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Abstract—The domain adaptation issues in semantic
communications become critical when transmitter and
receiver operate across different multiple domains or
when input data during inference have different distribu-
tional characteristics than the data used to train semantic
encoders and decoders. In this paper, we introduce the
Multi-Domain Adaptive Deep Semantic Communication
(MA-DeepSC) framework, designed to enhance semantic
communications across multiple domains. Our frame-
work consists of two core components: the Multi-Domain
Adaptive Semantic Coding Network (MASCN), inherently
designed to adapt semantic encoding and decoding across
multiple domains, and the multidomain data adaptation
network (MDAN), which transforms actual observable
data into the data on which the system was initially
trained, thus obviating the need for retraining the existing
pre-trained semantic coding network. We validate our ap-
proach through experiments on digit datasets and CelebA,
observing significant outperformance over existing tech-
niques. In addition, we analyze the strategic benefits
and drawbacks of both MASC and MDAN, assessing
their applicability under various scenarios. The source
code for MA-DeepSC is available at https://github.com/
wongdongwook/JSAC MA-DeepSC

Index Terms—Semantic communications, semantic cod-
ing, domain adaptation.

I. INTRODUCTION

W ITH the evolution of wireless communication
and the development of deep learning, a wide

range of intelligent applications has emerged, demand-
ing extensive connectivity within the limited spec-
trum of wireless resources. This poses significant chal-
lenges for Shannon-based traditional communication
systems [1]. The rise of semantic communication of-
fers a promising solution to this challenge. Semantic
communications are characterized by being content-
aware, task-oriented, and semantic-related, facilitating
the extraction of only useful information from a large
amount of data for delivery to designated destinations
[2]. Unlike conventional methods that transmit all data
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regardless of semantic relevance for task, semantic com-
munication significantly enhances system performance
and spectrum efficiency [3]. Recognized for its potential
to transform the landscape of future networks, including
the upcoming 6G networks, semantic communication is
anticipated to play a pivotal role in the advancement
of next-generation network technologies. By enabling
more efficient and context-aware data transmission, it
holds the promise of significantly enhancing the re-
sponsiveness and reliability of critical applications such
as autonomous driving, unmanned aerial vehicles and
emergency medical services. Employing deep learning
(DL), various practical semantic communication sys-
tems have been designed for the transmission of text
[4], vocal speech [5], image [6], and video [7], sig-
nificantly enhancing the reliability and effectiveness of
communication compared to traditional systems under
the same transmission rates.

However, domain adaptation poses significant chal-
lenges in semantic communication systems. The term
‘domain’ refers to a specific set of data distributions
associated with particular categories under which data
is collected. The semantic coding network, consisting
of a semantic encoder and decoder, is typically trained
using dataset from specific domains, which can lead
to the Out of Distribution (OoD). The OoD problem
arises when the data distribution encountered during
inference differs significantly from the data distribution
utilized to train the semantic coding network. Xie et
al. [4] addressed the OoD by adapting data through
transfer learning techniques, enabling the utilization
of data from varying distributions encountered during
semantic inference. Additionally, Zhang et al. [8] in-
troduced a CycleGAN-based data adaptation network.
This network transforms the data in the source domains
to match the data in the observed domain during infer-
ence, facilitating domain adaptation without the need
to retrain the entire semantic coding network. Only the
data adaptation network is trained, ensuring efficiency
without significantly degrading the performance of the
pragmatic task. However, the data adaptation network
proposed by Zhang et al. primarily focus on single



domain adaptation, faces scalability limitations when
dealing with multidomain adaptation issues. To learn
all mapping among k domains, k(k − 1) generators
have to be trained for the accommodation of multiple
k domains. Therefore, there is a pressing need for a
scalable data adaptation network design from a mul-
tidomain adaptation perspective.

