-SIC QKD-Secured Semantic Information Communica-

tion
QoE Quality of Experience
QoS Quality of Service
QSC Quantum SC
RNN Recurrent Neural Network
ROI Regions of Interest
RSU Roadside Unit
SEC Satellite-borne Edge Cloud
S-Rate Semantic Transmission Rate
S-SE Semantic Spectral Efficiency
SACCT Soft Actor-Critic Communication Transformer
SC Semantic Communications
SDN Software Defined Networking
Seb Semantic Base
SNR Signal-to-Noise Ratio
SSIM Structural Similarity Index
STM System Throughput in Message
TOSCN Task-Oriented SC Network
UAV Unmanned Aerial Vehicle
UA User Association
UE User Equipment
URLLC Ultra-Reliable and Low-Latency Communications
VQA Visual Question Answering
VSO Virtual Service Operator
VSSC Visible, Semantic, Sample-specific, and Compati-

ble
VR Virtual Reality
XR Extended Reality

II. RELATED WORK

Recent surveys on resource allocation in 5G and beyond
networks have offered comprehensive insights into various
strategies and challenges. Sharma et al. [20] and Ejaz et al.
[21] provided taxonomies for resource allocation, with Sharma
et al. focusing on ultra-dense networks and Ejaz et al. on cloud
radio access networks, addressing user assignment, spectrum
management, and power allocation. Studies by Manap et al.
[22] and Agarwal et al. [23] delved into 5G HetNet resource
management, emphasizing spectrum optimization, power al-
location, interference management, and the critical role of
radio resource management. They presented taxonomies for
interference management and user association-resource-power
allocation. Ebrahimi et al. [24] examined network slicing
in 5G/6G, highlighting cross-domain resource management
and integrated approaches for improved functionality. Lastly,
Olwal et al. [25] discussed the technical advancements and
challenges in 5G radio access network systems, focusing
on multitier communication and energy-efficient management.
Collectively, these surveys underscore the complexity and
evolving nature of resource allocation in next-generation net-
works, highlighting the need for innovative solutions to meet
future demands.

Several surveys and tutorials, such as those in [11]–[13],
have explored various aspects of resource management in
SC. In [11], Chaccour et al. addressed the challenges in
building SC networks, noting the lack of clear definitions
and technical foundations. They proposed a holistic vision
for SC networks integrating artificial intelligence (AI), causal
reasoning, transfer learning, and minimum description length
theory, emphasizing the creation of minimal, generalizable,
and efficient semantic representations of data and the im-
portance of a facilitating semantic language. Lan et al. in
[12] focused on efficient 6G communication through SC,
classifying human-to-human (H2H) SC, human-to-machine
(H2M) SC, machine-to-machine (M2M) SC, and knowledge
graph (KG)-based SC, and discussed SC’s potential in services
like extended reality (XR), holographic communication, and
all-sense communication. Qin et al. [13] examined SC to de-
velop efficient SC systems across various data modalities and
applications. Despite their contributions, these papers [11]–
[13] lacked a comprehensive analysis of resource management
and did not specifically address resource management and
security.

Several brief studies [10], [26] provided various insights
into new SC architecture. In [10], the authors explained
the basic concepts and components of SC models, reviewed
classical SC frameworks, and discussed key challenges such
as semantic information extraction, knowledge modeling, and
coordination, as well as data protection. They proposed an
architecture based on federated edge intelligence to support
semantic-aware networking, allowing users to offload compu-
tationally intensive tasks like semantic encoding and decoding
to edge servers while protecting proprietary information. In
[9], the authors presented an SC framework for real-time
control systems like smart factory systems, considering con-
trol signals as semantic information. They provided a multi-
granularity definition of semantic information across different
communication system levels and illustrated SC through a
system monitoring two sources affecting a robotic object to
create a digital twin. By employing semantics-empowered
sampling and communication policies, the study demonstrated
significant reductions in reconstruction error, actuation error
costs, and uninformative sample generation. The work in [18]
highlighted the need for joint orchestration of C4 resources in
edge computing. C4 stands for communication, computation,
caching, and control, and these resources are tightly coupled
in the design of multi-access edge computing (MEC) systems.
Zhilin Lu et al. [19] conducted a survey on the history,
theories, metrics, and datasets related to semantic information
transmission and adaptive control of the semantic compression
ratio.

In [14], Yang et al. provided a comprehensive survey
for the implementation of SC in 6G, thoroughly reviewing
existing studies and discussing 6G applications in potential
SC-empowered network architecture. They delved into the
fundamental concepts of SC by discussing semantic rep-
resentation techniques, such as word embeddings and KG,
which enable machines to understand and reason about the
meaning of information. Furthermore, Yang et al. discussed
the trade-off between SC performance and data security. They
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TABLE IV
QUALITATIVE COMPARISON OF EXISTING SC WORKS WITH THE PROPOSED SURVEY

Ref. Transceiver Design Adaptive Control Resource Allocation MEC Orchestration Security & Privacy
[9] X X △ X X
[10] X △ △ X X
[11] △ X △ X X
[12] O △ △ X △
[13] △ △ △ X △
[14] O X △ △ △
[15] O X △ △ O
[16] X X X X O
[17] X X X X O
[18] △ X X △ X
[19] O O X X X

Our Survey O O O O O
Notation: In the table, Ref. means Reference, “O” means comprehensively covered, “△” means partially discussed, “X” means not discussed.

mentioned that SC can be seen as a potential method for
secure communications, as it requires only partial data to be
transmitted, and the decoding of sensitive information relies
on the receiver’s background knowledge. However, it also led
to considering the trade-off between computational resource
overhead and data security. The process of encoding semantic
information and the subsequent decoding by the receiver,
especially when complex algorithms are involved, can be
resource-intensive. This led to an important consideration: the
trade-off between the computational resources required and
the level of data security achieved. Yang et al. also provided a
tutorial-style overview of resource management concepts, but
its scope was somewhat limited and fell short of delving into
the complexities and nuances of the subject matter. Similarly,
the work in [15] touched upon algorithmic developments in
resource allocation and the security and privacy aspects of
SC, but its coverage remains more introductory.

However, the aforementioned papers [9], [10], [14], [15],
[18], [19] lack detailed research findings, particularly in the
areas of resource management, security, and privacy in SC.
This gap in the literature highlights the need for a more
systematic and comprehensive survey that not only covers
the basics but also delves into the intricacies of resource
management, security, and privacy in SC. This is precisely
the motivation behind our proposed survey, which aims to fill
this critical gap in the existing research.

Recent surveys on security problems targeting 5G and 6G
emerging technologies offer critical insights. These studies
have focused on network slicing in MEC [27], [28], massive
MIMO [29], D2D communication [30], and SDN/NFV [31],
[32], [33]. Wang et al. [34] reviewed various security chal-
lenges and issues, while Schmittner et al. [35] and Alturfi et
al. [36] discussed several security attacks targeting 5G and be-
yond networks. However, these papers [27]–[36] have ignored
or under-analyzed SC. Consequently, there is a pressing need
for comprehensive security studies in SC.

Some papers [16], [17] have focused on security and pri-
vacy. The authors in [16] discussed SC and proposed four
methods to represent semantic information: semantic entity,

KG, probability graph, and probability distribution, highlight-
ing their advantages and challenges. They also addressed SC
security aspects, including information security and machine
learning (ML) security, discussing potential threats and coun-
termeasures in SC networks. In [17], Du et al. provided
guidelines for designing secure SC systems in real-world
wireless networks, emphasizing the next generation of wireless
networking and the transition to the Semantic IoT. The authors
revisited classical communication security techniques from the
perspective of semantic networks and discussed the novel
attack and defense methods introduced by SC techniques,
along with two new performance indicators. Both papers
[16], [17] offered valuable insights into SC and its security
implications but shared a common shortcoming: the lack of
discussion on resource management, highlighting a clear gap
in the literature for future research to address.

To the best of our knowledge, our paper is the first ad-
dressing resource management, security, and privacy issues
together in SC comprehensively. We provide a detailed review
of several studies in this field, discussing their challenges,
advantages, and shortcomings. This paper also presents a
taxonomy of schemes related to resource management, secu-
rity, and privacy, along with the metrics used to evaluate the
network system of SC. Additionally, it highlights open issues
and research directions, emphasizing the relevance of the topic.
To summarize, the state-of-the-art surveys on SC are provided
in Table IV.

III. RESOURCE MANAGEMENT IN SC

A. General SC Framework

The workflow of general SC framework is depicted in Fig.
2. It consists of six phases: 1) Semantic extraction and repre-
sentation, 2) Semantic compression, 3) Semantic information
transmission and resource management, 4) Semantic decoding,
5) Data recovery and pragmatic function, and 6) Performance
evaluation.

1) Semantic Extraction and Representation: As stated in
[37], information is a commodity that yields knowledge, and
the value of a signal lies in what we can learn from it. Unlike
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Shannon information, which focuses on how often a message
occurs regardless of its content or relevance to the task of
the receiver, semantic information focuses on how often a
message occurs that can be considered ‘true’ as agreed upon
by the transmitter and the receiver. If a message is more
commonly true, it contains less semantic information [38].
By transmitting only semantic information, SC allows the
generation of more knowledge with less data. To achieve SC,
the transmitter and receiver first define a semantic distortion
(or loss) function, which they then minimize by training a deep
neural network (DNN) of the semantic encoder and decoder.
Through this training, the semantic encoder and decoder
are able to successfully extract semantic features related to
‘true’ from the raw data, allowing them to transmit semantic
information. Consequently, a crucial research question arises:
How effectively can semantic encoder and decoder extract and
represent these semantic features? This topic is explored in
detail in the related works discussed in Section III-B.

Knowledge representation plays a pivotal role in semantic
information extraction, involving the representation of inherent
semantic features within raw data. One common representation
technique is the KG, which is particularly powerful as it can
represent the logical relationships among semantic features.
By organizing semantic features into a structured format, KG
facilitates further processing and analysis. Another technique,
the Bayesian network model, captures conditional dependen-
cies among semantic features based on expert knowledge
and data analysis. For instance, in image analysis, semantic
features like ‘sky’ and ‘grass’ are identified through object
detection algorithms, aiding in scene classification [39]. These
features are subsequently analyzed in depth using a Bayesian
network, which elucidates their interactions with other image
elements. Throughout this process, the knowledge base (KB)
is integral, systematically storing and managing this structured
semantic data to support efficient retrieval and reasoning,
thereby aiding complex decision-making and problem-solving

across various applications.
2) Semantic Compression: In semantic compression phase,

the goal is to compress the correlated semantic features while
preserving the essential semantic information. To achieve this,
important semantic features are preserved, while less important
ones are discarded. This process is carried out using a suitable
compression algorithm. The compressed semantic representa-
tion is organized into a sequence of semantic features, which
is commonly referred to as a semantic stream when prepared
for transmission. At that time, semantic compression ratio
is important. A higher semantic compression ratio results
in greater semantic distortion, negatively affecting task per-
formance. Conversely, a lower semantic compression ratio
preserves more detail but increases the communication load.
This balance is formulated based on the rate-distortion trade-
off, ensuring an optimal compromise between data fidelity and
compression efficiency. Additionally, a mechanism to control
the rate according to the given network situation is required
to adapt dynamically.

3) Semantic-aware Information Transmission and Resource
Management: The semantic stream is then transmitted, where
it may be affected by noise and interference. The network
system also dynamically controls the compression ratio based
on current network conditions. Resource management, such as
the allocation of bandwidth and power, is also performed at
this stage. However, unlike traditional communication systems
that define system performance metrics at the message level,
in SC, performance metrics need to be defined at the semantic
level.

In message-level resource management, communication oc-
curs on a per-message basis, with each message potentially
containing specific resource requirements. These resource
requirements are related to message characteristics such as
message size, processing capacity, bandwidth, and so on. On
the other hand, at the semantic level, the focus is on the
meaning and purpose of the communication. Semantic-level



7

resource management considers the intent, and meaning of the
communication. This involves considering the content of the
messages, semantic related requirements, and other factors to
make semantic-aware resource allocation decision. Therefore,
in SC, it is need to redefine metrics at the semantic level
and perform resource management accordingly. This allows
for optimization of performance, reliability, efficiency, and
effectiveness in the SC system.

4) Semantic Decoding: Subsequently, the distorted seman-
tic information is fed into the semantic decoder, which gen-
erates an output using the existing KB [40]. The decoding
process leverages advanced deep learning (DL) technologies,
such as Transformers and auto-encoders, which are powerful
tools for handling KB. The main goal of SC is to ensure
that the receiver understands the meaning of the data. To
achieve this, both the semantic encoder and decoder are jointly
trained to meet the semantic metric or user pragmatic task
performance.

5) Data Recovery and Pragmatic Function: Data recovery
refers to the process of reconstructing data that has been
compressed back to its original or near-original form. In SC,
this involves using decoded semantic features to recreate the
original source data as closely as possible, aiming for high
fidelity in content, quality, and meaning. In H2H scenarios,
high fidelity in data recovery is crucial. Unlike M2M and H2M
interactions, where operational correctness and efficiency are
paramount, H2H interactions require preserving the original
meaning for tasks like natural language processing or image
recognition. Therefore, in H2H scenarios, it is important to
design transceivers that consider this trade-off between fidelity
and efficiency.

The pragmatic function models the user tasks, such as image
classification, segmentation, and reconstruction, etc. It takes
the decoded semantic information or reconstructed data as its
input to execute these tasks depend on communication scenario
and then utilized by the pragmatic function to carry out specific
tasks that the user or system requires. For example, if the
user task involves image classification, the pragmatic function
would use the decoded semantic features to identify and
categorize the objects within an image. The effectiveness of
the pragmatic function depends on the quality of the decoded
semantic information. Accurate semantic decoding enables
the pragmatic function to perform tasks more effectively and
reliably, enhancing the overall user experience.

6) Performance Evaluation: The effectiveness of the prag-
matic function is assessed using a variety of metrics tailored to
the specific task at hand, broadly categorized into task-oriented
performance, fidelity, and system-oriented performance. Task-
oriented performance metrics vary based on the specific task,
such as intersection over union for image segmentation accu-
racy and classification accuracy for image classification tasks.
The fidelity measures how closely reconstructed or transmitted
data reflect the semantic meaning or original data, using
metrics like peak signal-to-noise ratio (PSNR) for images
and bilingual evaluation understudy (BLEU) for text. At the
semantic level, text semantic reconstruction is evaluated using
semantic similarity to assess the quality of reconstruction.
System-oriented performance focuses on the efficiency and

reliability of the communication system, incorporating energy
and spectral efficiency, Quality of Service (QoS) metrics like
transmission rate, delay, and throughput, as well as Quality of
Experience (QoE) for user satisfaction. Additionally, robust-
ness, or the system’s ability to perform well under challenging
network conditions, is evaluated.

Based on the general framework presented above, this
survey aims to serve as a comprehensive overview for under-
standing resource management in SC. As depicted in Fig. 3,
the recent literature review is divided into four major sections,
each focusing on a unique dimension of the complex issue of
resource management.

First, Section III-B emphasizes the design of semantic-
aware information transmission systems to enhance task-
oriented performance or fidelity. It covers extracting semantic
features, optimizing and adapting compression ratios, and joint
resource allocation management in SC systems. This section
explores methods to reduce the size of transmitted data while
preserving their original meaning, focusing on optimizing
the semantic compression ratio and resource allocation. It
is structured into three main categories of research. First,
Section III-B1 focuses on extracting essential semantic fea-
tures from large datasets to design semantic-aware transciver
that improve task and system performance or fidelity. These
studies analyzed the rate-semantic distortion trade-off. Second,
Section III-B2 examines the determination of optimal semantic
compression ratios that adapt to changing network conditions
by analyzing the relationship between compression ratios and
system-oriented or task-oriented performance metrics, building
upon the foundational systems discussed earlier. Finally, Sec-
tion III-B3 goes further by not only controlling the amount of
transmitted semantic information but also optimizing resource
allocation, leveraging the relationship between semantic com-
pression ratios and performance metrics for joint optimization
of semantic compression control and resource allocation.

Second, Section III-C introduces wireless resource man-
agement from a networking perspective. Traditional metrics
based on Shannon’s theory are no longer applicable in SC,
which emphasizes the meaning of delivered messages over
transmitted bits. Therefore, new units like semantic units or
semantic bases (Sebs) are introduced. Consequently, metrics
such as transmission rate and spectral efficiency are redefined
as semantic transmission rate and semantic spectral efficiency
using Seb. This allows SC system performance to be measured
and optimized more effectively at the semantic level. Exist-
ing papers addressing this challenge are explored in Section
III-C1.

The second another challenge focuses on optimizing
semnatic-aware resource allocation utilizing newly defined
semantic metrics. Optimal resource allocation strategies vary
based on criteria such as QoS, QoE, energy efficiency, and
spectral efficiency. Section III-C2 will review papers optimiz-
ing resource management from a QoS perspective, focusing on
transmission rate, delay, and throughput. Section III-C3 will
examine papers that address energy efficiency optimization,
while Section III-C4 will explore papers focusing on spectral
efficiency.

Lastly, Section III-D discusses semantic-aware resource
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management techniques in MEC environment. Section III-D1
covers offloading in SC, Section III-D2 addresses caching,
Section III-D3 discusses control, and Section III-D4 explores
the integration and coordination of communication, compu-
tation, caching, and control (C4) resources in SC networks.
This integration is essential for efficient data handling and
processing in resource-constrained MEC. By the end of this
survey, the readers will have a comprehensive understanding
of SC resource management.

B. Semantic-aware Information Transmission

1) Semantic-aware Transceiver Design: In SC systems, a
lot of research has been dedicated to designing and optimizing
systems that maximize task-oriented performance. Deep learn-
ing has been integrated into various information-theoretic and
link-level systematic modeling approaches, leading to a diverse
range of variants depending on the source type. Among these,
the deep learning-enabled semantic communication (DeepSC)
system [41] and its several variants stand out. These variants
cater to different types of data sources, including text [41]–
[44], visual [45]–[49], speech [50]–[52], and multimodal [53]–
[55].