Furthermore, the implementation of data adaptation
network precedes that of existing semantic coding
network, thereby imposing substantial computational
overhead and slowing down operational speed. Conse-
quently, data adaptation network provide a short-term
solution that lacks sustainability over long periods or
temporary solution for frequent domain change of data
source. From a long-term perspective, it is advantageous
to design semantic coding networks that inherently
adapt multiple domains because it allows for fast and
efficient adaptation to new domains without the exten-
sive overhead associated with existing data adaptation
network. However, so far there has been no research
paper dealed with the design of multidomain adaptive
semantic coding network.

The unanswered questions in the context of seman-
tic communication with multidomain adaptation issue
include:

• Q1. How can the data adaptation network be
designed to efficiently handle scalable adaptation
of dynamic source data across multiple domains?

• Q2. How can the semantic coding network effec-
tively extract and transmit semantic information
behind the bits across multiple domains?

Our research contributes to the advancement of se-
mantic communication systems with a focus on mul-
tidomain adaptation, offering solutions to significant
challenges:

• For answering Q1, we propose a multidomain data
adaptation network (MDAN) applying a StarGAN
[9]. StarGAN addresses scalability issues by re-
quiring only one generator for adaptation across
multiple domains, rather than multiple generators
required by existing method [8]. By employing
a single generator capable of handling multiple
domains, our approach significantly enhances scal-
ability and operational efficiency.

• For answering Q2, we propose a StarGAN-
based Multidomain Adaptive Semantic Coding
Network (MASCN) that inherently supports adap-
tation across multiple domains. We have developed
a semantic distortion function in a multidomain
context. Utilizing the proposed training algorithm,
MASCN effectively minimizes semantic distor-
tion, enabling accurate extraction and transmission
of semantic information across multidomain.

• Additionally, our research provides a compara-
tive analysis of MASCN and MDAN, specifically
highlighting in which situations each approach is
preferable. This analysis helps identify the dis-
tinct strengths and weaknesses of both strategies
within the context of multidomain adaptation. Our
insights are aimed at guiding the development of
more tailored and effective solutions for multido-
main adaptive semantic communication systems.

II. RELATED WORKS

1) Domain Adaptation in DL: Domain adaptation
techniques in DL have evolved significantly, catering to
both single and multidomain challenges. Early works
primarily focused on leveraging data from the tar-
get domain directly, assuming a direct correspondence
between source and target domain samples. Recent
advancements have introduced generative models like
Generative Adversarial Networks (GANs) that enhance
the capability of domain adaptation by generating in-
distinguishable fake samples from real ones [10]. A
notable example includes the Pix2Pix framework by
Isola et al., which utilizes conditional GANs to facilitate
effective image-to-image translation tasks under paired
sample conditions [11]. In contrast, models like Cycle-
GAN, introduced by Zhu et al., and similar frameworks
like DTN by Taigman et al. and DiscoGAN by Kim
et al., have pioneered the unpaired image-to-image
translation domain [12]–[14]. These models do not rely
on paired samples but use dual generators to enable
bidirectional translation across domains. Thus, above
papers are not scalable to the increasing number of
domains. For addressing the scalability issues inherent
in previous models, StarGAN represents a significant
leap forward by employing a single generator to map
between all available domains using a single generator
in [9]. This approach not only simplifies the model
architecture but also increases efficiency, making it
possible to scale up to a larger number of domains
without a proportional increase in complexity.

2) Domain Adaptation in Semantic Communication:
In the realm of semantic communication, domain adap-
tation is a critical area of research, with a focus predom-
inantly on single-domain adaptation methodologies [8].
Semantic communication systems generally operate in
two distinct phases: the preparation and working stages
[4], [8]. During the preparation stage, the transmitter
and receiver collaboratively train the semantic coding
network by leveraging a shared background knowledge
library, which includes empirical data and associated
semantic information. This foundational training pre-
pares the system to handle data similar to what was
encountered during this initial phase. However, during



the working stage, challenges arise when the actual
observable data at the transmitter diverges in distribu-
tion from the empirical data. This disparity can lead
to the OoD problem, where a model trained on one
dataset (e.g., MNIST) may perform poorly on another
with a different distribution (e.g., SVHN). To address
this issue, Zhang et al. introduced a CycleGAN-based
data adaptation network designed to convert observed
data into a form similar to the empirical data, enabling
the semantic coding network to function effectively
without the need for retraining [8]. However, this so-
lution is limited in scalability and robustness, as it
requires separate data adaptation networks for each pair
of domains, complicating the adaptation process and
increasing resource demands.

III. PROPOSED FRAMEWORK

Our multidomain adaptive deep learning-enabled se-
mantic communication (MA-DeepSC) framework fo-
cuses on addressing the challenges of multidomain
adaptation. As shown in Fig. 1, our MA-DeepSC frame-
work consists of MASCN and MDAN. In this section,
we will formally present our proposed MA-DeepSC
framework: Section III-A will detail the MASCN, and
Section III-B will discuss the MDAN.

A. Multidomain Adaptive Semantic Coding Network

MASCN is based on the a SNR (Signal-to-Noise
Ratio) adaptive DeepJSCC system for a point-to-point
image transmission scenario with SNR feedback [15],
[16]. In this system, the SNR, denoted as γ ∈ R, can be
estimated at the joint semantic-channel decoder of the
receiver and then fed back to the joint semantic-channel
encoder of the transmitter. As a result, the channel SNR
is known at both ends of the semantic communication
system. The system model for the semantic coding
network comprises a trainable semantic encoder fθ, a
non-trainable physical channel, and a trainable semantic
decoder gϕ, where θ and ϕ denote the parameters of the
semantic encoder and decoder, respectively.

1) Semantic Transmitter: The semantic transmitter
processes domain-specific image data, which is repre-
sented as an n-dimensional vector xd ∈ Rn, where
n = H × W × C for image dimensions—height H,
width W, and depth C. The domain label d ∈ D
indicates the specific domain with domain set D to
which x belongs, represented within a real number to
represent a variety of domains. The domain information
is encoded using a label, typically a one-hot vector for
categorical attributes. The semantic encoder fθ receives
image data xd and the target domain label c ∈ D,
transforming into the input image data corresponding to

the specific target domain, ensuring the encoder to adapt
across multiple domains. This adaptability is crucial for
applications that require robust performance in various
domains. The output of the semantic encoder, denoted
by zc ∈ Ck, comprises a vector of semantic codes. The
semantic encoding function, fθ(xd, γ, r, c), prioritizes
features based on their semantic importance, especially
under constraints such as the compression ratio (CR),
where a lower CR signifies a higher semantic priority.
Consequently, under given network conditions such as
SNR γ, CR r, the semantic encoder transmits the
prioritized semantic features, with the highest priority
of semantic features transmitted first, thus improving
the efficiency and relevance of the information trans-
mitted. The operation of multidomain adaptive semantic
encoder is formalized as follows.

zc = fθ(xd, γ, r, c) ∈ Ck (1)

where r = k/n denotes the CR of the input image
data [17], [18]. The size of the image n denotes the
source bandwidth, and the size of the channel input k
is the channel bandwidth, with r being the bandwidth
ratio. To satisfy the average power constraints at the
transmitter, the semantic code zc must satisfy the con-
dition 1

kE [z∗czc] ≤ Pzc
, where z∗c denotes the conjunct

transpose of zc, and Pzc denotes the average power of
zc.

2) Transmission Channel: The semantic code zc is
transmitted over a physical noisy channel represented
by the function η : Ck → Ck. An additive white
Gaussian noise (AWGN) channel is considered in this
work. In general, the SNR γ is determined by the noise
power N2

0 , which is mainly caused by the natural noise
and interference in the physical channel [18].