For text SC systems, semantic sentence transmission is
critical, with many state-of-the-art methods being proposed
to enhance performance and efficiency. Farsad et al. [56]
pioneered the initial deep learning-based joint source-channel
coding (DeepJSCC) for text transmission, utilizing a recurrent
neural network (RNN) and a fully-connected neural network to

encode text sentences into fixed-length bit streams over simple
channel environments. This system directly recovers text with-
out separate channel and source decoding, demonstrating supe-
riority under high bit drop rates. Building on this foundation,
Xie et al. [41], [42] developed DeepSC, a SC system based
on the Transformer model, which introduced the concepts
of semantic information and semantic error at the sentence
level. Compared to traditional approaches, DeepSC is more
robust to channel variations and achieves better performance
in source recovery, particularly in low signal-to-noise ratio
(SNR) regimes. The DeepSC system includes a transmitter
with a semantic encoder to extract semantic features and a
channel encoder to generate transmission symbols, while the
receiver comprises a channel decoder for symbol detection
and a semantic decoder for text estimation. Trained using a
loss function that considers sentence similarity and mutual
information, DeepSC was evaluated using the BLEU score
and found to outperform traditional methods and other deep
learning-based networks, especially in low SNR conditions.
Xie et al. further extended DeepSC to the Internet of Things
(IoT) with a distributed SC system for capacity-limited net-
works, addressing practical issues such as channel impact,
quantization, and network compression [43]. Additionally,
Zhou et al. [44] proposed a cognitive SC framework leveraging
KG to surpass the Shannon limit. This framework utilizes
triples as semantic symbols, enabling error correction at the
symbolic level and enhancing communication reliability while
reducing data compression rates.
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For image SC systems, Bourtsoulatze et al. [57] conducted
pioneering work by jointly optimizing semantic and channel
coding. They recognized the capability of DNNs for image
compression and channel noise estimation, proposing an auto-
encoder based DeepJSCC model to transmit images over a
wireless channel. Unlike traditional image compression, which
transforms images into bits, their DeepJSCC approach maps
pixel values to complex-valued channel symbols. However,
stochastic noise in wireless channels posed significant chal-
lenges, leading to performance degradation. To address this,
Kurka et al. [58] introduced DeepJSCC with feedback, where
the received signal is fed back to the transmitter to mitigate
channel noise effects, improving image reconstruction quality.
Building on these advancements, Xu et al. [59] proposed
attention mechanism-based DeepJSCC, which enhances noise
tolerance by dynamically adjusting bit allocation between
source and channel encoders based on current SNR conditions.
The key innovation of attention-based DeepJSCC is its use of
a channel-wise soft attention network for adaptive compres-
sion, providing robustness across various SNR conditions. In
contrast to previous works that focus on physical noise, the
authors in [45] addressed both channel and semantic noise,
proposing adversarial training with weight perturbation and a
masked vector quantized-variational autoencoder to enhance
system robustness. Additionally, Zhang et al. [46] discussed
the need for domain adaptation in practical scenarios. They
proposed a SC system for image transmission focused on
raw image reconstruction and task performance enhancement,
using PSNR and accuracy metrics. They identified the out-
of-distribution problem and proposed a domain adaptation
approach, integrating a data adaptation network to maintain
high performance in varying datasets, thereby optimizing the
balance between task performance and image reconstruction.

In addition to image transmission systems, research has also
focused on other types of visual data, such as point cloud data
[48] and video [49]. Varischio et al. [48] proposed a hybrid
semantic compression (HSC) pipeline algorithm for LiDAR
point clouds to achieve real-time transmissions in autonomous
driving scenarios. LiDAR data, which generate large volumes
of point clouds carrying geometry and attribute information for
object detection, localization, and recognition, need efficient
compression for real-time communication within limited band-
width channels. The HSC pipeline combines Google’s Draco
software [60] for compression with RangeNet++ [61], for
semantic segmentation, classifying data points and identifying
valuable objects like pedestrians and vehicles. The pipeline
supports three transmission levels, each progressively remov-
ing less critical elements to prioritize valuable data, achieving
up to 700 times compression with tolerable accuracy degra-
dation. Similarly, Wang et al. [49] addressed data reduction
and automotive camera video compression for assisted and au-
tomated driving functions, proposing a semantic-aware video
compression framework. This method separates each video
frame into regions of interest (ROI) and non-ROI, applying
different compression ratios to maintain the quality of critical
navigation information. Future research could explore more
advanced codecs, improve semantic segmentation accuracy,
and refine the definition of ROI and non-ROI for various

applications, aiming for a comprehensive evaluation of image
quality in automotive contexts.

Recent advances in SC for speech transmission have demon-
strated significant improvements in both efficiency and accu-
racy. Weng et al. [50] developed an attention-based SC system
utilizing CNNs to compress speech spectra, treating each
frame as an image, and leveraging the squeeze-and-excitation
network for superior performance. Tong et al. [51] enhanced
accuracy through federated learning by training across multiple
devices. Additionally, Han et al. [52] proposed a two-stage
training scheme to accelerate training times. These methods
have proven to be more efficient than traditional communi-
cation systems, reducing character-error-rate and word-error-
rate, and performing robustly across various channel condi-
tions. Consequently, SC has emerged as a promising solution
for transmitting critical semantic information in bandwidth-
limited environments.

The aforementioned SC systems have exhibited satisfac-
tory performance in certain scenarios, primarily focusing on
single-modal data. However, the evolution of SC systems
has highlighted the need to support multimodal data from
different users efficiently [62]. Initial research by Xie et al.
[63] introduced MU-DeepSC, a task-oriented multi-user SC
system designed to enhance the accuracy of visual question
answering (VQA) tasks. This system uses Long Short Term
Memory (LSTM) for text transmission and Convolutional
Neural Network (CNN) for image transmission, demonstrating
robustness to channel variations, particularly in low SNR
environment. Building on this, Xie et al. [53] expanded their
framework to unify the semantic encoding structure for both
image and text transmitters using Transformer models. This
extension addresses inter-user interference and diverse data
distribution fusion, making it suitable for various autonomous
applications in daily life and industry. Further advancing this
field, Li et al. [54] introduced a cross-modal SC paradigm
designed to overcome the polysemy and ambiguity issues
inherent in multimodal services. Their approach includes a
cross-modal knowledge graph and advanced semantic encoder
and decoder, ensuring high reliability and precise recovery
of multimodal signals. These advancements collectively un-
derscore the importance of developing robust multimodal SC
systems to support diverse applications effectively. However,
the need for a model that can handle multiple tasks without
separate retraining remained. Zhang et al. [55] addressed this
by proposing U-DeepSC, a unified SC framework capable
of handling multiple tasks with a fixed model. U-DeepSC
employs a vector quantized variational mechanism for discrete
feature representation and a digital modulation module, sig-
nificantly reducing transmission overhead and enhancing task
performance.

2) Adaptive Optimal Control of Semantic Compression:
The aforementioned works in the Section III-B2 discussed
the impact of compression ratio on system performance and
incorporated it into the system design and implementation.
However, they did not address optimizing the compression
ratio based on network conditions, nor did they include adap-
tive control mechanisms for varying network conditions. In
this section, we will explore studies that consider the optimal
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and adaptive control of compression efficiency, particularly in
the context of network conditions, to enhance network system
efficiency and improve task performance.

Conventional text-based SC systems [41], [43], [44], [56]
primarily rely on fixed-length codes for sentences, which
are unsuitable for sentences of varying lengths and result in
inefficiencies under varying meanings and SNR conditions.
To address this, Rao et al. [64] proposed a variable-length
code based on LSTM, which performs better than the fixed-
length approach in handling longer sentences. Additionally,
Sana et al. [65] introduced a semantic adaptive mechanism
that dynamically optimizes the compression ratio per semantic
message, ensuring semantic accuracy by carefully evaluating
the balance between semantic compression and semantic fi-
delity. Further enhancements can be achieved by introducing
state-of-the-art semantic technologies, such as the universal
Transformer [66], which can adapt to different channel con-
ditions but still lacks the flexibility to dynamically change
code lengths. Jiang et al. [66] tackled this limitation by com-
bining semantic coding with Reed-Solomon channel coding
and hybrid automatic repeat request (HARQ), leveraging the
strengths of both semantic and conventional coding methods.
This approach significantly reduces the required number of
bits for semantic sentence transmission and the sentence error
rate. To further address inefficiencies and lack of scalability,
Zhou et al. [67] proposed an adaptive method using multi-bit
length selection and a progressive semantic HARQ scheme
with incremental knowledge to reduce communication costs
and semantic errors. This method employs a policy network
to decide the appropriate coding rate and introduces a specific
denoiser to reduce semantic errors during transmission.

Zhang et al. [47] proposed an adaptive control mechanism
to improve the efficiency of wireless image transmission in
SC. They proposed a predictive and adaptive deep coding
framework that adjusts the code rate based on channel SNRs
and image contents, enhancing image quality and reducing
transmission errors. Additionally, Zhu et al. [68] proposed
AITransfer, a semantic-aware transmission method for vol-
umetric video, which adapts compression ratios to dynamic
network conditions, optimizing visual quality and transmission
efficiency based on real-time bandwidth availability.

3) Joint Optimization for Control and Allocation of Re-
source: While previous works have significantly contributed
to designing SC systems and controlling the amount of trans-
mitted information, they did not address resource allocation in
specific network conditions and requirements. Comprehensive
approaches considering the joint optimization of semantic
compression and resource allocation are required. Yan et al.
[8] proposed a semantic spectral efficiency (S-SE) model
to measure communication efficiency from a semantic per-
spective, aiming to maximize overall S-SE by optimizing
the transmission volume of semantic information. Similarly,
Yang et al. [74] addressed resource allocation and semantic
information extraction in energy-efficient SC with rate split-
ting, formulating an optimization problem to minimize total
communication and computation energy consumption while
satisfying various constraints.

Liu et al. [70] proposed a task-oriented communication

architecture for multi-user SC systems, introducing adaptable
semantic compression to optimize compression ratio and re-
source allocation, thereby maximizing task success probability
and reducing data size by up to 80%. Chi et al. [69] proposed
a scheme for jointly optimizing compression ratio, power
allocation, and resource block assignment to maximize user
content reception. They demonstrated the superiority of an
adaptive decision method over a fixed method for compression
ratio in minimizing power allocation while meeting latency
constraints.

Further advancements include Binucci et al. [71] intro-
ducing a comprehensive framework that leverages Lyapunov
stochastic optimization to dynamically optimize various re-
sources in edge learning environments. Their approach aims
to balance communication, computation, and encoder-classifier
resources effectively, thus enhancing the overall efficiency of
edge learning. This method addresses the complex challenge
of resource management in dynamic and distributed settings,
ensuring that resources are allocated in a manner that maxi-
mizes learning efficiency while minimizing latency and energy
consumption. Similarly, Yan et al. [73] conducted an in-
depth investigation into resource allocation strategies designed
to maximize the Quality of Experience (QoE) in semantic
communication networks. They formulated an optimization
problem that integrates semantic symbol transmission, channel
assignment, and power allocation, ultimately aiming to en-
hance user satisfaction by optimizing the overall communica-
tion process. Additionally, Zhang et al. [76] employed deep
reinforcement learning (DRL) techniques for resource man-
agement in task-oriented semantic communication networks
(TOSCNs). Their approach dynamically adjusts resource al-
location based on the current state of the system, effectively
balancing the quantity of data packets and the accuracy of
tasks, thereby improving the adaptability and performance of
semantic communication systems in real-time scenarios.

Building on these developments, Binucci et al. [72] pro-
posed a novel resource allocation approach specifically tailored
for multi-user environments. This approach utilizes Lyapunov
optimization to manage and allocate resources efficiently
among multiple users, addressing the unique challenges posed
by multi-user settings. Meanwhile, Li et al. [75] explored the
use of non-orthogonal multiple access (NOMA) in semantic
communication systems, demonstrating its superiority over
traditional orthogonal multiple access (OMA) schemes. Their
findings highlight significant improvements in semantic trans-
mission rates and power efficiency, suggesting that NOMA-
enabled SC could be a promising direction for future research.

The studies discussed in Section III-B underscored the
significance of new semantic-aware information transmission
system design for maximizing fidelity, task-oriented and sys-
tem oriented performance. The research and development
reflect the dedication of the academic community to pioneering
advancements in this field. The trajectory of these investiga-
tions signals a promising future for SC, ensuring its central
role in next-generation communication systems. A summary
of existing works of semantic-aware information transmission
is presented in Table V.



11

TABLE V
SUMMARY OF SEMANTIC-AWARE INFORMATION TRANSMISSION

Ref. Transceiver
Design

Optimal
Control

Resource
Allocation

Performance Metrics Data TypeUser Task Fidelity System
[41] O X X X O X Text
[44] O X X X O X Text
[42] O X X X O X Text
[43] O X X X O X Text
[44] O X X X O X Text
[59] O X X X O X Visual
[48] O X X X O X Visual
[49] O X X O O X Visual
[45] O X X O O X Visual
[46] O X X O O X Visual
[51] O X X X O X Speech
[50] O X X O O X Speech
[52] O X X O O X Speech
[54] O X X X O X Multimodal
[53] O X X O O X Multimodal
[55] O X X O O X Multimodal
[64] O O X X O X Text
[66] O O X X O X Text
[65] O O X X O O Text
[67] O O X X O O Text
[68] O O X X O O Visual
[47] O O X O O X Visual
[8] X O O X X O Text

[69] X O O X X O Text
[70] X O O X X O Visual
[71] X O O X X O Visual
[72] X O O O X O Visual
[73] X O O X X O Multimodal
[74] X O O X X O Multimodal
[75] O O O X O O Multimodal
[76] O O O O X O Visual

C. Semantic-aware Resource Allocation

1) Metrics for Semantic-aware Resource Allocation: The
optimization of usually scarce resources for optimality and
efficiency across one or more networks—across wireless or
optical SC networks—is one of the key problems facing
classical SC systems. Semantic metrics for resource allocation
are therefore crucial to optimize several types of classical
SC systems. The following semantic metrics for resource
allocation are largely relevant to optimizing SC systems: the
metric of S-Rate, S-SE, QoE, and system throughput in mes-
sages (STM). We present these semantic-related performance
metrics below, beginning with STM.

The paper [77] proposed a new metric, System Throughput
in Messages (STM). The STM aimed to measure the sum
of the message rates delivered to all mobile users within
a time unit. Herein, the unit message, in a communication
sense, indicated a complete piece of information successfully
transmitted. For instance, an entire text sentence ending with
a period in text communication or a voice signal completely

sent out in speech communication could be regarded as a
message. With that in mind, the aforementioned message rate
was thus interpreted as the number of messages conveyed or
processed per time unit (msg/s), with reference to the bit-rate
definition (bit/s). For all 𝑖 ∈ 𝑈, let 𝑆𝑖 ( · ) denote a universal
bit-to-message transformation function of 𝑀𝑈𝑖 under given
channel conditions, which converts bit rate to message rate
in a physical sense. Note that the manifestation of 𝑆𝑖 ( · )
should be solely from the users’ side, jointly determined
by adopted semantic models, associated KBs, and received
message properties. Then, in view of the bit rate 𝑏𝑖 𝑗 , we can
take advantage of 𝑆𝑖 ( · ) to naturally define the message rate
by 𝜉𝑖 𝑗 , where 𝜉𝑖 𝑗 = 𝑆𝑖 (𝑏𝑖 𝑗 ), for all (𝑖, 𝑗) ∈ 𝑈 × 𝐵. Thus,

𝑇𝑀 =
∑︁
𝑖∈𝑈

∑︁
𝑗∈𝐵

𝑥𝑖 𝑗𝜉𝑖 𝑗 (1)

Here, 𝑇𝑀 is the STM that could well represent the network
performance from a semantic perspective.

In [8], the authors proposed a new performance metric
for text-based SC, which was S-Rate. S-Rate represented the
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amount of semantic information 𝐼 effectively transmitted per
second. It was measured in semantic units per second (suts/s).
The semantic unit represented the basic unit of semantic
information. Specifically, the S-Rate of the 𝑛-th user over the
𝑚-th channel with bandwidth 𝑊 could be expressed as:

Γ𝑛,𝑚 =
𝑊𝐼

𝑘𝑛𝐿
𝜉𝑛,𝑚 (2)

where 𝜉𝑛,𝑚 signifies the semantic similarity of the 𝑛-th user
over the 𝑚-th channel and relies on the neural network
structure of the system. 𝑘𝑛𝐿 denotes the expected number of
semantic symbols per sentence for the 𝑛-th user. Therefore,
this formula ties together the channel’s capacity, the effectively
transmitted semantic information, and the efficiency of the
transmission. In [8], the authors also proposed S-SE based
on S-Rate. The S-SE referred to the rate at which semantic
information could be successfully transmitted over a unit of
bandwidth. It was measured in semantic units per second per
Hertz (suts/s/Hz). The corresponding S-SE could be expressed
as:

S-SE(Φ𝑛,𝑚) =
Γ𝑛,𝑚

𝑊
(3)

However, evaluating the performance of S-Rate imposed
challenges. The main metric used was the similarity between
the original and received data. Formulating this similarity
function for theoretical analysis was very complex, and there
were no closed-form expressions provided for the sentence
semantic similarity function. Therefore, in [8], the value of
similarity could only be obtained via experiments on DeepSC
[41].

To address this challenge, the authors in [78] turned to a data
regression method. They observed that the semantic similarity,
when plotted against certain parameters, exhibited an ‘S’ shape
and remained confined between two values. This observation
was key as it hinted at the potential use of the generalized
logistic function to approximate this semantic similarity. By
leveraging this function, they could effectively model the be-
havior of the semantic similarity with respect to the parameters
in question. The significance of this approximation cannot be
understated. With a tractable function in hand, the authors
could dive deeper into the intricacies of SC. This paved the
way for more in-depth theoretical investigations, allowing for
the optimization of systems that prioritize the transmission of
semantics over mere data. In essence, the S-Rate approxima-
tion provides a foundational tool for the design and analysis
of next-generation communication systems, emphasizing the
importance of meaning in transmitted data.

In [73], Yan et al. discussed the performance metric and
defined it as a QoE model. The QoE specifically consists
of two components, semantic rate and semantic similarity
score, corresponding to user quality of service and user task
performance, respectively. Yan et al. focused on two types of
intelligent tasks, including a single-modal task and a bimodal
task. Assume that 𝑁𝑏

𝐵𝑖
is bimodal user pairs of 𝑞-th user

group and 𝑈𝑏
𝑞 is the set of all user groups in the b-th cell.

The semantic rate was defined as the amount of semantic
information emitted to the transmission medium per second,
measured in suts/s. The semantic rate of the single-modal user

𝑢 ∈ 𝑈𝑏
𝑞 , where 𝑞 > 𝑁𝑏

𝐵𝑖
, was given by:

𝜙𝑢 =
𝐻̃𝑆𝑖

𝑘𝑢/𝑊
(4)

where 𝐻̃𝑆𝑖 represents the DeepSC [41] based approximate
semantic entropy.

The semantic rates of bimodal users 𝑢𝑡 and 𝑢𝑖 , where
𝑢𝑡 , 𝑢𝑖 ∈ 𝑈𝑏

𝑞 and 𝑞 ≤ 𝑁𝑏
𝐵𝑖

, were expressed as:

𝜙𝑢𝑡 =
𝐻̃𝐵𝑖,𝑡

𝑘𝑢𝑡 /𝑊
(5)

𝜙𝑢𝑖 =
𝐻̃𝐵𝑖,𝑖

𝑘𝑢𝑖/𝑊
(6)

respectively, where 𝐻̃𝐵𝑖,𝑡 and 𝐻̃𝐵𝑖,𝑖 represented the Deep-
VQA [79] based approximate semantic entropy for text trans-
mission user and image transmission user, respectively.

The QoE model was formulated using the semantic rate and
semantic accuracy. Specifically, the QoE of the 𝑞-th user group
in the 𝑏-th cell, denoted as 𝑄𝑜𝐸𝑏

𝑞 , is given by:

𝑄𝑜𝐸𝑏
𝑞 =

∑︁
𝑢∈𝑈𝑏

𝑞

𝑤𝑢𝐺
𝑅
𝑢 + (1 − 𝑤𝑢)𝐺𝐴

𝑢 (7)

where 𝑤𝑢 and 1−𝑤𝑢 represented the weights of the semantic
rate and semantic accuracy for user 𝑢, respectively. Addition-
ally, 𝐺𝑅

𝑢 and 𝐺𝐴
𝑢 denoted the scores of semantic rate and

semantic accuracy for user 𝑢, respectively. Based on (7), a
semantic-aware resource allocation method was investigated
that maximized the QoE by optimizing the number of trans-
mitted semantic symbols, channel allocation, and user power.

The work in [75] addressed the concept of compression ratio
in the context of SC, particularly in the transmission of image
and text semantic information. The compression ratio (𝐶) was
a crucial factor in the S-Rate of image semantic transmission.
It represented the average number of semantic symbols per
image 𝜄. For a fixed compression ratio, 𝐶𝐿 𝜄 (where 𝐿 𝜄 was
the average pixel number in a single image) represented the
average number of semantic symbols per image. This was
crucial in the context of the paper’s proposed NOMASC
scheme, which aimed to enhance the performance of SC.
The paper also introduced a new metric, the semantic metric,
which was used in the definition of the S-Rate for image
semantic transmission. The semantic rate of image semantic
transmission (S-Rate) was defined as

Γ𝜄 =
𝑊𝐼 𝜄

𝐶𝐿 𝜄

· 𝜉 𝜄𝐶 (𝛾) (suts/s) (8)

where 𝐼𝑖 was the average amount of semantic information
carried in a single image. This definition coupled the semantic
rate with the transmission accuracy, representing the average
amount of successfully transmitted semantic information per
second.

In NOMASC system, the ‘ergodic semantic rate’ is a key
metric [80]. This rate captures the average performance of
SC across all channel conditions. Unlike a single snapshot of
performance, it offers a comprehensive view of the system’s
capabilities. The ergodic semantic rate is derived from the in-
stantaneous semantic rate 𝑆(𝑣), influenced by time allocation,
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communication method (semantic or traditional), and channel
conditions. The ergodic rate is the expected value of this
instantaneous rate over all fading states:

Ergodic Rate = E[𝑆(𝑣)] (9)

Key factors affecting the ergodic semantic rate include trans-
mit power, which can increase rate but also cause interference,
and the choice of communication method. The study in [80]
shows a flexible approach, switching between semantic and
traditional methods to optimize performance.

2) QoS and QoE: In this section, we explore optimal
resource management in SC systems, focusing on QoS and
QoE. Unlike traditional systems that minimize technical errors,
SC prioritizes the semantic value of information. This calls
for new resource allocation frameworks that consider both
QoS metrics like transmission rate and QoE factors like user
satisfaction. Specifically, the QoS aims to optimize transmis-
sion rate, delay, and throughput, and the QoE focuses on user
satisfaction, clarity, and fluency. In the following, we discuss
the algorithms of resource allocation, user association, and
power allocation for QoS and QoE in SC.

Xia et al. [77] addressed user association (UA) and band-
width allocation (BA) challenges in intelligent SC within
heterogeneous networks. They proposed a two-stage solution:
the first stage used stochastic programming to achieve a de-
terministic objective with semantic confidence, and the second
stage employed a heuristic algorithm to optimize UA and BA.
This method aimed to maximize STM as described in Eq.
(1), under KB matching and wireless bandwidth constraints.
The results showed the proposed solution consistently outper-
formed baseline algorithms, even at high semantic confidence
levels. Higher knowledge matching degrees between users and
base stations further improved STM performance. Future work
could enhance this solution and explore its application in
various network scenarios.

Yan et al. [8] focused on optimizing resource allocation for
text transmission in SC, aiming to maximize overall semantic
spectral efficiency (S-SE). They highlighted the inadequacy of
traditional spectral efficiency metrics for semantic information

and proposed S-SE as described in Eq. (3), to measure the
rate of successfully transmitted semantic information per unit
bandwidth. To define S-SE, they introduced the semantic
transmission rate as described in (2), referring to the effectively
transmitted semantic information per second. As shown in
Fig. 4, the scenario assumes multiple users sending semantic
symbols to a base station. By formulating the resource alloca-
tion problem as an S-SE maximization, the authors employed
exhaustive search methods and the Hungarian algorithm to
find optimal solutions. Their findings demonstrated that SC
systems could achieve higher S-SE than 4G and 5G systems,
particularly when encoding words required more than 19 bits
on average. Increasing the bits needed for encoding to over
27 bits with 10 dBm transmit power allowed SC systems to
surpass even ideal traditional systems.

Building on these foundational works, Zhang et al. [76]
focused on dynamic resource allocation for task-oriented SC
systems using a Deep Deterministic Policy Gradient (DDPG)
approach [81]. Their system involves intelligent devices per-
forming feature extraction, semantic compression, and channel
encoding for captured images, which are then uploaded to an
edge server for processing and computation. The inference
results are fed back to the devices for further action. This
method jointly optimizes bandwidth, power, and semantic
compression ratios, balancing task accuracy and execution
frequency. Kang et al. [82] introduced a personalized saliency
fused SC (PERSF-SC) framework for UAV image-sensing
tasks, streamlining the communication process by transmit-
ting only the most relevant data based on user interests.
Additionally, Du et al. [83] proposed a SC framework for
digital agriculture, optimizing power allocation to enhance
the efficiency of transmitting semantic information in virtual
apple orchards. In the context of video conferencing, Jiang
et al. [84] introduced semantic video conferencing (SVC)
to maintain high resolution under bandwidth constraints by
transmitting key points representing motions. They proposed
an incremental redundancy HARQ system to adapt to varying
channel conditions and optimize bit consumption.

Further advancing resource management, studies by Farsh-
bafan et al. [85] and Wang et al. [86] leveraged KG to optimize
resource allocation. Farshbafan et al. proposed a hierarchical
semantic KB structure and introduced “belief efficiency” to
enhance communication resource efficiency, emphasizing the
efficient utilization of “beliefs” for effective SC. Wang et al.
employed a reinforcement learning algorithm with an attention
network to optimize resource allocation and semantic infor-
mation selection, significantly improving data transmission
efficiency.

In the context of emerging wireless applications such as
virtual reality, personalized healthcare, autonomous driving,
and the Internet of Everything (IoE), satisfying a wide range
of QoE requirements has become crucial, especially given the
large volumes of data. There are some research works focused
on QoE [73], [87]–[89]. Yan et al. [73] explored resource
allocation in SC systems, specifically for text transmission.
They aimed to maximize the overall semantic spectral ef-
ficiency (S-SE) of all users by addressing the challenge of
quantifying the transmission rate of semantic information in
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communication networks. To tackle this, they proposed a novel
QoE model as shown in Eq. (7). The QoE-aware resource
allocation problem was formulated in terms of the number
of transmitted semantic symbols, channel assignment, and
power allocation, and was decoupled into two subproblems:
optimizing the number of transmitted semantic symbols with
given channel assignment and power allocation, and solving
the channel assignment and power allocation subproblem using
exhaustive search and a low-complexity matching algorithm.
Their findings demonstrated the effectiveness and superiority
of the proposed method in improving overall QoE, outper-
forming the random method and approaching the upper bound
significantly.

Zhang et al. [87] addressed the problem of resource alloca-
tion in TOSCN for both uplink and downlink scenarios. Their
system model, shown in Fig. 5, involved multiple primary
users and one secondary user sharing spectrum resources
using the NOMA protocol. They proposed a two-tier DRL
framework integrating Deep Q Network and DDPG [81] to
optimize the allocation of time slots, transmission power,
and semantic compression ratio, aiming to maximize long-
term QoE. The results showed that their method effectively
allocated resources, leading to improved performance in a
simulated TOSCN network, with QoE as a key performance
metric.

Further advancing QoE optimization, Wang et al. [88] fo-
cused on maintaining high QoE in dynamic network conditions
by adapting resource and power allocation in real-time. They
designed an online algorithm, the soft actor-critic communi-
cation transformer (SACCT), to maximize total follower QoE
gain while minimizing provider energy consumption. The al-
gorithm made real-time decisions on encoding and transcoding
bitrates, uploading power, and transcoding frequency based on
current observations. Their results showed that the SACCT
framework effectively maintained high QoE in live streaming
scenarios by adapting to varying wireless channel conditions
and bitrate requests. Similarly, Du et al. [89] aimed to deploy
metaverse [90] ultra-reliable and low-latency communications
(URLLC) services in wireless multiple-input and multiple-

output networks. The problem addressed was the difficulty
in providing a personalized immersive experience, a distinc-
tive feature of the metaverse, using conventional URLLC.
The authors proposed a novel metric, Meta-Immersion, for
defining QoE in the metaverse, taking into account both
objective network performance and subjective user attention
values. Using an attention-aware rendering capacity allocation
algorithm, they demonstrated that their URLLC attention-
aware allocation scheme could increase Meta-Immersion by an
average of 20.1%. compared to conventional URLLC schemes.

3) Energy Efficiency: The SC system must be developed
to achieve energy efficiency under resource constrained condi-
tion. The efficient management of network resources is crucial
for this purpose, as it not only extends the lifespan of the
system for long-term operation but also enhances its reliability.
Furthermore, efficient energy use has broader implications,
including the reduction of carbon emissions and the mitigation
of the impact on climate change. Several works have focused
on energy efficiency in SC, including those by [10], [70], [74],
[82], [91].

The intricacies of UAV image-sensing-driven task-oriented
SC scenarios were explored by the authors in [82]. This
research took a distinctive approach by emphasizing energy ef-
ficiency. They introduced an energy-efficient task-oriented SC
framework employing a triplet-based scene graph for image
information, ensuring that only the most pertinent information
was transmitted, thereby conserving energy. A significant
highlight was the introduction of a personalized semantic
encoder tailored to user interests. This encoder ensured that
the transmitted data was in perfect alignment with the user’s
requirements, avoiding unnecessary data transmissions and
reducing communication overhead. In a traditional setup, a
UAV would transmit 59 images to three subscribers, totaling
224.8MB of data transfer. However, with the PERSF-SC
approach, the UAV selectively sent only 64 images to specified
subscribers, significantly reducing bandwidth use and energy
consumption during transmission [82].

Resource management is crucial for efficient energy use in
SC systems. The authors in [74] conducted research on re-
source allocation and semantic information extraction in wire-
less network environments. They modeled scenarios where
semantic information was extracted from large-scale data at
base stations and transmitted as small-sized semantic informa-
tion to users. Each user reconstructed the original data based
on common knowledge built through collaborative learning.
Probability graphs were employed at base stations to extract
multi-level semantic information. In downlink transmission, a
speed-splitting approach was adopted. Due to limited wireless
resources, both computational and transmission energy were
considered. An alternating algorithm was proposed to solve
this optimization problem. Through simulation experiments,
it was confirmed that the rate splitting multiple access-based
approach proposed in [74] outperformed frequency division
multiple access and NOMA-based approaches in terms of
performance.

Several works have focused on optimizing MEC-enabled SC
systems and adaptive compression techniques. The authors in
[70] proposed an end-to-end SC architecture enabling users
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to extract, compress, and transmit meaning. They introduced
the adaptable semantic compression approach for compress-
ing semantic information based on task importance given
network conditions. The solutions for optimal compression
ratio, resource allocation, and user selection were developed,
achieving substantial data size reductions and improved task
success rates. Additionally, the work in [10] proposed an
SC system based on DNN models, introducing an MEC-
based partitioned learning approach to reduce data traffic and
energy consumption while increasing the number of supported
wireless devices. The challenges of executing computationally
intensive applications locally were addressed by the authors
in [91], who enabled users to offload computation tasks to
edge servers. This approach reduced computational energy
consumption and enabled fast task execution through an ap-
proximation policy optimization-based multi-agent reinforce-
ment learning algorithm.

4) Spectral Efficiency: The advent of 6G networks
promises to revolutionize communication systems not just with
faster speeds but with a fundamental shift towards ubiquitous
AI and edge intelligence. Edge intelligence, derived from
MEC, brings storage and processing closer to the data source,
typically on small base stations, rather than distant clouds.
This proximity is expected to significantly empower AI-driven
MEC in 6G networks, offering massive processing capabilities
and efficient data gathering [92], [93]. However, the increased
intelligence and autonomy of devices will generate staggering
volumes of data, necessitating high-performance connectivity
that ensures low latency and manages anticipated network
congestion and spectrum scarcity challenges [41]. SC has
emerged as an effective solution for this issue. In contrast
to Shannon-based communication, SC redefines spectral effi-
ciency as semantic spectral efficiency. As a result, algorithms
have been proposed to allocate resources by considering the
transmission volume of semantic information [8].

As we delve deeper into SC, we encounter the dual chal-
lenge of efficient semantic information extraction and man-
aging multi-user transmissions. With 6G expected to support
connectivity densities up to 108 devices per 𝑘𝑚2, enhancing
spectral efficiency becomes essential. Effective spectrum man-
agement is crucial for regulating spectrum sharing and miti-
gating interference. The work in [94] tackles these challenges
by presenting a CNN-based encoder-decoder architecture de-
signed to enhance spectral efficiency in interference-heavy
environments. This framework ensures accurate transmission
and reconstruction of semantic information and employs an
astute matching game with externalities to refine channel
allocation, thereby amplifying the mean semantic rate per user.

Maximizing spectral efficiency is further facilitated by
NOMA technology, which enables multiple users to share the
same frequency band for simultaneous communication [95].
Integrating NOMA technology and semantic-aware resource
allocation frameworks, as highlighted in studies such as [75],
[96]–[98], is vital for the success of SC in 6G environments.
These studies advocate for a shift from traditional bit-based
communication systems to methodologies that ensure more
efficient in multi-user. The research in [75] builds on this
by proposing a NOMASC system for non-orthogonal seman-

tic transmission across various datasets and data modalities.
Studies such as [96], [97] explore the application of NOMA
technology to SC, introducing a heterogeneous semantic and
bit multi-user framework for efficient multi-user communi-
cation in various scenarios. A significant highlight of these
studies is the introduction of the semi-NOMA concept, a
unified multiple access scheme designed to facilitate heteroge-
neous semantic and bit multi-user communication. The authors
emphasize the potential of NOMA when integrated with SC
to support this heterogeneous framework. Fig. 6 provides a
detailed insight into the Semi-NOMA approach, specifically
designed for heterogeneous semantic and bit communications.
The non-orthogonal sub-band operates on the NOMA prin-
ciple, accommodating multiple simultaneous transmissions at
varied power levels. Conversely, the orthogonal sub-band is
reserved for specific users, adhering to the orthogonal multiple
access (OMA) approach. This Semi-NOMA strategy harmo-
niously blends NOMA’s flexibility with OMA’s interference-
free communication. Additionally, the diagram underscores the
significance of both bit rate and semantic rate. While the bit
rate denotes data volume transmitted over time, the semantic
rate gauges the conveyed semantic information’s richness.
This comprehensive approach demonstrates the potential of
Semi-NOMA in addressing the multifaceted communication
demands of modern systems, from rich semantic content to
traditional data bits.

Modern SC applications, such as XR devices, demand
advanced metrics and resource allocation strategies that tradi-
tional communication metrics cannot meet. The study in [98]
introduces the Age of Incorrect Information (AoII) metric,
which captures both error-based and Age of Information
(AoI)-based performance features. This metric provides a
comprehensive view of system performance, particularly in
NOMA-aided XR devices, ensuring efficient resource allo-
cation and improved performance in task-oriented SC. XR
devices offer immersive digital environments but present chal-
lenges like ultra-massive access and real-time synchronization,
which traditional metrics can’t address. To bridge this gap,
the AoII metric was developed, capturing both error and AoI
features to provide a holistic view of system performance. The
study constructed a multi-user uplink NOMA system, analyzed
its performance using AoII, and derived average semantic
similarity and closed-form expressions for packet AoI. A
non-convex optimization problem was formulated, considering
semantic rate, transmit power, and status update rate, and
solved with a linear search-based algorithm. Simulation results
demonstrated the effectiveness of the AoII metric in evaluating
transmission performance.