γ = 10 log10
Pz
N2

0

(2)

In general, a physical channel with a lower SNR
indicates a higher physical noise power compared with
the zc power, and the quality of the final recovered
result is lower than a higher SNR channel. After passing
through the physical channel, the distorted semantic
code ẑc ∈ Ck by AWGN ω is transmitted to the
receiver, as given by

ẑc = η(zc) = zc + ω (3)

where the vector ω ∈ Ck consists of independent
and identically distributed samples with the distribution
CN (0, N2

0 I). In addition, CN (·, ·) denotes a circularly
symmetric complex Gaussian distribution.

3) Semantic Receiver: On the semantic receiver side,
the semantic decoder gϕ plays a role in reconstructing
the image from transmitted semantic features, which are
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Fig. 1: Illustration of our MA-DeepSC Framework.

transformed into images corresponding to specific do-
main c. This transformation is defined by the mapping
Ck × R → Rn, effectively processing the input ẑc, γ,
and r as follows:

ŝc = gϕ(ẑc, γ, r, c) = Mα(xd, γ, r, c) ∈ Rn (4)

where ŝc ∈ Rn represents the semantic feature vec-
tor outputted by the decoder. This decoded semantic
feature vector encapsulates the reconstructed image
at the semantic level. The entirety of the MASCN
system, comprising the encoder, channel, and decoder,
is represented as Mα. Here, α denotes the collective
parameters ϕ and θ.

In the context of image transmission, potential prag-
matic tasks could be image classification, segmenta-
tion, among others. For the sake of simplicity, we
will assume that the primary pragmatic task is image
classification and is modeled by a trainable function hψ ,
which is designed to process the transformed image ŝc
to classify the image into predefined categories. The
operation of classifier hψ is formalized as:

l̂ = hψ(ŝc) (5)

where, ŝc, the reconstructed image, serves as the input
to the classifier hψ function which categorizes the
image ŝc and the output is the predicted label l̂.

B. Multidomain Data Adaptation Network

The MDAN precedes the semantic coding network
and align incoming source data with the domain of
pre-trained semantic coding network. It employs a
conversion function Gξ : Ck×R → Rn to map original
domain image xn original domain c ∈ D, target domain
d ∈ D as follows:

xc = Gξ(xd, c) (6)

where xc ∈ Rn represents the image after conversion
to the target domain, serving as the output of the
domain data adaptation module. This transformation
is vital for allowing the domain-specific components
of the semantic encoder and decoder to process data
effectively across diverse domains.

Subsequently, we utilizes the DeepJSCC-V [18]
framework Vπ as semantic coding network, which is
designed with semantic encoder V e

π and decoder V d
π

for specific domain. The data xc serves as input to the
DeepJSCC-V process Vπ , which is formalized as:

ŝc = Vπ(xc) (7)

where the output ŝc becomes the input for pragmatic
tasks. This data adaptation approach not only enhances
the system’s flexibility and applicability across different
domains but also ensures that the semantic communi-
cation framework remains robust and effective, even in
the face of OoD challenges.

IV. MULTIDOMAIN ADAPTIVE SEMANTIC CODING

In this section, we explore the MASCN, discussing
the workflow and architecture in Section IV-A, the
semantic distortion function in Section IV-B, problem
formulation in Section IV-C, and the training algorithm
in Section IV-D.

A. WorkFlow and Architecture

1) Components Description: Based on StarGAN,
which can perform the multidomain translation of im-
ages, this paper designs a new semantic coding frame-
work for multidomain adaptive semantic communica-
tion. As shown in Fig. 2, the framework consists of
MASCN and discriminator and pragmatic task. The
MASCN Mα is responsible for transforming images
into images of different domains, composed of semantic
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encoder and decoder. The output of Mα is fed into the
discriminator and pragmatic task. The discriminator, as
denoted Dρ1 , not only distinguishes between real and
generated images but also classifies them according
to domain labels. We assume that pragmatic task is
iamge classification. The pragmatic task hψ classifies
the reconstructed image.