A summary of existing works of semantic-aware resource
allocation in Section III-C is presented in Table VI.
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TABLE VI
SUMMARY OF SEMANTIC-AWARE RESOURCE ALLOCATION

Ref. Algorithm Direction Considered Objectives Data TypeQoS QoE EE SE
[77] RA-UA DL O X X X Text
[86] RA DL O X X X Text
[98] RA-PA UL O X O X Text
[8] RA - O X X O Text
[96] RA-PA DL O X X O Text
[83] RA-PA DL O X X X Image
[76] RA-PA UL-DL O X X X Image
[84] RA-PA DL O X X X Video
[82] RA-PA DL O X O X Multimodal
[85] RA - O X X X Multimodal
[73] RA-PA UL O O X X Multimodal
[87] RA-PA UL O O X O Image
[75] RA-PA DL X O O X Multimodal
[99] RA-PA UL X O O X Multimodal
[88] RA-PA UL X O O X Video
[89] RA-PA UL-DL X O O X Image
[94] RA - X X O O Image
[91] RA-PA-UA UL X X O X Text

Notation: In the table, “RA” means the resource allocation, “PA” means the power
allocation, “UA” means the user association, “UL” means the uplink and “DL” means
downlink.
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D. Semantic-aware MEC Orchestration

1) Semantic-aware Offloading: The rapid evolution of com-
munication networks has ushered in an era where the sheer
volume of data, often termed as big data, necessitates a more
integrated approach to handling and processing. With the
rise of MEC, there is a pressing need to efficiently manage
and optimize resources to cater to the demands of modern
applications. Modern communication networks are envisioned
as distributed systems that not only transfer data quickly
but also process, store, and retrieve it efficiently. This is
particularly crucial at the edge, where resource constraints
are more pronounced compared to centralized cloud systems.
MEC ensures that data are processed and available with min-
imal delay, meeting the demands of low-latency applications
such as IoT, automated driving, and augmented reality (AR)
[100]. In such MEC-based semantic-aware networks, issues
like task offloading and caching have become prominent. In
MEC-based SC, semantic encoders and decoders are used to
offload semantic tasks to edge servers. These systems face
a fundamental trade-off in deciding whether tasks should be
processed locally on user devices or offloaded to external
servers equipped with semantic decoders and applications.
When semantic tasks are processed locally on user devices,
the primary drawback is the substantial energy consumption
required to handle complex computations, which can deplete
device batteries quickly and reduce operational efficiency. On
the other hand, offloading tasks to remote servers reduces
local energy usage but increases the consumption of network
resources. Thus, the decision between local processing and
remote offloading must carefully consider the balance between
energy efficiency and network resource utilization, aiming to
optimize overall system performance and user experience.

Ji et al. [91] addressed these challenges by introducing
a semantic-aware task offloading system with a focus on
enhancing the energy efficiency of user equipment in edge
networks. The system extracted the intrinsic semantic in-
formation of tasks and strategically offloads them to edge
servers. This innovative approach was tailored to reduce the
computational energy consumption of user devices, ensuring
a more sustainable and efficient operation. Fig. 7 illustrated
the semantic task offloading mechanism within a network.
Two user equipments (UEs), 𝑈𝐸1 and 𝑈𝐸2, processed distinct
text inputs: “This is a cat” and “That is a dog”, respectively.
These inputs were transformed by a semantic encoder into

compact semantic features. The UEs then decided whether
to process these features locally or offload them to an edge
server for remote processing. Local processing reproduced the
original text, while offloading to the edge server resulted in
the remote results being returned to the UEs. Extending their
work, Ji et al. [101] explore multimodal scenarios to further
enhance the implementation of SC for task offloading. This
involves optimizing the QoE while considering user prefer-
ences, making it the first study to perform joint optimization
of computational and communication resources in semantic-
aware networks with multimodal tasks.

2) Semantic-aware Caching: Caching is another critical
aspect of SC systems in MEC environments, especially as
the demands of 6G applications grow. The study in [102]
explores the coordination of cache and computing resources
within a multimodal SC-assisted MEC system. By introduc-
ing a cache-enhanced offloading scheme, the study aims to
minimize the overall cost of computation of the system. The
authors formulated a bidirectional caching task model and
developed a content popularity-based DQN caching algorithm
to make near-optimal caching decisions. This approach ef-
fectively reduces system cost and improves cache hit rate,
laying a foundation for future research in cache-computation
collaboration schemes [102]. Furthermore, [103] proposes a
KB deployment mechanism based on edge caching to support
SC applications. This architecture integrates intelligent devices
with KBs located at both the cloud and the edge, ensuring
efficient semantic operations. Given the constraints of edge
servers, a subset of the semantic KB is stored, requiring
an efficient deployment strategy. Initially, a semantic KG is
formed using historical device request data and stored in the
cloud. When devices send semantic understanding requests,
the edge responds by executing a subgraph query. Over time,
the cloud KB updates, and the edge’s KB can also be refreshed.
This approach underscores the importance of cache-enabled
KBs in optimizing SC for future 6G networks.

3) Semantic-aware Control: The rapid evolution of com-
munication networks and the onset of 6G technology highlight
the critical need for semantic control and filtering in commu-
nication systems. The paper [26] emphasizes the importance
of integrating information semantics, not just as the meaning
of messages, but as their significance in relation to the pur-
pose of data exchange. The authors highlight the necessity
of moving away from the traditional model where humans
selected the data and the network ensured its accurate and
timely delivery, driven by the need for automated decisions
within a sense-compute-actuate cycle. Instead, they advocate
for a design that delivers the right and significant piece of
information to the appropriate computation or actuation point
at the right time, which is essential for the scalability of
these systems. The paper [26] delves into the theoretical
foundations of redesigning the entire process of information
generation, transmission, and usage for networked systems,
emphasizing the development of advanced semantic metrics
for communication and control systems, optimal sampling
theory, and related concepts. Additionally, the concept of a
semantic-effectiveness plane, discussed in [104], represents
a significant evolution in communication architectures by
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offering standardized interfaces for information filtering and
control across all layers of the protocol. This approach facil-
itates efficient data transmission and semantic-aware control,
underscoring the need for semantic communication systems
that are responsive and adaptable to the demands of modern
networks.

4) Semantic-aware C4 Orchestration: The integration of
communication, computation, caching, and control (C4) re-
sources in SC systems is vital for modern communication
networks. The study in [105] highlights the necessity of a C4
framework within MEC to optimize bandwidth consumption
and network latency, demonstrating effective reductions in
bandwidth use and latency. The SCORING project, proposed
in [106], emphasizes a collaborative computing, caching,
and networking paradigm facilitated by SDN/NFV layers,
enabling resource sharing across clouds, core networks, edge
servers, and end devices. This approach incorporates network
slicing and MEC-enabled microservices to meet stringent
performance requirements through AI and machine learning
integration. SCORING’s architecture, featuring a Management
and Orchestration plane, is designed to manage MEC-enabled
microservices and integrate computing, storage, and network-
ing, ensuring networks are adaptable and ready for future
demands. The development of semantic KBs is also crucial
for supporting SC in resource-constrained environments, un-
derscoring the need for a robust C4 framework in modern
communication networks.

E. Lessons Learned and Summary

The research covered in Section III-B highlights the evolv-
ing landscape of semantic-awae information transmission sys-
tem. In Section III-B1, the emphasis is placed on designing
semantic-aware transceiver systems to enhance task-oriented
and system-oriented performance or fidelity. Key approaches
involve defining a semantic loss or distortion function and min-
imizing it to make semantic encoders and decoders that effec-
tively extract semantic information. Additionally, the trade-off
between the semantic encoder’s rate and semantic distortion
was analyzed. This section explored how to design SC systems
for various types of data such as speech, visual, and text, as
well as for integrated multimodal data. Furthermore, research
on semantic noise was conducted to define and design robust
semantic encoders and decoders. Advanced techniques like
KG and Bayesian networks were used to define new semantic
concepts through knowledge representation units. Studies also
investigated designing semantic transceivers with generaliz-
able intelligence using approaches like domain adaptation.
Section III-B2 examines methods for dynamically controlling
the rate of the semantic encoder by considering the trade-off
between the rate and semantic distortion based on given net-
work conditions. For example, adaptive methods using multi-
bit length selection and progressive semantic HARQ schemes
were proposed to reduce communication costs and semantic
errors. Section III-B3 explores research that integrates adaptive
control and resource allocation to optimize performance across
various network scenarios. By jointly controlling the amount
of transmitted semantic information and allocating resources

efficiently, this approach aims to enhance the overall perfor-
mance of SC system.

In Section III-C, we explore various aspects of resource
management and performance optimization in SC systems. We
learned that traditional Shannon-based communication metrics
need to be redefined from a semantic perspective, focusing
on metrics like semantic rate, semantic transmission rate,
and QoE to optimize resource allocation and performance.
Key approaches include stochastic programming, heuristic
algorithms, and DRL for dynamic resource management, with
the aim of improving both QoS and QoE. Additionally, energy
efficiency is critical, with strategies focusing on transmitting
only the most relevant information and optimizing resource
use to extend the lifespan of the system and reduce the
environmental impact. The importance of managing spectral
efficiency in 6G networks was highlighted, with innovations
like NOMASC systems and the semi-NOMA concept balanc-
ing flexibility and interference-free communication. We also
examined how traditional multi-access schemes need modifi-
cations from a SC perspective, and how resource management
can be handled heterogeneous situations with bit and semantic
communication. These insights collectively underscore the
need for efficient, semantically aware resource management
to meet the complex demands of modern communication
systems.

In Section III-D, we learned the necessity of integrating
C4 resources to optimize SC systems. The rise of MEC
emphasizes the need for efficient management of these re-
sources. Key insights include the importance of semantic-
aware caching, offloading, and sampling control techniques.
For instance, semantic task offloading can balance energy
efficiency and network resource utilization, while caching
enhances system performance by storing frequently accessed
data closer to the edge. Moreover, joint C4 orchestration is
essential to manage the complexities of SC environments,
ensuring low latency and high efficiency in data processing
and transmission. Studies highlighted the use of advanced
frameworks and algorithms, such as DRL and knowledge-
based caching, to achieve these goals and support the stringent
requirements of modern applications such as IoT and AR.

IV. SECURITY AND PRIVACY IN SC

In Section IV, we analyze potential attacks targeting key
components of SC systems, including the encoder/decoder,
KB, and transmission channel. By identifying vulnerabilities in
each part, we aim to propose strategies to enhance the security
and privacy of SC systems. SC systems are susceptible to var-
ious attacks due to the complex interplay of their components.
Below is a detailed description of attacks categorized by the
affected component, along with the sections of the paper that
discuss these attacks.

The encoder/decoder component faces multiple security
threats, including poisoning attacks, which introduce corrupted
data into the training set to degrade the performance of the
encoder/decoder. Backdoor attacks involve inserting malicious
triggers into the encoder/decoder to manipulate the output
when specific conditions are met. Adversarial example attacks
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use slightly modified inputs to deceive the encoder/decoder
into producing incorrect outputs. Model inversion (MI) attacks
aim to extract sensitive information from the model, while
membership inference attacks attempt to determine if a par-
ticular data point was part of the training set. Additionally,
semantic noise introduces misleading or incorrect semantic
information, further compromising the system’s performance.
These attacks are discussed in detail in Section IV-A of the
paper.

The KB, a critical component for storing and managing
semantic information, is also vulnerable to attacks. Data poi-
soning involves attackers injecting malicious data into the KB,
leading to incorrect semantic interpretations. Data tampering
attacks occur when unauthorized users gain access to the
KB and alter the stored information, which can result in the
dissemination of false or misleading data. These attacks are
discussed in detail in Section IV-C of the paper.

The transmission channel is susceptible to several types of
attacks. Eavesdropping involves unauthorized parties intercept-
ing communication to gain access to sensitive information.
Jamming attacks disrupt communication by overwhelming the
transmission channel with noise or false signals. Man-in-the-
middle attacks occur when attackers intercept and potentially
alter the communication between the sender and receiver.
Physical layer adversarial attacks exploit weaknesses at the
physical transmission level to introduce errors and distortions,
compromising the integrity and reliability of the communica-
tion. These attacks are detailed in Section IV-C of the paper.

Fig. 8 provides a comprehensive overview of attacks in SC
system, highlighting the vulnerability of components such as
the encoder/decoder, KB, and transmission channel.
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Fig. 9: Overview of Poisoning Attacks [107]

A. Encoder/Decoder Security

In traditional communication systems, the encoder and
decoder operate based on predefined rules and algorithms,
facilitating direct mapping and transmission of raw data
with minimal processing without involving DL or ML in
the encoding or decoding processes. On the other hand, SC
systems utilize ML to learn underlying patterns and rela-
tionships between raw data and its semantic representation.
However, the susceptibility of ML models to various types
of attacks [107], particularly in high-stakes applications like
medical diagnosis and autonomous vehicles, raises significant
concerns. Even minor errors in a model’s decision-making
process can lead to disastrous consequences, highlighting the
urgent need to ensure the security of the encoder/decoder in
SC systems. Numerous types of attacks have been identified
that can compromise the security of ML models, including
those utilized in SC systems [16].

1) Poisoning Attacks: As depicted in Fig. 9, a poisoning at-
tack involves an attacker deliberately manipulating the training
data used for the encoder/decoder to degrade its performance,
either by causing incorrect predictions or introducing bias
[107], [108]. This can be done by adding malicious corrupted
data to the training set in various ways, such as modifying
existing data or adding new data designed to influence the
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model’s decisions [108]. In the context of wireless end-
to-end image transmission systems, SC has emerged as a
promising approach to conserve bandwidth [109]. A study in
[110] proposed a technique for wireless image transmission
using DeepJSCC, emphasizing the importance of well-trained
datasets at both the transmitter and receiver for reliable and
efficient performance. However, these training datasets are not
immune to security vulnerabilities. One notable vulnerability is
poisoning attacks, as demonstrated by Chen et al. [111]. They
proposed a type of attack called DeepPoison, which involves
the insertion of specific triggers into benign training data,
causing the network to misclassify certain inputs. To generate
these poisoned training samples, the proposed method utilizes
a generator and two discriminators, ensuring that the poisoned
samples are indistinguishable from their benign counterparts.

Xie et al. also investigated the susceptibility of DNNs to
poisoning attacks, particularly focusing on video recognition
models [112]. Their study involved manipulating the training
data using a trigger pattern to induce misclassification of
data instances. To enhance stealthiness and minimize visual
changes, the paper introduced a novel 3D poisoning attack
framework. This framework leveraged a computer graphic
primitive to construct the poisoning trigger, achieving signifi-
cantly reduced visual alterations in the manipulated videos.

In speech transmission systems, SC was also leveraged to
reduce data consumption. Weng et al. introduced DeepSC-
ST, a DeepSC system specifically designed for speech trans-
mission [113]. In this system, the input spectrum was trans-
formed into text-related semantic features at the transmitter.
These features were then extracted and transmitted using a
joint semantic-channel encoder, while the receiver utilized
the received semantic features to recover the transmitted text.
Additionally, speech synthesis was performed at the receiver
by incorporating the recognized text and speaker information
into a semantic-channel encoder, enabling the reconstruction
of speech signals. The proposed model exhibited potential for
the development of digital voice assistant systems in various
contexts, such as home, car, or smartphone applications,
offering heightened convenience in our daily lives. However,
it was crucial to address security concerns associated with the
training process. Automatic speech recognition (ASR) systems
necessitated vast amounts of training data, often collected
from potentially untrustworthy sources. This posed a challenge
as malicious actors could introduce poisoned data, thereby
compromising the integrity and performance of the ASR
system. Vigilance was essential to mitigate these risks and
ensure the security of the speech transmission system.

For instance, in [114], VENOMAVE was introduced as the
first training-time poisoning attack designed specifically for
speech recognition systems. This attack aimed to manipulate
the system’s training data to generate an incorrect transcription
of a targeted audio waveform, as determined by the attacker.
The objective was to deceive the system into recognizing
specific commands, such as “open the door,” even when the
user was saying something entirely different. Unlike traditional
approaches that manipulated input utterances, VENOMAVE
achieved its desired outcome by tampering with the system’s
training data. The results of the poisoning attack demonstrated

Backdoor

Model

Training
or update Victim 

model

Input with 
Backdoor

Training 
Phase

Test Phase

Target label
Training Data

Output

Overview of backdoor attacks. 

Machine Learning Security: Threats, Countermeasures, and 
Evaluations

Fig. 10: Overview of Backdoor Attacks [107]

that a small number of poisoned samples could effectively
compromise the system with a high success rate.

Similarly, in healthcare applications, poisoning attacks are
of great concern, particularly due to the limitations associated
with directly manipulating training data. In [115], the signif-
icance of such attacks was emphasized, as they could lead to
serious misclassification errors in medical datasets, especially
when classifying cancer and disease samples.

2) Backdoor Attacks: As depicted in Fig. 10, backdoor at-
tacks pose a significant threat to SC systems, occurring during
both the training and testing phases of the encoder/decoder.
In the training phase, malicious attackers can exploit vul-
nerabilities by introducing triggers into the training data.
These triggers manipulate the learning process, causing the
encoder or decoder to misinterpret the meaning of the data
during subsequent communication. During the testing phase,
the attacker can inject additional poisoned samples into the
input data, causing the encoder or decoder to make erroneous
classifications and produce misleading semantic representa-
tions. These attacks involve an adversary embedding triggers
into a limited number of training samples and altering the
corresponding labels to a predefined target [107]. For instance,
during the training phase, the adversary introduces triggers,
such as a “plus sign”, into specific positions of input images
and modifies their labels to match the target label. Subse-
quently, in the testing phase, the adversary activates these
triggers by providing poisoned samples as input to the encoder
or decoder of the SC system. As a result, the backdoor attack
effectively manipulates the semantic information conveyed by
the poisoned input samples to achieve a desired target meaning
[116].

Backdoors can occur in almost every stage of the ML
pipeline. Zhang et al. proposed a new backdoor attack method
called Poison Ink that utilized the image structure as the
carrier of poison information to generate trigger patterns and
leveraged a deep injection network to hide the trigger patterns
in the cover images invisibly [117]. Jia et al. discussed the
vulnerability of pre-trained image encoders in self-supervised
learning to backdoor attacks [118]. The pre-trained image
encoder could then be used as a feature extractor to build
downstream classifiers for many downstream tasks with a
small amount of or no labeled training data. The paper
proposed BadEncoder, which injected backdoors into a pre-
trained image encoder, allowing the attacker to make attacker-
chosen predictions for inputs embedded with an attacker-
chosen trigger.

A recent study introduced the visible, semantic, sample-
specific, and compatible (VSSC) trigger to address limitations
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in DNN backdoor attacks [119]. This approach used a stable
diffusion model to generate corresponding semantic objects
that seamlessly integrated with the original images, creating
realistic poisoned images. The VSSC trigger was found to
be universally effective, stealthy, and robust, regardless of the
poisoning ratio.

In addition to image classification, backdoor attacks also
pose a significant threat to text classification tasks, such
as in LSTM-based systems [120]. The paper proposed a
three-phase approach: generating poisoning samples, training
the model with poisoned data, and activating the backdoor.
This attack was conducted in a black-box setting, with the
adversary having limited knowledge of the model structure
and training algorithms, except for a small amount of training
data. Experimental results showed a 96% success rate with
a 1% poisoning rate. In [121], a backdoor attack named
BITE was introduced, embedding a backdoor into a victim
model by providing poisoned training data. BITE established
strong correlations between the target label and trigger words
by iteratively identifying and injecting them into target-label
instances through natural word-level perturbations. This in-
structed the victim model to predict the target label for inputs
containing trigger words, forming the backdoor.

3) Adversarial Example Attacks: As depicted in Fig. 11,
adversarial example attacks primarily target the testing or
inference phase of the encoder/decoder. During this phase,
the attacker manipulates the input data to appear innocuous
to humans, but this leads to misclassification or incorrect
outputs from the model. The goal is to exploit vulnerabilities
in the model’s decision-making process and cause it to make
mistakes when confronted with these modified inputs [107].
Adversarial example attacks could potentially have devastating
consequences for healthcare systems, particularly those reliant
on ML systems.

A comprehensive study by Rahman et al. examined the
security risks associated with ML systems for COVID-19 in
medical IoT devices. Their findings revealed that models with-
out defensive mechanisms against adversarial perturbations
were susceptible to attacks [123]. Similarly, the impact of
such attacks on autonomous driving systems is significant.
Autonomous vehicles rely on accurate environmental percep-
tion for decision-making, and errors can have catastrophic
real-world consequences. ML-based algorithms have shown
potential in semantic segmentation, which can enhance SC by
reducing data transmission requirements. For instance, only
pixels corresponding to a car need to be transmitted instead of
the entire image. However, adversarial examples can deceive

the model by subtly altering car images to misclassify them
as pedestrians, leading to dangerous actions such as sudden
brakes or unsafe lane changes [124], [125].

Various techniques can be employed to generate adversarial
examples in the domain of autonomous driving. Among these
techniques, one commonly employed method is gradient de-
scent. Gradient descent is an optimization algorithm utilized
to identify the minimum of a given function. In the realm
of adversarial examples, gradient descent is leveraged to de-
termine the smallest perturbation that can induce an incorrect
prediction by the model [126]. To minimize perturbation costs
and enhance the effectiveness of adversarial attacks, Yang et
al. introduced an approach called targeted attention attack.
This method utilizes the concept of the Recurrent Attention
Network to identify the most critical pixels in the input image.
By optimizing a universal perturbation, the targeted attention
attack technique aims to generate subtle perturbations that
can be easily overlooked by human drivers but significantly
increase the fooling rate when applied to a diverse set of test
images [127].

The emergence of adversarial attacks in the field of image
classification has sparked growing interest in investigating
adversarial audio attacks on ASR systems. However, due
to the inherent complexity of ASR structures, constructing
precise audio adversarial examples that align perfectly with the
desired target text transcription presents a significant research
challenge. Generally, adversarial attacks on ASR systems can
be categorized into three main types based on the attacker’s
knowledge: 1) white-box attacks, where the attacker possesses
complete knowledge of the targeted ASR system, 2) gray-box
attacks, where the attacker has limited knowledge about the
system, and 3) black-box attacks, where the attacker has no
prior knowledge of the system. Although existing research on
adversarial attacks in ASR has focused on white-box attacks,
it is important to note that this assumption does not always
hold in real-world scenarios. In practice, attackers often have
restricted access to only the output of the ASR system, lacking
detailed insights into the underlying architecture or parameters
[128].

In order to launch successful black-box attacks on high-
dimensional input targeting models, attackers had to introduce
imperceptible perturbations to the original examples, thereby
manipulating the model to produce the desired target text.
Wang et al. proposed a novel black-box attack technique called
the Monte Carlo gradient sign attack, which significantly
reduced the number of queries required to generate adversarial
audio samples against ASR systems. The proposed method
utilized a Monte Carlo tree to identify elements within the
original audio sample that exhibited dominant gradients. Using
a sampling gradient sign strategy and an iterative momentum
strategy, the original sample was updated to create an adversar-
ial example. The authors attributed the high query efficiency
of their approach to the effective exploitation of the dominant
gradient phenomenon. When subjected to the Monte Carlo gra-
dient sign attack, the ASR system experienced incorrect speech
transcription. The generated adversarial examples successfully
deceived the ASR system, causing it to incorrectly recognize
the altered speech content [129].
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4) Model Inversion Attacks: As depicted in Fig. 12, MI
attacks involve querying the model with crafted inputs and
analyzing the responses to infer details about the training data,
which can include personal conversations, medical records,
and financial data. MI attacks significantly impact SC sys-
tems by extracting sensitive or private information from ML
models through careful observation of their outputs [107].
SC systems are particularly vulnerable to these attacks due
to their reliance on identifying and understanding semantic
patterns to generate meaningful responses. Successful MI
attacks can expose private information and provide insight into
the model’s decision-making process, allowing adversaries to
manipulate its behavior. This can lead to biased, misleading,
or inappropriate responses, compromising the integrity and
reliability of the communication.

The first proposed MI attack was introduced in the context
of genomic privacy [130]. Fredrikson et al. addressed the
privacy concerns related to ML models utilized in the field
of pharmacogenetics, particularly in the context of personal-
ized warfarin dosing. Pharmacogenetics involved using ML
models to inform medical treatments based on a patient’s
genetic makeup and background. In their research, the authors
demonstrated the feasibility of performing MI attacks to
predict a patient’s genetic markers given access to the ML
model and some demographic information. This highlighted
the potential privacy risks associated with using ML models
in pharmacogenetics, as attackers could exploit these models
to infer sensitive genetic information about individuals. Zhang
et al. proposed an attack method called the generative MI
attack [131], which could invert DNNs with high success rates.
They used partial public information to learn a distributional
prior via generative adversarial networks (GANs) and used
it to guide the inversion process to reconstruct private image
data from a state-of-the-art face recognition classifier. Their
MI attacks were effective even when public datasets did not
include the identities that the adversary aimed to recover.

Typically, an MI attack required attackers to query the aux-
iliary datasets entirely to gather information about the target
inference models. However, this approach could be inefficient
and raise concerns related to transferring large datasets to
online services, as well as potentially triggering active defense
mechanisms by administrators. To address these challenges, an
MI attack scheme proposed in [132] suggested an alternative
approach. The scheme proposed utilizing latent information
extracted from primitive models as high-dimensional features,
thereby reducing the reliance on extensive querying of the aux-
iliary datasets. In addition to image data, MI attacks could also

have an impact on textual data. The paper [133] introduced an
MI attack specifically designed for text reconstruction in the
context of text classification using transformers. The authors
proposed an MI attack called Text Revealer, which was the
first of its kind for text reconstruction in transformers-based
text classification. The attack method aimed to reconstruct
private texts that were part of the training data, using access
to the target model. To achieve this, the authors utilized an
external dataset and the GPT-2 language model to generate
fluent text resembling the target domain. They then optimized
the hidden state of the generated text using feedback from the
target model, in order to perturb it optimally and reconstruct
the private texts.

5) Membership Inference Attacks: As depicted in Fig. 12,
the membership inference attack is a type of privacy attack
that aims to determine whether a specific data point was
used during a model’s training phase [107]. The attacker, with
access to the target model and its output predictions, exploits
the model’s behavior to infer membership information about
the training dataset. By observing the model’s predictions on
multiple inputs, the attacker can analyze patterns to discern
whether a particular data point was part of the training data
[134].

SC systems often handle sensitive user data, and a success-
ful membership inference attack can reveal whether a specific
user’s data was part of the training dataset, breaching their
privacy. A study in [135] investigated the vulnerability of
Clinical Language Models (CLMs) to membership attacks and
estimated their privacy leakage. CLMs are trained on clinical
data to improve performance in biomedical natural language
processing tasks. The study assessed the risks of training-
data leakage through white-box or black-box access to CLMs,
employing membership inference attacks to estimate empirical
privacy leaks for models like BERT and GPT-2. The results
showed that membership inference attacks on CLMs could
lead to privacy leakages of up to 7%, posing a risk to patient
privacy.

Recommender systems are widely used in various services
today, including online shopping and streaming platforms.
Traditional recommender systems rely heavily on explicit
user feedback, such as ratings or interactions, to generate
recommendations. However, this approach faces challenges
with the cold start problem, where new users or items have
limited or no historical data. By incorporating semantic infor-
mation, recommender systems can overcome this limitation
and provide relevant recommendations even when explicit
feedback is scarce or absent. However, recommender systems
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often use sensitive user data, and potential data leakage can
lead to severe privacy issues. The paper [136] proposed a
novel method to quantify the privacy leakage of recommender
systems through membership inference. Unlike traditional
membership inference attacks on ML classifiers, this attack
operates at the user level, where the adversary can only observe
the ordered recommended items. To address these challenges,
the authors proposed a method for representing users based
on relevant items and established a shadow recommender to
derive labeled training data for the attack model.

6) Semantic Noise: Semantic noise is a type of noise that
causes misunderstandings of semantic information by intro-
ducing discrepancies between intended and received semantic
symbols. The causes of semantic noise vary depending on the
nature of the information source, such as text or image data.
The fidelity of semantic information extracted and processed
by the semantic transceiver is crucial for successful SC.
However, semantic noise can disrupt this process, leading to
disturbances in conveyed semantic information.

In textual information, semantic noise includes ambiguity,
where slight modifications like synonym replacement, typos,
or grammatical errors can mislead ML models. For instance,
the sentence “The cat is sitting at the bank” can be ambiguous,
with “bank” potentially referring to a financial institution or
the land next to a river. This ambiguity, known as literal
semantic noise, is classified as such because of its inherent
uncertainty [137].

Regarding image data, [138], [139] discuss modeling se-
mantic noise through adversarial samples. By introducing
subtle perturbations to image data using the fast gradient sign
method, these modifications can cause misinterpretations in SC
systems’ encoder and decoder, degrading model performance.
This method leverages the gradients of the loss function with
respect to the input image, directing small perturbations that
increase the likelihood of misclassification. Additionally, se-
mantic noise exists naturally. Capturing images of adversarial
samples can lead to misclassification because models trained
only on clean images lack robustness to noise. They focus on
classifying pristine images and neglect the ability to handle
noise, which is prevalent in real-world scenarios. Factors such
as shadows, blur, and occlusion can affect images, making
accurate predictions challenging [140].

B. Knowledge Base Security

SC relies on extracting the intended meaning of the trans-
mitted information from the sender and accurately interpreting
it at the receiver. This is achieved through the use of a
matched KB, which serves as the foundation of SC and
contributes to the subjectivity of semantic information. The
unique background knowledge that individuals have influences
how they perceive and describe the world, leading to variations
in SC performance. To mitigate this, transceivers share their
knowledge through a shared KB before transmitting data [14].

SC primarily focuses on extracting semantic features from
multimodal signals and utilizing a KB to interpret these fea-
tures in a form that is understandable to users. Certain source
signals, such as video, audio, and haptic signals, inherently

possess multiple meanings, making it challenging to recognize
the intended meanings without relevant background knowledge
or contextual information [141]. The transmitter and receiver
each possess their own background knowledge, referred to as
the local KB, which may contain different information. Con-
sequently, the receiver’s interpretation of transmitted semantic
data may not always be entirely accurate. To address this issue,
a common KB, also known as the shared KB, is established
and shared between the transmitter and receiver. This shared
KB aids the transmitter in extracting semantic information and
enables the receiver to more effectively recover the underlying
information from the received data. The establishment of
a similar KB between the communication parties is crucial
for effectively conveying the meaning of information in SC.
Conditional mutual information between the KBs of the parties
significantly enhances the performance of SC. Additionally,
the dataset used to train the encoder and decoder is considered
a form of shared background knowledge. It is vital for this
dataset to accurately represent the type of information that
will be transmitted within the SC system, ensuring that the
encoder and decoder can faithfully capture the meaning of the
transmitted information [142].

Moreover, the terms KG and KB are often used interchange-
ably. A KB serves as the building block for creating a KG,
providing structured and unstructured data that can be ex-
tracted and represented as nodes and edges in the graph [143].
It is a semantic network that reveals the relationship among
entities in the form of graphs, and it is constructed using top-
down approaches, including information extraction, knowledge
fusion, knowledge processing, and knowledge update. KG is
used to transform triples into natural text, which is crucial
to interpret the meaning of semantic information [144]. The
KG finds applications in various domains, including question
answering, recommendation systems, and natural language
processing. However, the KB in SC system is not immune to
potential attacks that seek to modify, steal, or perturb its data.
These attacks can compromise the integrity and reliability of
the information that is transmitted. Adversaries may attempt
to manipulate the KB to alter the intended meaning of the
communicated information, leading to misunderstandings or
misinformation.

1) Knowledge/Data Poisoning Attacks: The integrity of the
KB faces a looming threat in the form of poisoning attacks.
These malevolent intrusions involve the deliberate insertion of
corrupted data, with a particular focus on publicly accessible
repositories. The quality of data within the KB significantly
influences the extraction and recovery of semantic features.
Therefore, the presence of tainted information seriously com-
promises the authenticity and availability of the entire dataset.
Consequently, the credibility of the KB is at stake, potentially
leading to significant disruptions in information retrieval sys-
tems and decision-making processes.

According to [145], in the context of the Internet of Digital
Twins (IoDT), frequent data synchronization interactions be-
tween physical entities and digital twins, as well as intensive
data exchanges among twins, are essential. These interac-
tions impose significant demands on communication systems,
necessitating low-latency and low-overhead communication
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capabilities. SC emerges as a promising solution in this
context, offering the potential for ultra-low latency semantic
transmissions in both intra-twin and inter-twin communica-
tions. By leveraging SC, the IoDT can optimize data exchange,
transmitting only relevant and necessary semantic content.
However, it is crucial to be aware of the threat posed by
semantic data or knowledge poisoning attacks. These attacks
can occur during interactions between twins and physical
entities or between twins themselves. Malicious entities in-
tentionally inject poisoned data samples into raw data or
KB with the objective of manipulating model training. Data
poisoning mostly occurs at the transmitter end, where these
malicious entities utilize contaminated datasets to degrade the
performance of DNNs.

The use of KG in recommendation systems is one of the
SC applications, where the objective is to provide optimal rec-
ommendations to users automatically. KG have proven instru-
mental in enhancing the explainability of these recommenda-
tions, offering insights into the reasoning behind the system’s
suggestions [146]. This has led to an increased importance
for KG-based recommendation systems in real-world scenarios
such as music, film, and online shopping domains. These sys-
tems have demonstrated improved recommendation accuracy
by leveraging KG as auxiliary information. However, despite
their numerous advantages, KG is not without vulnerabilities.
They are susceptible to poisoning attacks. These attacks aim
to manipulate the recommendations by contaminating the KG
with fake links, specifically to enhance the visibility of certain
products. By injecting fake links into the KG, the attacker can
manipulate the system to improve the ranking of specific items
in recommendation lists [147].

In the context of multimodal multi-user SC, multiple users
collaborate to achieve a common intelligent task, making it
particularly suitable for emerging autonomous scenarios in our
daily lives. For instance, human activity recognition (HAR)
in smart healthcare, where complementary information is
collected from various sensors [148]. However, HAR systems
often encounter challenges, especially when relying on data
from untrusted users. Attackers may exploit this vulnerability
by manipulating sensor readings to contaminate the training
set. One such attack is the label flipping data poisoning
attack, where the labels of sensor readings are maliciously
changed during data collection. The presence of high noise and
uncertainty in the sensing environment exacerbates the severity
of this threat, potentially leading to erroneous outcomes and
compromising the reliability of the HAR system [149].

Furthermore, audio intelligence systems often rely on a
large corpus of training samples, which can lead them to
utilize third-party resources. This reliance on external data
sources introduces vulnerabilities to data poisoning attacks and
backdoor attacks. Ge et al. specifically addressed the vulner-
ability of audio intelligence systems to these types of attacks.
Audio intelligence systems require a substantial amount of
training samples, costly computational resources, and expert
knowledge, which may be challenging for individuals with
limited means to obtain. Consequently, users may resort to
utilizing third-party resources, which can expose them to
potential data poisoning attacks [150].

2) Knowledge/Data Tampering Attacks: Knowledge/data
tampering attacks involve the intentional and malicious act
of altering or manipulating data with the aim of deceiving
or causing harm. In such attacks, an attacker may modify,
forge, replace, or delete data to achieve their desired outcome.
This can involve changing the values of data elements, altering
records, injecting false information, or removing important
data points. The attacker’s goal is to manipulate the data in
a way that benefits them or serves their malicious intent.
Knowledge/data tampering attacks pose a threat within the
life cycle of digital twin services in the Internet of Digital
Twins (IoDT) [145]. Attackers have the ability to manipulate
the semantic data stream and the exchanged interests or
content. Moreover, the interpretation of semantic data relies
on the receiver’s KB, leading to potential discrepancies in the
information received by receivers with different background
knowledge. This variation can result in physical entities or
twins being unaware of modifications made to the semantic
data stream during intra/inter-twin interactions.