2) Workflow Description: We divides the whole
model of work flow into three parts: original-to-target
domain, target-to-original domain, and discriminator
domain. To guide the training of the MASCN frame-
work, we employ a set of loss functions, including cycle
consistency loss for image reconstruction [14], [19],
domain label classification loss [20], and pragmatic
classifier loss.

• Original-to-target domain: The input image xd is
associated with the target domain label c provided
by the receiver and fed into Mα to generate ŝc.
The artificially generated fake image subsequently
fed into a pragmatic task, where a pragmatic task
loss is computed.

• Target-to-original domain: The fake image gen-
erated ŝc is combined with the original image
label d and fed back into Mα to produce the
translated image Mα(ŝc, γ, r, d) = ŝd. We apply
cycle consistency loss between ŝd and xd, and
this reconstructed image is further subjected to a
pragmatic task loss. The training process makes M
generate images that are indistinguishable from the
real images.

• Discriminator domain: The training process makes
Mα generate images that are indistinguishable
from the real images. For xd, the discriminator
identifies it as real and classifies it as original
image domain d. Conversely, for ŝc, the discrimi-
nator identifies it as fake and classifies it as target

domain c.

B. Semantic Distortion in Multidomain Adaptation

This section aims to minimize semantic distortion by
extracting task-oriented semantic information acrross
mutli domain.

1) Adversarial Loss: The adversarial loss function,
as originally formulated in GANs, quantifies the in-
distinguishability of fake images from real ones [10].
StarGAN modifies this loss function by conditioning
it on both the input image and the target domain
label, allowing the generated images to closely replicate
the attributes of the desired target domain. We further
extend StarGAN’s adversarial loss for a multidomain
adaptive semantic communication distortion, which is
defined according to the given compression ratio r.

Ladv =Ex [logDsrc(x)] + Ex,c [log (1−Dsrc(ŝc))] ,
(8)

where Mα makes an image ŝc conditioned on both
the input image xd and the target domain label c,
while discriminator Dρ1 distinguishes between real
and fake images. The discriminator Dρ1 evaluates
the output from the MASCN, calculating proba-
bility distributions over both the source data, do-
main labels and iamge lables, operating as Dρ1 :
xd → {Dsrc(xd), Dcls(xd), Dprg(xd)}. It differenti-
ates whether images are genuine Dsrc(xd) or coun-
terfeit Dcls(xd), and categorizes the actual image la-
bels Dprg(xd). The image ŝc is the result of prior-
itized transmission based on the given compression
ratio r from a multidomain perspective, ensuring that
semantic-aware priorities are considered. The model
Mα seeks to minimize Ladv , whereas Dρ1 strives to
maximize it, thus creating a competitive environment
that improves the quality of generated images.



2) Domain Classification Loss: While adversarial
loss ensures the generated images are realistic, domain
classification loss ensures that they are not only look
real but also correctly represent the target domain. This
aspect is crucial in controlling specific attributes like
hair color, age, or style. Given any input image xd and
a target domain label c, the objective is to transform
xd into an output image ŝc, which can be classified
accurately to the target domain c. An auxiliary classifier
on top of Dρ1 to impose the domain classification loss
when optimizing both Dρ1 and Mα. Specifically, the
objective is broken down into two terms: a domain
classification loss for real images, used to optimize D,
and a domain classification loss of fake images used to
optimize Mα. In detail, the former is defined as

Lrcls = Ex,d [− logDcls (d | xd)] (9)

where the term Dcls (d | xd) represents a probability
distribution over domain labels computed by Dρ1 . By
minimizing this objective, Dρ1 learns to classify a real
image xd to its corresponding original domain d. We
assume that the input image and domain label pair
(xd, d) is given by the training data.

On the other hand, the loss function for the domain
classification of fake images is defined as

Lfcls = Ex,c [− logDcls(c | ŝc)] (10)

In other words, Mα tries to minimize this objective
to generate images that can be classified as the target
domain c.