In recent times, the concept of Integrated SC and AI-
Generated Content has garnered considerable interest [151].
This approach involves the seamless transfer of semantic
information derived from user inputs, which AI systems use
to generate digital content and render immersive graphics
within the Metaverse. By incorporating Integrated SC and AI-
Generated Content, users can expect enhanced interactions and
experiences, as AI-driven content creation opens new frontiers
of creativity and interactivity. However, this virtual shared
space, merging elements of the physical world with persistent
virtual reality, faces significant threats from knowledge/data
tampering attacks. Attackers can manipulate data within Meta-
verse data services by removing specific data to disrupt
operations, replacing authentic data with false information,
forging data to deceive users, or modifying existing data to
achieve malicious objectives. These actions pose substantial
risks, leading to inaccuracies, misinformation, and potential
harm to users and entities within the Metaverse [152].

Efficient communication is crucial for real-time decision-
making in applications like smart grids and networked control
systems. In smart grids, real-time decision-making responds
promptly to changes in electricity demand and supply, prevent-
ing power outages and minimizing energy waste. However,
these applications generate vast amounts of data, leading to
network bottlenecks. SC offers a solution by reducing the
volume of generated and transmitted data [153]. Nevertheless,
[154] highlights the vulnerability of IoT-based smart grids to
cyber attacks. Interconnected devices create potential entry
points for unauthorized access by malicious actors. Data
integrity attacks pose significant threats, disrupting grid state
estimation and jeopardizing operation and stability. The paper
[154] focuses on a zero-parameter-information data integrity
attack, exploiting the smart grid’s topology vulnerability, al-
lowing stealthy data tampering without knowledge of branch
parameters.

C. Transmission Channel Security
The transmission channel is the physical medium through

which data is transmitted between the sender and receiver. The
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security of the transmission channel is important to ensure that
the data is not intercepted or modified by unauthorized parties.

1) Eavesdropping Attacks: Transmitting confidential data
poses challenges, especially with numerous low-cost and low-
complexity devices. A.D. Wyner’s study on a three-terminal
wireless channel involving legitimate users Alice and Bob, and
an eavesdropper Eve, revealed channel imperfections [155].
An eavesdropping attack occurs when an attacker intercepts
communication between a transmitter and receiver to under-
stand the exchanged messages without disrupting the system.

In conventional systems, eavesdroppers aim to obtain the
source message sent by the transmitter. In SC systems, the
transmission involves semantic information that requires de-
coding to retrieve the original message. This means eavesdrop-
pers might intercept semantic information but still struggle to
obtain the desired content. The paper [17] discusses scenarios
where eavesdroppers may succeed in intercepting but fail in
decoding information due to differences in background knowl-
edge, disparities in task objectives, or encryption mechanisms
in the semantic encoding model.

While conventional communication systems posed difficul-
ties for eavesdroppers in extracting privacy information from
noisy channels, SC offers improved efficiency and accuracy,
particularly in low SNR scenarios [156]. Unfortunately, this ef-
ficiency also presents opportunities for potential eavesdroppers
as they can decipher semantic information even in highly noisy
channels. For instance, even with poor channel conditions,
eavesdroppers can exploit shared decoders to decipher se-
mantic information. Furthermore, semantic information could
reveal the actual distribution of user data to some extent,
potentially compromising user privacy [145].

2) Physical Layer Adversarial Attacks: The focus of end-
to-end SC, as emphasized in [157], is not solely on fully
recovering the transmitted message, but rather on empowering
the receiver to comprehend the intended meaning and take
appropriate actions within the relevant context. With this in
mind, the authors of [158] argue that robust interpretation
of conveyed semantics at the receiver side is crucial for the
success of SC systems. However, achieving robust semantic
interpretation is challenging due to the susceptibility of end-to-
end SC to physical adversarial attacks, as discussed in [159].
These attacks exploit the vulnerability of wireless channels and
the fragility of DNNs. To address these challenges, the paper
[158] introduced a framework called MobilrSC, which focuses
on computation and memory efficiency in wireless environ-
ments for DL-based SC systems. Additionally, the authors
proposed a physical-layer adversarial perturbation generator
named SemAdv. This generator aimed to craft semantic ad-
versaries over the air, employing imperceptible, input-agnostic,
and controllable criteria. These attacks are specifically tailored
to distort the receiver’s understanding and lead to incorrect
decision-making within SC systems.

Adversarial attacks can be broadly categorized into two
primary types: white-box attacks and black-box attacks. In
white-box attacks, the attacker has complete knowledge of
the target model, including its parameters, architecture, and
training data. This deep understanding empowers the attacker
to strategically design adversarial examples that effectively

deceive the target model. Conversely, black-box attacks occur
when the attacker has limited or no knowledge about the
target model. Consequently, the attacker must rely on indirect
methods, such as observing the model’s output on known
inputs, to craft adversarial examples. Black-box attacks are
generally more challenging to execute compared to white-
box attacks due to the limited information available to the
attacker. Nevertheless, they are considered more realistic in
real-world scenarios as attackers typically lack access to the
internal details of the target model [126].

In [160], Li et al. introduced SemBAT, an approach for gen-
erating black-box adversarial attacks in DL-based SC systems
at the physical layer. The proposed method involved training a
surrogate encoder using gradient estimation and data augmen-
tation techniques based on the Jacobian matrix. By employing
the particle optimization algorithm, SemBAT generated ad-
versarial perturbations. These perturbations were introduced
as noise during the transmission of representations through
the wireless channel. The experimental results highlighted the
remarkable effectiveness of SemBAT in significantly reducing
the classification accuracy of the SC system. Importantly, these
adversarial perturbations remained imperceptible to human
observers, as evidenced by image quality metrics.

Moreover, the introduction of perturbations into the embed-
ding layer via the semantic channel can give rise to what is
known as semantic noise. This kind of noise has the potential
to distort the interpretation of transmitted data, leading to
erroneous conclusions or decisions [137]. A similar scenario
unfolds within the vehicular metaverse, where vehicles rely
on semantic information for communication. The pivotal role
of the SC module is to facilitate the exchange of meaningful
semantic data between vehicles [161]. However, this system is
susceptible to adversarial attacks involving semantic noise. In
these attacks, malicious actors strategically insert disruptions
into transmitted data in order to fool the communication
module. These disruptions are carefully crafted to minimally
alter the data position in the semantic space. Despite their
subtlety, they have the power to trigger a misinterpretation of
information, thereby potentially prompting vehicles to make
incorrect decisions.

3) Man-In-The-Middle Attacks: A man-in-the-middle at-
tack (MITM) occurs when an attacker secretly intercepts
and potentially alters communications between two or more
parties who believe they are directly communicating with each
other, with the attacker inserting themselves in the middle.
This enables the attacker to read, modify, or even discard
the semantic information being transmitted. The impact of
a MITM attack on a SC system depends on the specific
application. However, generally, a successful MITM attack can
severely compromise the security and reliability of the system.
For instance, in a remote healthcare monitoring system, a
MITM attack could disrupt operations and prevent alarms
from being raised, potentially jeopardizing patient care [162].
Similarly, if a MITM attack succeeds on a system controlling
an autonomous vehicle, the attacker could take control of the
vehicle, leading to a serious accident [163].

The combination of blockchain and SC enables a decentral-
ized and efficient exchange of semantic information among
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unfamiliar participants in the Metaverse, ensuring enhanced
security. SC reduces the burden of communication and storage
for large data sets by facilitating the exchange and processing
of semantic information. Meanwhile, blockchain technology
establishes trust and safeguards against manipulations and
false modifications by attackers or third parties [164]. How-
ever, this integration faces the challenge of ensuring robust
data security. Effective semantic data sharing relies on in-
teractions between unidentified virtual service providers and
edge devices in untrusted environments, facilitated by the
blockchain. Before being uploaded to the blockchain, extracted
semantic data may undergo manipulation to display similar
descriptors (semantic similarities) while conveying different
meanings. For instance, a digital twin service provider that
seeks images of snowy mountains might receive manipulated
images closely mimicking snowy mountains [17]. If digital
twin service providers fail to detect such deceitful tampering,
their database could be compromised. This form of attack,
known as a semantic data poisoning attack, can also be utilized
in MITM attacks, where an intermediary node with mali-
cious intent intercepts wireless communication channels and
replaces transmitted images without altering the underlying
semantic information.

4) Jamming Attacks: A jamming attack involves deliber-
ately disrupting a wireless communication signal to hinder
legitimate users from accessing the network. In the context
of SC, which focuses on meaningful data exchange, jamming
poses new challenges. Unlike traditional channel jamming
methods, semantic jamming aims to degrade the quality of
the semantic content recovered by the receiver. Attackers
must employ more effective jamming techniques to reduce
the semantic consistency between the decoded result and the
original data. For instance, the authors in [165] proposed an
intelligent jamming framework by using a game strategy like
the GAN to improve the performance of the semantic jammer.

D. Lessons and Summary

Section IV discusses the security concerns related to SC
systems, introducing new security and privacy challenges. One
key concern is the vulnerability of the encoder and decoder,
which use machine learning algorithms to learn patterns and
relationships between raw data and its semantic representation.
These models are susceptible to various attacks, such as
poisoning attacks that degrade their performance. Additionally,
the KB storing semantic representations and relationships is
at risk of unauthorized access or tampering, compromising
data integrity and confidentiality. The transmission channel is
another area of concern, requiring encryption, access control,
secure storage, and transmission protocols to protect semantic
data. This section highlights these vulnerabilities and proposes
mitigation strategies to ensure the reliable and secure operation
of SC systems.

V. COUNTERMEASURES OF SECURITY AND PRIVACY IN
SC

Building upon the highlighted vulnerabilities, this section
underscores the critical need to ensure robust security and

protect privacy in SC systems. In this section, we provide
the existing defense strategies employed to counter potential
threats within the realm of SC systems.

A. Adversarial Training

Adversarial training is a technique used in ML to improve
the robustness of a model against adversarial attacks. Adver-
sarial attacks intentionally manipulate input data to mislead
the model’s output. Adversarial training involves adding ad-
versarial examples to the training data to make the model more
resilient to such attacks. The model is trained on both clean
and adversarial examples, which helps it recognize and reject
adversarial examples. According to [166], Chen et al. proposed
De-Pois, an attack-agnostic defense against poisoning attacks
in ML. The defense strategy involved training a mimic model
to imitate the behavior of the target model trained on clean
samples. GANs were used to facilitate informative training
data augmentation and mimic model construction. By compar-
ing the prediction differences between the mimic model and
the target model, De-Pois was able to distinguish the poisoned
samples from clean ones, without explicit knowledge of any
ML algorithms or types of poisoning attacks.

Similarly, in [167], adversarial training poison immunity
was proposed to defend against data poisoning attacks. The
method created poisons during training and injected them
into training batches to desensitize networks to the effects of
such attacks. The poisons were generated by adding small
perturbations to a subset of the training data, which were
then used to train the model. This process helped the model
learn to ignore the poisons and focus on the true data. The
defense mechanism was evaluated in different scenarios and
was shown to withstand adaptive attacks and generalize to
diverse threat models.

To prevent semantic noise from influencing SC systems,
the authors in [137] proposed a robust DL-enabled SC system
that uses a calibrated self-attention mechanism and adversarial
training to tackle semantic noise in text transmission. The
calibrated self-attention mechanism helps focus on important
parts of the input text, while adversarial training increases
the system’s robustness against adversarial semantic noise.
The system models the transmitter and receiver as neural
networks, using a loss function for training. The input text
is passed through a one-hot encoder and embedding layer to
generate an embedding vector, and a BERT score measures
the similarity between the transmitted and reconstructed text.
This system shows remarkable performance in dealing with
semantic noise under different SNRs compared to baseline
models. Similarly, Hu et al. proposed a framework for robust
end-to-end SC systems to combat semantic noise [138]. This
method employs adversarial training with weight perturbation,
incorporating samples with semantic noise in the training
dataset. It also masks frequently noisy input portions and
designs a masked vector quantized-variational autoencoder
with a noise-related masking strategy. The system uses a
discrete codebook shared by the transmitter and receiver for
encoded feature representation. To further enhance robustness,
a feature importance module suppresses noise-related and
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task-unrelated features, allowing the transmitter to send only
the indices of important task-related features. The simulation
results demonstrate significant improvements in robustness
against semantic noise and a notable reduction in transmission
overhead.

In [168], the authors proposed a defense against membership
inference attacks on DL models using generative adversarial
networks (GANs). The proposed defense aimed to maintain
the accuracy of the model while protecting privacy against
membership inference attacks. The defense involved training
a GAN on sensitive data and using it to generate data for
training the actual model. Two different GAN structures with
special training techniques were utilized to deal with the image
data and the table data, respectively.

In addition, real-time applications are commonly employed
in critical scenarios where the impact of an attack can be
extremely severe. For instance, in the case of a real-time
image recognition system utilized in a self-driving car, a
successful adversarial attack could lead to disastrous con-
sequences such as a potential collision. In [169], the au-
thors specifically addressed the challenges faced in image
recognition applications where the ground-truth of incoming
images is unknown, rendering the computation and validation
of classifier accuracy impossible. To counter such attacks,
the authors proposed a privacy-preserving framework that
defends black box classifiers by utilizing an ensemble of
iterative adversarial image purifiers. The proposed approach
effectively transformed a single-step black box adversarial
defense into an iterative defense strategy. Additionally, the pa-
per introduced three innovative privacy-preserving knowledge
distillation techniques. These approaches leveraged prior meta-
information from diverse datasets to emulate the performance
of the black box classifier. Notably, the paper established the
existence of an optimal distribution for purified images, which
can reach a theoretical lower bound. Beyond this threshold, the
image can no longer be purified.

While images are typically represented in two dimensions,
audio signals exist as one-dimensional time series data. Un-
like images, which are often analyzed as a whole or in
patches without strict order constraints, audio signals must
be sequentially examined in chronological order. Although
audio signals can be transformed into two-dimensional time-
frequency representations, the axes of time and frequency
differ fundamentally from the horizontal and vertical axes of
an image. These unique properties necessitate audio-specific
transformations, which can be performed in either the time or
frequency domain. In [170], the authors explored the vulnera-
bility of speaker recognition systems to adversarial attacks and
proposed defenses based on transformations and adversarial
training to enhance their security. The authors presented 22 di-
verse transformations and evaluated their effectiveness against
seven recent adversarial attacks targeting speaker recognition
systems. They assesed the resilience of these transformations
against adaptive attacks and measure their efficacy when
combined with adversarial training. The proposed approach
involved a novel feature-level transformation combined with
adversarial training, which proves to be more effective com-
pared to sole adversarial training in a complete white-box

setting. By leveraging these defense strategies, the speaker
recognition systems demonstrated improved robustness against
adversarial attacks in the audio domain.

B. Data Denoising

Data denoising is the process of removing unwanted noise
from a dataset. Noise is irrelevant or random variations that
can distort the actual information. Liu et al. proposed a coun-
termeasure for poisoning attacks on DNNs used in human-
computer interactions called Data Washing [171]. The Data
Washing algorithm is based on a denoising autoencoder. The
data are first passed through a denoising autoencoder. A small
amount of Gaussian noise is then added to the data and the
data are then passed through the autoencoder once again to
obtain the restored data. The algorithm removes the malicious
signal added by the attacker and provides effective protection
against the attacker.

In case of textual context, the paper [121] introduced a
defense technique called DeBITE, which was designed to
counter the BITE backdoor attack in textual contexts. DeBITE
employed a potential trigger word removal approach, which
involved the identification and elimination of trigger words
from the training data. The method operated by initially iden-
tifying potential trigger words that exhibit a strong correlation
with the target label. Subsequently, these identified words were
removed from the training data, and the model was retrained
using the cleaned dataset.

C. Covert Communications

Covert communication networks aim to conceal transmit-
ted signals or semantic information, making it challenging
for attackers or wardens to detect or decode them. This
is accomplished by introducing randomness or noise into
the transmission, effectively camouflaging the semantic in-
formation. Covert communication networks are commonly
utilized in situations requiring secrecy or confidentiality, such
as military operations, espionage, or secure communication
channels. By disguising signals within noise, these systems
aim to avoid detection by unauthorized individuals monitoring
the communication channel. In [172], the authors proposed
a framework for covert SC for image transmission over
wireless networks. In this framework, devices extracted and
selectively transmitted semantic information of image data
to a base station. The semantic information consisted of the
objects in the image and a set of attributes of each object. A
warden selected a device to detect and eavesdrop on semantic
information. To ensure the security of SC, a jammer acted as
the defender and transmitted jamming signals to the vulnerable
device. The proposed algorithm enabled each device and the
jammer to cooperatively discover the vulnerable devices as
well as find the semantic information transmission and power
control policies that maximize the performance of the covert
SC system.
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D. Encryption

This method encrypts the semantic information transmitted
over the channel, making it more difficult for an attacker
to eavesdrop on or modify it. Encryption techniques can
make it difficult for an attacker to decode the semantic
information, even if they detect it. The authors in [173]
introduced DeepJSCEC, a secure wireless image transmission
scheme building upon DeepJSCC. DeepJSCEC used mapping
techniques to recover input with minimal distortion despite
channel noise. However, it was susceptible to eavesdropping
due to the inherent correlation between the source sample
and channel input. The method in [174] aimed to solve this
security problem using symmetric encryption and an adver-
sarial training scheme to maintain encryption feasibility and
security. The proposed system consisted of an encryptor and
an attacker. The encryptor encrypted the semantic information
using a symmetric encryption algorithm and sent it to the
receiver. It was trained using an adversarial training scheme
to balance the utility and confidentiality of the encrypted
message. The attacker intercepted the encrypted message and
tried to reconstruct the semantic information directly using
a semantic attacker, trained similarly to minimize a defined
loss function. Experimental results showed that the proposed
method achieved better performance in terms of security and
utility compared to existing methods.

Moreover, the authors in [175] identified a phenomenon in
SC systems due to the flexibility of semantic transmission,
which did not require strict matching between decoding and
encoding sequences. This led to variations in words and
fixed sentences, known as semantic drifts. To leverage this
randomness, they proposed SemKey, a physical layer key gen-
eration scheme for securing DL-based SC systems. SemKey
used the random features of SC to create a switch sequence
with varying characteristics for the reconfigurable intelligent
surface-assisted channel. By using the parallel factor-based
channel detection method, they performed channel detection
in the presence of reconfigurable intelligent surface assistance.
This approach significantly improved the rate of secret key
generation.

Ensuring randomness is crucial for generating secure secret
keys. In [176], the authors proposed a physical layer semantic
encryption scheme to enhance the security of DL-based SC
systems. The proposed method used the randomness in BLEU
scores from machine translation. By feeding the weighted
sum of these scores into a hash function, semantic keys
were generated, producing secure and unpredictable keys for
semantic encryption. Additionally, they introduced a semantic
obfuscation mechanism involving subcarrier obfuscation with
dynamic dummy data insertion. Experimental results demon-
strated the effectiveness of the proposed method, particularly
in static wireless environments.

E. Jamming Resistant

To counter intelligent jamming attacks effectively, it is es-
sential to employ an intelligent receiver capable of maintaining
semantic consistency in the presence of jamming. The study
in [165] focuses on the receiver’s ability to accurately decode

semantic information even when faced with semantic jamming
attacks. The proposed framework employs a game model
that optimizes both the semantic jammer and the receiver,
enhancing the robustness of the SC system. This game strategy,
inspired by GAN), aims to significantly improve the receiver’s
performance.

The authors of [177] argued that traditional anti-jamming
methods, which focus on detecting and mitigating jamming at-
tacks by identifying the jamming policy and applying counter-
measures, might be inadequate against sophisticated jamming
attacks employing dynamic or adaptive jamming policies. To
address this, they proposed an anti-jamming defense method
that involves recognizing the jamming policy and selecting
appropriate countermeasures. The method leverages RNN to
handle the sequential nature of interactions between the user
and the jammer. By employing RNN, the authors aimed to cap-
ture the evolving dynamics of jamming attacks and develop ef-
fective defense strategies. They also considered scenarios with
multiple jammers using distinct policies, proposing methods
to estimate future behavior using RNN for proactive defense
measures. This comprehensive framework aims to enhance the
effectiveness of anti-jamming strategies against various types
of jamming attacks, including dynamic or adaptive policies.

SC also enabled a macro base station to interpret various
traffic signs, allowing it to make decisions for connected
and autonomous vehicles [178]. While the interconnected
feature of intelligent vehicles is typically advantageous for an
Intelligent Transportation System, it also exposes the vehicular
network to the risks of illegal jamming and eavesdropping.
To address these risks, the authors in [179] proposed a tech-
nique to enhance the security performance of connected and
autonomous vehicle networks against illegal eavesdropping
and jamming interference. The proposed technique utilizes dis-
tributed Kalman filtering and DRL techniques to improve anti-
eavesdropping communication capacity. A distributed Kalman
filtering algorithm was developed to more accurately track
attackers by sharing state estimates among adjacent nodes. The
authors formulated a design problem to control transmission
power and select communication channels while ensuring the
communication quality requirements of authorized vehicular
users. They developed a hierarchical DQN-based architec-
ture to design anti-eavesdropping power control and potential
channel selection policies. Initially, the optimal power control
scheme, without prior information about eavesdropping behav-
ior, could be quickly achieved. After assessing the system’s
secrecy rate, the channel selection process was performed if
necessary.

F. Authentication
Authentication is the process of verifying the identity of

a user or device, acting as the first line of defense against
unauthorized access. This is achieved by requiring evidence
such as something the user knows, has, or is. The utilization of
SC in the Metaverse introduces significant security concerns
for AI-Generated Content. Attackers exploit this by sending
deceptive semantic data that closely resembles authentic infor-
mation but contains different content, aiming to disrupt Meta-
verse services. The challenge lies in virtual service providers
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distinguishing between adversarial and genuine semantic data,
as differences may not be easily detectable. The nature of
virtual networks in the Metaverse complicates detecting and
preventing semantic data mutations due to the distributed
nature of virtual service providers and edge devices. To
address these concerns, Lin et al. proposed a semantic defense
scheme leveraging blockchain and zero-knowledge proofs to
distinguish between adversarial and authentic semantic data
and verify the authenticity of semantic data transformations
[164]. This scheme ensured properties such as completeness,
soundness, and zero-knowledge. The process involved trans-
forming semantic data into a commitment using a Pedersen
commitment scheme, storing it on the blockchain, generating a
zero-knowledge proof for authenticity, and verifying the proof
with the provided key. If the proof was valid, the semantic
data transformation was considered authentic.

The global shift from fossil fuels to electric vehicles (EVs)
necessitates a robust charging infrastructure. A user-friendly,
cost-effective charging network is crucial for widespread EV
adoption. Charging methods can be static or dynamic, with
dynamic charging facing collaboration challenges among EVs,
road infrastructure, and charging stations (CSs). EVs use the
dedicated short-range network, based on IEEE 802.11p, to
communicate with CS infrastructure. Roadside units (RSUs)
enable EVs to connect to CSs through backbone networks.
However, communication channels between EVs, RSUs, fog
servers, and company charging servers are insecure, making
them susceptible to eavesdropping, MITM, and jamming at-
tacks [180].

The Internet of Vehicles (IoV) serves as the central infras-
tructure for providing advanced services to connected vehicles
and users, enhancing transportation efficiency and security.
IoV-enabled traffic management systems optimize traffic flow
and improve safety by leveraging real-time information from
EVs. These systems identify traffic bottlenecks and make
informed decisions on traffic rerouting, proactively managing
traffic conditions and mitigating congestion-related issues.
However, the explosive growth in emerging applications and
services within the IoV poses a significant challenge of
spectrum scarcity, as mobile data traffic between connected
vehicles and RSUs continues to rise. To address this, Xu et al.
proposed a cooperative semantic-aware architecture to reduce
data traffic in the IoV. Their approach involved conveying
essential semantics from collaborated users to servers. A co-
operative semantic feature recovery approach utilizing a Joint
Source-Channel decoder enabled the recovery of semantic
features from multiple cameras for identification purposes
[181].

Given the insecure nature of communication channels in
such systems, IoV-enabled CSs can integrate with the IoV,
enabling real-time communication between EVs and CSs.
These stations provide EVs with up-to-date information re-
garding charging availability and pricing. An authenticated
key agreement protocol for dynamic charging of EVs was
proposed in [180]. This protocol ensured confidentiality and
authentication during the charging process. The EV initiated a
charging request to the CS, which responded with a challenge.
The EV provided a valid response along with its identity. The

CS verified the response and shared a session key with the
EV. Throughout the charging session, the EV and CS used the
session key for secure message encryption and decryption. The
protocol guaranteed mutual partnership and session identifier
sharing, incorporating a mechanism to prevent double spend-
ing by checking the key against a revocation list.

G. Threat Detection

Threat detection is detecting abnormal activities in data to
find potential security risks or attacks. In [171], the authors
propose an integrated detection algorithm to detect various
types of attacks. The algorithm is based on the analysis of the
output of the penultimate layer of the model. The algorithm
uses a threshold value to determine whether the output of
the penultimate layer is normal or abnormal. If the output
is abnormal, the algorithm will classify the data as attacks.
The integrated detection algorithm provides an accurate means
of detecting data sets that contain abnormal data and thus
provides effective protection against attacks. In particular, the
proposed detection method is applicable to different DNN
models.

In [182], the authors proposed a novel approach to counter-
acting backdoor attacks on DNNs. The method introduced the
concept of a detrigger autoencoder, which effectively removed
the trigger embedded within backdoor samples. Using this
technique, the proposed method detected backdoor samples
by observing the subsequent changes in the classification
results. Furthermore, Xiang et al. addressed the challenge of
post-training detection in DNN image classifiers, specifically
focusing on scenarios where the defender lacked access to
the poisoned training set [183]. Instead, they only had access
to the trained classifier itself and clean examples from the
classification domain. This situation was particularly relevant
when considering applications such as widely shared phone
apps, where the classifier’s integrity affected numerous users.
The authors proposed a purely unsupervised anomaly detection
defense mechanism against subtle backdoor attacks. This
defense not only identified whether the trained DNN had
been compromised, but also inferred the source and target
classes involved in the attack, while estimating the underlying
backdoor pattern. By offering a robust solution that operated
without access to the training set, the proposed approach
demonstrated promising potential in countering backdoor at-
tacks on trained classifiers.

Wang et al. proposed a defense mechanism known as
feature manipulation defense [184]. This mechanism detects
and cleanses adversarial examples efficiently and interpretably.
The defense approach is based on the observation that the
classification outcome of a regular image typically remains
unchanged despite non-significant intrinsic feature alterations,
whereas adversarial examples are highly sensitive to such
modifications. To enable feature manipulation, the authors
employed a Combo-variational autoencoder (Combo-VAE) to
acquire disentangled latent codes revealing semantic features.
The resistance of the classification outcome to morphological
changes, generated by varying and reconstructing these latent
codes, is leveraged to identify suspicious inputs. Additionally,
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the Combo-VAE is enhanced to clean adversarial examples
by considering both class-shared and class-unique features,
resulting in high-quality purified examples.

H. Differential Privacy

DL models are often trained on large datasets that contain
sensitive information about individuals. Differential privacy
(DP) can be used to prevent MI attacks by adding noise to
the model’s output, making it more difficult for an attacker to
reconstruct the input data used to train the model. DP serves
the fundamental purpose of safeguarding individual privacy
by enabling data analysis without revealing sensitive personal
information. This approach ensures data analysis can proceed
while preserving individuals’ confidentiality. Moreover, DP
maintains the principle that the inclusion or exclusion of any
individual’s data in the dataset minimally influences the results
of the published query. DP has gained significant attention
and importance in the era of big data, where large amounts of
personal data are collected and analyzed.

The work in [185] discussed the need for transparency
in ML models to increase trust, ensure accountability, and
scrutinize fairness. However, organizations may opt out of
transparency to protect individuals’ privacy. Therefore, there is
a demand for transparency models that consider both privacy
and security risks. The authors introduced a technique that
complements DP to ensure model transparency and accuracy
while being robust against MI attacks.

Similarly, in [186], Ye et al. proposed a time-efficient
defense method against both membership inference and MI
attacks. The method required only one parameter, the privacy
budget, to be tuned. The privacy budget is a key parameter
in differential privacy, controlling the amount of noise added
to the confidence score vectors to protect against privacy
attacks. The paper theoretically demonstrated how to tune the
privacy budget to defend against both types of attacks while
controlling the utility loss of confidence score vectors.

I. Data Protection

Data protection involves implementing measures and strate-
gies to safeguard data from unauthorized modifications, al-
terations, or tampering attempts. Maintaining the accuracy,
consistency, and unaltered state of information within a KB
for SC systems is crucial. This ensures that the KB serves
as a reliable and dependable source of information for users
and applications. By preserving data integrity, SC systems can
effectively support decision-making processes, and facilitate
seamless interactions based on trustworthy information. Con-
sequently, the study presented in [187] introduced VBlock,
a blockchain-based tamper-proof data protection model for
IoV networks. VBlock leveraged the blockchain to ensure data
immutability and resistance to tampering, effectively address-
ing concerns related to unauthorized alterations of outsourced
vehicular data in smart city management and enhancement.
VBlock introduced an innovative, collusion-resistant model
for outsourcing data to cloud storage, which helped maintain
the network’s tamper-proof nature while ensuring robust data

provenance and auditing capabilities. Moreover, it incorpo-
rated a key revocation mechanism that enhanced network
security against malicious nodes. VBlock was built upon a
Hyperledger Fabric blockchain, known for its heightened se-
curity and privacy achieved by restricting access to recognized
nodes. The proposed model demonstrated substantial security
assurances coupled with high efficiency, rendering it applicable
and feasible within the IoV environment.

J. Quantum Key Distribution

Quantum Key Distribution (QKD) is a pivotal countermea-
sure for enhancing the security of SC systems. QKD employs
the principles of quantum mechanics to securely distribute
cryptographic keys between parties, ensuring that any intercep-
tion attempts are detected [189]–[192]. This method leverages
the fundamental properties of quantum mechanics, such as
Heisenberg’s uncertainty principle and the no-cloning theorem,
to provide provable security against eavesdropping. In SC
systems, the transmission of semantic information involves
sensitive data that must be protected from unauthorized access.
Traditional encryption methods, while effective to some extent,
are vulnerable to the increasing computational power of attack-
ers, especially with the advent of quantum computing. QKD
addresses this challenge by enabling the secure generation and
distribution of cryptographic keys that can be used for one-
time pad encryption, which is information-theoretically secure.

The implementation of QKD in SC systems involves the
use of quantum channels to transmit quantum states that
encode the cryptographic keys. Any attempt to intercept these
keys alters their state, alerting the communicating parties
to the presence of an eavesdropper. Additionally, classical
channels are used for key reconciliation and error correction
processes, ensuring that the keys shared between the sender
and receiver are identical and error-free. QKD offers several
advantages in SC systems. First, it ensures that any inter-
ception attempts are immediately detected, providing a level
of security unattainable with classical cryptographic methods.
Second, QKD allows for the generation of new keys for
each communication session, reducing the risk of key reuse
and potential compromise. Third, with the development of
quantum computers, many traditional cryptographic methods
may become obsolete, but QKD is inherently resistant to such
advancements, ensuring long-term security.

A study presented in [188] introduced a QKD-secured
semantic information communication (QKD-SIC) system for
intelligence-native 6G networks. This system connects edge
devices via quantum channels to encrypt and securely trans-
mit semantic information. The proposed QKD-SIC system
addresses the challenge of unpredictable semantic informa-
tion generation by edge devices and optimizes QKD re-
sources through a two-stage stochastic optimization model.
This model ensures efficient resource allocation and cost
reduction, demonstrating the feasibility and effectiveness of
QKD in protecting SC system. The QKD-SIC system lever-
ages a global resource pool created by cooperative QKD
service providers. By sharing QKD and key management
wavelengths, the system efficiently utilizes resources, meeting
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TABLE VII
SUMMARY OF THE EXISTING SECURITY AND PRIVACY ATTACKS AND THE COUNTERMEASURES IN SC SYSTEMS

Target Attack Name Key Features Countermeasures

Encoder/Decoder

Poisoning Attacks
[107], [108], [111],
[112], [114], [115]

Add the malicious or fraudulent data to
the training dataset.

Adversarial Training [166],
[167], Data Denoising [171],

Threat Detection [171]

Backdoor Attacks
[107], [116]–[120]

Introduce a hidden trigger into the model
to cause incorrect predictions when

activated.

Data Denoising [121], Threat
detection [182], [183]

Adversarial Example
Attacks [107],
[123]–[129]

Manipulate the input data in a way that
appears innocuous to humans but leads
to misclassification or incorrect output

from the system.

Adversarial Training [169],
[170], Authentication [164],

Threat detection [184]

Model Inversion
Attacks [107],
[130]–[133]

Use the output of a machine learning
model to recover the private dataset that

was used to train the model.

Differential Privacy [185],
[186]

Membership
Inference Attacks
[107], [134]–[136]

Try to infer whether a particular input
was part of the training dataset of a

machine learning model.

Adversarial Training [168],
Differential privacy [186]

Semantic Noise
[137]–[139]

Typos or grammatical errors in the
textual context or introduce the

imperceptible perturbations to the data.

Adversarial Training [137],
[138]

Knowledge Base

Data Poisoning
Attacks [107], [145],
[147], [149], [150]

Add the malicious or fraudulent data to
the knowledge base or dataset.

Adversarial Training [166],
[167], Data Denoising [171],

Threat detection [171]
Data Tampering
Attacks [145],
[152], [154]

Unauthorized modification or alteration
of data to deceive, disrupt, or gain

advantage.
Data Protection [187]

Transmission
Channel

Eavesdropping
Attacks [145], [156]

Intercept and listen to the communication
channel between a transmitter and

receiver.

Covert Communications [172],
Encryption [174]–[176],

Authentication [180], Quantum
Key Distribution [188]

Physical Layer
Adversarial Attacks
[137], [158]–[161]

Introduce perturbations as noise during
the transmission through the wireless

channel.

Adversarial Training [137],
[138]

Man-In-The-Middle
Attacks [17], [162],

[163]

Secretly intercept and alter the
communications between two parties

who believe they are directly
communicating with each other.

Authentication [180]

Jamming Attack
[165]

Degrade the quality of the semantic
content recovered by the receiver.

Jamming Resistant [165],
[177], [179], Authentication

[180]

the secret-key requirements for semantic information transmis-
sion. Additionally, the use of Shapley value from cooperative
game theory ensures fair cost-sharing among service providers,
further enhancing the system’s practicality.

Experimental results from the study indicated a substantial
reduction in deployment costs—approximately 40% compared
to existing non-cooperative baselines. This cost efficiency,
combined with the heightened security provided by QKD,
underscores the significant benefits of integrating QKD into
SC systems. In conclusion, QKD represents a robust coun-
termeasure for securing semantic communication system. By
ensuring secure key distribution and leveraging quantum me-
chanics’ inherent properties, QKD enhances the confidentiality
and integrity of semantic information, making it a critical

component in the next generation of secure communication
technologies.