3) Reconstruction Loss: By minimizing the adver-
sarial and classification losses, Mα is trained to gen-
erate images that can be accurately classified into
their correct target domains. However, minimizing these
losses alone does not ensure that the translated images
retain the content of the input images while modifying
only the domain-specific features. To address this lim-
itation, a cycle consistency loss function [12], [14] is
incorporated into Mα to minimize semantic distortion.
This loss function is designed to maintain the original
content while altering only the domain-related aspects
of the inputs. The reconstruction loss is defined as:

Lrec = Exd,c,d [∥xd − ŝd∥1] (11)

where Mα takes in the translated image ŝc and the
original domain label d as input, attempting to recon-
struct the original image xd. We adopt the L1 norm
to measure the reconstruction loss. Mα is used twice:
first to translate the original image into an image in
the target domain, and then to reconstruct the original
image from the translated image. This process ensures
that the reconstructed image ŝd remains semantically
consistent with the original input xd.

4) Pragmatic Task Loss: In contrast to StarGAN’s
original approach, the pragmatic task loss is incorpo-
rated to ensure accurate classification of images within
specific target domains. This involves both MASCN
and discriminator working together to produce realistic,
semantically accurate images while correctly identify-
ing these generated images and their associated labels.
This strategy is particularly useful for generating task-
oriented images that retain key features of the original
domain.

The discriminator is tasked with correctly classifying
real images to their original labels. The pragmatic
classifcation loss for discrimiantor penalizes the dis-
criminator when real images are misclassified:

LDprg = −Ex,l[log hψ(l|xd)] (12)

The MASCN is penalized when it fails to generate
images that match the target labels. The pragmatic
classification loss for MASCN is defined as:

LMprg = −Ex,l[log hψ(l|ŝc)] (13)

By utilizing these pragmatic task losses into discrimi-
nator and MASCN, the model can enhance the accuracy
of image classification within semantic communication,
leading to a more effective transmission of task-relevant
features across different domains.

C. Problem Formulation

The optimization strategy for both the MASCN and
the discriminator involves minimizing the generator’s
loss while maximizing that of the discriminator. The
loss functions for the discriminator LDρ1

and MASCN
LMα

are as follows:

LDρ1
= −Ladv + λclsLrcls ++λprgL

r
prg (14)

LMα
= Ladv + λclsLfcls + λrecLrec + λprgL

f
prg

(15)

where the coefficients λcls, λrec, and λacc are hyper-
parameters that balance the relative importance of
domain classification, reconstruction losses, and the
pragmatic task loss, respectively. These settings ensure
a focused optimization on not just creating visually
plausible images but also on enhancing their domain-
specific accuracy, content fidelity and performance of
pragmatic task.

The problem formulation is structured as follows,
considering given SNR γ and CR r constraints:

min
Mα

max
Dρ1

LDρ1
+ LM

s.t. CR = r

SNR = γ

(16)



This constraint-based optimization ensures that the
system adheres to a specified compression ratio CR
reflecting the necessary balance between image quality
and bandwidth efficiency. The inclusion of the com-
pression ratio directly impacts how the semantic content
is prioritized during transmission, making it a critical
factor in the system’s overall performance.

D. Training Algorithm

The training algorithm for the MASCN model be-
gins by initializing a training batch T , which contains
real images, their original labels, and SNR and CR.
In each iteration, real images and labels are fetched,
and these labels are shuffled to create target domain
labels for the MASCN. A random SNR γ and CR
r are generated to simulate real-world variations. The
discriminator is trained first. It evaluates real images,
computing classification losses for domain labels. The
MASCN creates fake images with randomly generated
target labels, γ, and r, which are used to compute
adversarial and pragmatic losses. The adversarial loss
ensures the discriminator cannot distinguish between
real and generated images, while the pragmatic loss
measures its ability to classify labels accurately. The
MASCN is trained periodically. It generates fake im-
ages using target labels, γ, and r. Adversarial loss is
calculated to evaluate whether the MASCN can fool
the discriminator. Domain classification loss checks if
the MASCN can accurately recreate domain-specific
features, and reconstruction loss ensures semantic con-
sistency. The pargmatic task loss and total MASCN
loss is calculated and the MASCN’s parameters are
updated. This comprehensive training approach ensures
that both the discriminator and MASCN are optimized