K. Lessons and Summary

In Section V, we explored various defense strategies to ad-
dress security and privacy concerns in SC systems. Adversarial
training enhances model robustness by training on both clean
and adversarial examples, helping models recognize and reject
adversarial inputs. Techniques like De-Pois and GAN-based
defenses tackle poisoning and membership inference attacks.
Data denoising methods like Data Washing and DeBITE
counter backdoor attacks and remove noise in textual contexts.
Covert communication networks and encryption methods, such
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as DeepJSCEC and SemKey, secure semantic information by
introducing randomness and making it difficult for attack-
ers to detect or decode transmissions. Jamming resistance
strategies use intelligent receivers and anti-jamming methods
with RNN and distributed Kalman filtering to enhance se-
curity in connected vehicle networks. Authentication ensures
user or device identity verification, employing blockchain
and zero-knowledge proofs to distinguish between adversarial
and genuine semantic data. Threat detection algorithms, like
de-trigger autoencoders and unsupervised anomaly detection,
identify potential security risks. Differential privacy prevents
MI attacks by adding noise to model outputs, safeguarding
individual privacy while allowing data analysis. Data protec-
tion with VBlock ensures data immutability and resistance to
tampering using blockchain technology. Quantum Key Distri-
bution (QKD) enhances SC security by securely distributing
cryptographic keys using quantum mechanics, demonstrated in
a QKD-secured semantic information communication system
for 6G networks. These strategies collectively improve the
robustness, confidentiality, and integrity of SC systems.

A summary of existing works for Section IV, V is presented
in Table VII.

VI. OPEN CHALLENGES AND FUTURE RESEARCH
DIRECTIONS

This Section VI specifies and discusses the challenges and
open research issues to spur further investigation of resource
management, security and privacy in SC.

A. Generic Semantic Metrics

A generic semantic metric is essential in SC to provide a
common standard for evaluating and comparing the accuracy
of semantic information across various application scenarios.
SC deals with diverse data types such as text, audio, im-
ages, and video, each requiring different performance metrics.
However, these individual metrics lack uniformity, making
comprehensive performance evaluation challenging. A generic
semantic metric addresses this issue, offering a unified evalu-
ation standard for system design, analysis, and optimization.
The current lack of unified performance assessment metrics
is a significant open challenge in the field of SC, hindering
system comparison and interoperability.

Several general semantic metrics include the General Qual-
ity Index of Semantic Service [193], which compares the
task performance of transmitted and received information;
Triplet Drop Probability [194], which indicates the probability
of specific bit errors; Semantic Mutual Information [195],
quantifying semantic-level distortions during compression for
downstream AI tasks; Semantic Impact [11], assessing the in-
fluence of semantic information on communication outcomes;
Communication Symmetry Index [11], measuring the balance
of semantic information exchange between communication
parties; and Reasoning Capacity [11], evaluating the system’s
inferential abilities.

Despite these advancements, the journey towards estab-
lishing a universal performance metric for SC is still in its
infancy. The pressing need for further research to define,

refine, and standardize semantic metrics is evident. Developing
a comprehensive and well-defined generic performance metric
is crucial, as it would not only enhance the efficacy of
contemporary communication systems but also pave the way
for future research, fostering innovations and advancements
in the domain. A concerted effort in this direction would lead
to better interoperability, more effective system comparisons,
and a stronger foundation for the ongoing evolution of SC
technologies.

B. Advanced Learning for Generalizable Intelligence

In SC systems, integrating advanced learning techniques
like transfer learning, meta learning, and continual Learn-
ing is crucial for achieving generalizable intelligence and
enhancing learning efficiency. Transfer learning particularly
enhances the effectiveness of transferring knowledge from one
task to related tasks, proving invaluable in contexts where
devices handle multiple tasks or face limited training data. For
instance, Nguyen et al. [196] demonstrate optimizing multi-
user SC through transfer learning and knowledge distillation,
significantly boosting performance for users with varying
computing capabilities by facilitating knowledge transfer from
high-capacity to low-capacity user models. Similarly, Wu et
al. [197] introduce a novel transfer learning strategy to guide
the training process in object detection with limited labels by
leveraging semantic information across tasks, enhancing few-
shot detection performance and reducing IoT devices’ storage
pressures. These studies underscore transfer learning’s role in
addressing key challenges like multitasking and performance
optimization under resource constraints, solidifying its impor-
tance in SC research.

Meta learning, or “learning to learn,” allows for quick
adaptation to new tasks with minimal data, whereas continual
Learning focuses on acquiring new information while retaining
previously learned knowledge, employing methods like regu-
larization, replay, and parameter isolation. These techniques
are essential for developing more robust and adaptable AI
systems, promising more effective communication within se-
mantic frameworks. Nonetheless, these areas remain under-
explored, presenting significant open challenges and future
research directions.

C. Multimodal Semantic Transciver

For 5G/6G applications like the internet of no things (meta-
verse) [198], the data to be transmitted is typically multimodal,
encompassing text, voice, images, videos, and more. With the
widespread deployment of various sensor devices, multimodal
data has become the most important means of information
generation in modern society. As a result, a multimodal SC
system is highly required to facilitate communication across
these multiple modes. Conventional SC systems are designed
to handle only one type of unimodal data. If transmitting
multimodal data requires using multiple separate unimodal SC
systems, each catering to a specific type of data, it implies
that each device must deploy multiple SC systems, potentially
leading to significant overheads and inefficiencies. Therefore,
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integrating these into a single, cohesive multimodal SC system
is essential to streamline operations and enhance efficiency.

Considering the principles and challenges of multimodal
DL, several open challenges exist in designing a multimodal
SC system [199], [200]. First, there is a need for efficient rep-
resentation learning that reflects the heterogeneity of different
modalities. Second, solving the alignment problem is crucial,
as it involves identifying connections between modality ele-
ments. Third, reasoning over complex, multimodal data re-
quires effective modeling of interactions to compose and infer
knowledge. Fourth, the challenge of generating raw modalities
that reflect cross-modal interactions, structure, and coherence
must be addressed. Lastly, the system must tackle the prob-
lems of knowledge transfer and quantification to process and
evaluate multimodal data efficiently. Additionally, mitigating
the impact of noise during data transmission through noisy
wireless channels and considering bandwidth consumption
limitations are critical for achieving optimal performance in
collaborative intelligence scenarios. These open challenges
highlight the necessity for further research and development
in the field of multimodal SC systems.

D. Distributed SC Framework
SC system maximizes bandwidth efficiency by transmit-

ting meaningful information, but maintaining this efficiency
requires continuous updates to the semantic encoder, leading
to significant energy consumption and privacy issues. Updating
these encoders is computationally intensive, draining battery
life in mobile and edge devices and exposing sensitive data
during the process. An efficient distributed learning framework
is essential to address these challenges. Federated learning
offers a solution by training and updating models across
decentralized devices, enhancing privacy and reducing energy
burdens without centralizing data. Xie and Qin’s study [43]
proposed a lightweight ML model for distributed semantic
encoders, improving efficiency and privacy. Similarly, Qin et
al. [201] introduced a comprehensive SemCom framework
integrating users and terrestrial base station edge clouds,
showcasing federated learning’s potential in SC system. These
studies underscore federated learning’s role in developing
efficient distributed frameworks for SC. However, existing
frameworks do not fully address the unique challenges of each
network domain, necessitating tailored redesigns [202].

However, the existing distributed learning frameworks de-
signed for SC in generic networks [43], [201], [202] need
customization to the unique characteristics of various 5G/6G
network scenarios. To leverage the full potential of SC in these
networks, it is crucial to develop system models tailored to
specific use cases and challenges. In telehealth, SC enhances
remote diagnoses by transmitting meaning-based information,
but challenges like data accuracy, latency, and privacy must
be addressed. In smart cities, SC efficiently manages IoT
data, improving systems like traffic management through real-
time analysis. However, ensuring accurate data integration
remains a challenge. Therefore, existing SC frameworks need
to be customized to different network scenarios, focusing on
optimizing performance while addressing unique operational
challenges.

E. Adaptive Resource Management with Dynamic Network

The dynamic nature of network conditions, influenced by
countless factors such as fluctuating user numbers and unpre-
dictable interferences, poses a significant challenge in SC. This
ever-changing environment underscores the need for adaptive
resource management systems. Real-time adaptability is cru-
cial; systems must not only detect changes in network con-
ditions swiftly but also assess network load and performance
post-detection. Following detection, these systems must have
the agility to adjust resource allocation strategies on-the-fly,
optimizing transmission rates, reallocating bandwidth, or dy-
namically altering transmission protocols. According to Y. Zhu
et al. [68], adaptive control involves dynamically controlling
transmission volume and rate based on the changing network
environment. Additionally, Zhang et al. [47] emphasize con-
trolling the rate in low SNR environments considering the rate-
distortion trade-off. These approaches enhance communication
efficiency and reliability, ensuring efficient use of resources
and maintaining stability even under dynamic conditions. As
we advance in the era of SC, the emphasis on adaptability
is essential. The future of effective and meaningful digital
communication depends on developing resource management
systems capable of handling dynamic network challenges.

F. Multi-user Multi-task based SC System

In the context of multi-user SC, there are several open
challenges that need to be addressed. A unified framework to
support various tasks with multimodal data is currently lacking
[203]. Key challenges include the reduction of inter-user inter-
ference, and processing/fusing received semantic information
at the receiver for the transmission of multimodal data. Specifi-
cally, reducing interference from other users is critical for both
single-modal and multimodal communications. Additionally,
effectively fusing and processing the multimodal data at the
receiver to ensure accurate and efficient communication is a
significant challenge that needs to be tackled to advance the
field of multi-user SC [203].

Furthermore, in multi-user scenarios, such heterogeneous
situations can coexist with traditional bit-based communication
and SC. Handling this requires a unified framework. It is
crucial to analyze which communication type is superior under
various situations. The semi-NOMA scheme proposed in [78],
[96] addresses this by splitting the bit stream into two parts:
one transmitted with the semantic stream over a shared sub-
band and the other over a separate orthogonal sub-band.
This approach efficiently utilizes limited bandwidth while
maintaining the performance of both communication types.
Future research will likely focus on traditional bit and semantic
networks, addressing challenges such as communication mode
switching, semantic fairness-driven resource allocation, and
long-term network optimization.

Another significant challenge is the complexity of re-
source allocation considering the computing capacity differ-
ences among users [196]. Users in SC systems have varying
computing capabilities, necessitating efficient management.
For instance, supporting both high-performance and low-
performance decoders requires training source-channel coders
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with each decoder type, a process that is time-consuming and
resource-intensive. To address this, a novel training procedure
is proposed where the encoder is first trained with the high-
performance decoder. With the encoder parameters fixed, the
low-performance decoder is subsequently trained. This ap-
proach stabilizes and accelerates the training process, making
it more efficient.

G. C4 Orchestration in Satellite-Borne Edge Cloud Network

Utilizing SC technology in satellite-borne edge cloud (SEC)
for offloading is crucial for next-generation wireless commu-
nication systems [202]. SC significantly enhances transmission
efficiency by extracting and conveying the semantic meaning
of data through machine learning. This optimization is vital
in satellite links, which often suffer from high propagation
delays. SC helps optimize spectrum efficiency, reduce energy
consumption, and protect user privacy, thereby enabling high-
quality service and rapid data processing even in remote or
disaster-stricken areas.

However, there are several challenges. Real-time updating
of semantic coders introduces issues related to the mobility
of SEC, low tolerance for service interruptions, energy con-
sumption, and privacy concerns. Existing distributed learning
frameworks do not seamlessly apply to SEC networks, necessi-
tating new approaches. While SC reduces communication load,
it increases computational load, requiring the development of
optimal computational task strategies that consider various
operational factors, including access methods, task processing
entities, latency, energy consumption, and privacy. Addition-
ally, integrating SC with SEC networks is crucial for en-
hancing C4 functionalities. This integration requires real-time
updating and synchronization of semantic coders, efficient
caching mechanisms, robust control algorithms, and secure,
reliable connectivity. Addressing these challenges is essential
for the successful implementation of C4 functionalities in SEC
networks enhanced with SC.

H. Redefinition of Security Metrics for SC

The paper [17] argue that traditional wireless communica-
tion security techniques, designed for bit transmission, fall
short when applied to the Semantic Internet of Things (SIoT),
which prioritizes the transmission of semantic information.
One key reason of this issue lies in the absence of security
performance indicators tailored for SC. The lack of new
security performance indicators is considered a significant
open fundamental challenge. Traditional security performance
indicators for bit transmission cannot be directly applied to
semantic information transmission. Therefore, there is a need
to develop new indicators that can accurately measure the
security of SC systems.

The paper [17] propose new security performance indicators
which captures the unique characteristics and requirements
of SC in the SIoT. One proposed indicator is the semantic
secrecy outage probability, which describes the probability that
an eavesdropper successfully obtains the semantic information
sent by the transmitter and accurately performs the semantic

decoding. Another indicator is the detection failure proba-
bility, which describes the probability that no transmission
activity is detected by a warden during the transmission time
of the data. By defining and analyzing these new security
performance indicators, researchers can better understand the
vulnerabilities and risks associated with SC. This enriched
understanding paves the way for the development of robust
security techniques and mechanisms, finely tuned to meet the
specific challenges and demands of SC.

However, the research of developing new security indicator
is notably under-researched, and the proposed indicators are
in their initial stages, requiring rigorous scrutiny and compre-
hensive validation to prove their effectiveness in real-world
scenarios. Moreover, it is imperative for more researchers
to engage in this endeavor, contributing to the development
of new indicators. Such collaborative efforts are essential in
fostering a secure SC environment, especially in the evolving
landscape of SIoT.

I. Robust Semantic Transceiver Design against Semantic
Noise

In the Shannon and Weaver model, while communication at
the first level deals with physical noise, it is crucial to define
and characterize Semantic Noise at the second level, which
occurs in SC. Unlike well-discussed physical noise in wireless
channels, the study and modeling of semantic noise in wireless
communication remain underdeveloped. Semantic noise leads
to misunderstandings and decoding errors, creating a mismatch
between the intended and reconstructed semantic meanings
at the receiver. This noise can arise during various stages:
semantic encoding, data transmission, and decoding [138].
During semantic encoding, it manifests as a mismatch due to
the encoder’s representational limitations. In data transmission,
channel fading and malicious signals introduce semantic noise.
Decoding stage noise stems from misinterpretations and am-
biguous symbol representations. Semantic noise varies across
different sources, such as text and images [138]. In text, it
involves semantic ambiguity from slight word changes, while
in images, adversarial samples cause noise without perceptible
changes to humans. To address these challenges, it is essential
to develop a robust SC system, like DeepSC, that jointly
considers physical and semantic noise, effectively combating
semantic noise impacts with minimal transmission overhead.

J. Quantum Key Distribution in SC

SC systems often deal with sensitive data, such as personal
and financial information. Resource allocation algorithms need
to ensure that security is maintained throughout the resource
allocation process. The research gap that led to the emergence
of the ultimate research question is the lack of comprehensive
studies on the integration of SC and quantum key distribution
(QKD) in the context of 6G communications. While there have
been separate studies on SC and QKD, there is a need to
explore the potential synergies and challenges of combining
these two technologies to enhance the security and efficiency
of communication systems in the future. This research question
aims to address this gap by investigating the integration of
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SC and QKD in the context of 6G communications and
exploring the optimal resource allocation and routing strategies
to achieve secure and efficient communication.

K. Joint Consideration of Resource Allocation and Security

The rapidly evolving landscape of the IoT and smart
cities highlights the importance of jointly considering resource
allocation and security. This integrated approach promises
optimal resource utilization while ensuring system resilience
and robustness. The necessity and benefits of this approach
are evident in the IoT ecosystem, where focusing on both
resource allocation and security is not just beneficial but es-
sential [204]. Key reasons include optimal resource utilization,
balancing the trade-off between performance and security, and
enhancing system resilience and robustness. By integrating
security requirements into resource allocation, efficient and
effective resource utilization can be achieved, ensuring suffi-
cient resources for security measures. This balance between
performance requirements (e.g., low latency, high throughput)
and security needs (e.g., encryption, access control) is critical
for achieving desired levels of both. Furthermore, integrating
security into resource allocation enhances system resilience
and robustness, enabling better recovery from security inci-
dents or attacks.

In smart cities, the joint consideration of resource allocation
and security is crucial for efficient and secure communication
in the Internet of Digital Twins [145], [205]. Resource allo-
cation involves the efficient use of communication resources
such as bandwidth, power, and computing resources to support
secure SC. Security measures are necessary to protect the
communication system from threats and attacks, ensuring
confidentiality, integrity, and availability of transmitted infor-
mation. Technologies like blockchain, DL, and MEC play
significant roles in achieving these objectives. Despite the
apparent benefits, research in this area is still in its early stages.
Most existing studies treat resource allocation and security
separately, highlighting the need for further exploration of
their integrated potential in semantic IoT systems. Future
research should focus on developing innovative algorithms
and mechanisms that seamlessly blend secure computation
offloading, data sharing, and communication protocols while
optimizing resource allocation. Additionally, analyzing the
trade-off between resource allocation and security is essential
to develop strategies that harmoniously balance these often
conflicting objectives.

VII. CONCLUSION

In this comprehensive survey, we have ventured to delineate
the resource management, security, and privacy in the context
of SC. Our exploration has been grounded in a meticulous
review of the existing literature, where we have highlighted
both the strides made in the field and the open challenges that
persist. Our contribution stands distinct in bringing together
the discussions on resource management, security, and privacy
under a single umbrella, while also offering a tutorial that
elucidates the challenges, open problems, and potential future
research directions. This endeavor marks a pioneering step in

addressing these pivotal aspects collectively, aiming to foster
a discourse that is rich and multifaceted. As we stand on
the threshold of new developments in SC system, it becomes
increasingly evident that further research and exploration are
imperative to ensure the reliable and secure operation of these
networks. The landscape of SC networks is ever-evolving, and
it beckons a deeper dive into the mitigation strategies that can
enhance their security and privacy.

Looking forward, we foresee a research trajectory that is
vibrant and dynamic, encouraging scholars and practitioners
alike to delve deeper and forge pathways that would steer SC
networks towards a future that is not only efficient but also
secure and reliable. The path forward offers numerous oppor-
tunities for innovation, inviting a new wave of researchers to
develop solutions that are robust and sustainable. We conclude
with a note of optimism, hopeful that this survey will serve as
a catalyst for future research endeavors, fostering a landscape
where SC networks can thrive, grounded in principles of
efficiency, security, and privacy.
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channel coding for wireless image transmission,” IEEE Transactions
on Cognitive Communications and Networking, vol. 5, no. 3, pp. 567–
579, 2019.
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