Empirical
Space

Observable
Space

Generator
Gξ(·)

Discriminator
Dρ2(·)

Fig. 3: Illustration of our MDAN framework.

concurrently, enabling the MASCN system to handle
multidomain image translation tasks efficiently.

Algorithm 1 Training Algorithm for MASCN

1: Input: Training batch T , learning rate η;
2: Output: Updated model parameters (α, ρ1) Dρ1 ;
3: for each iteration over the training batch T do
4: Fetch real images and original labels from T ;
5: Shuffle labels to create target domain labels;
6: Randomly generate channel SNR γ ∈ U(0, 27);
7: Randomly generate CR r ∈ U(0.1, 1);
8: Calculate classification loss by (9);
9: Generate fake images using Mα with target

labels, γ, and r;
10: Calculate adversarial loss by (8);
11: Classifies fake image by eq. (5);
12: Calculate pragmatic task loss by (12);
13: Compute total discriminator loss by (14);
14: Update Dρ1 using its optimizer;
15: if current step % training frequency == 0 then
16: Generate fake images using Mα with target

labels, γ, and r;
17: Calculate adversarial loss by (8);
18: Calculate classification loss by (10);
19: Generate reconstructed images with original

domain labels, γ, and r;
20: Calculate reconstruction loss by (11);
21: Compute pragmatic task loss by (13);
22: Calculate total MASCN loss by (15);
23: Update Mα using its optimizer;
24: end if
25: end for

V. MULTIDOMAIN DATA ADAPTATION

In this section V, we discuss the architecture, the loss
functions of MDAN in section V-A, and the training
algorithm in section V-B.

A. Multidomain Data Adaptation Architecture

The architecture of our MDAN network, illustrated
in Fig. 3, is composed of the entire training data
space, which is divided into two key data spaces: the
empirical space and the observable space. The empirical
space houses data that has been previously learned
and serves as the foundation of the trained model’s
knowledge base. The observable space represents new
data distributions encountered in real-world scenarios.
The primary objective of the MDAN is to adapt new
data to align with the empirical data space, ensuring
the network maintains consistent performance across
different environments. The network’s primary training



processes involve transforming data from the empirical
space to fit the observable space, and vice versa. This
bidirectional transformation is crucial for the network’s
ability to effectively manage and accommodate new
information and changes within its operating environ-
ment.

The multidomain data adaptation network consists
of a generator Gξ and a discriminator Dρ2 , which are
trained concurrently in adversarial ways. The generator
Gξ receives input data xd, along with a target domain
label c, then generates an output Gξ(xd, c). This output
represents the data as it would appear in the target
domain, effectively transforming the observable data
to align with the characteristics of the target domain.
The discriminator Dρ2 evaluates the output of the
generator, calculating probability distributions over both
the source data and domain labels, operating as Dρ2 :
xd → {Dsrc(xd), Dcls(xd))}. It differentiates whether
images are genuine Dsrc(xd) or counterfeit Dcls(xd),
and categorizes the actual image labels Dprg(xd). The
adversarial loss, defined as follows, refines the gener-
ator’s ability to create images indistinguishable from
genuine ones:

Ladv = Exd
[logDsrc(xd)]

+ Exd,c [log (1−Dsrc(Gξ(xd, c)))] (17)

where x̂d represents the straight line uniform sample
between original image and generated image. Secondly,
the classification loss of the discriminator on the orig-
inal dataset and the generated dataset are defined as
follows

Lrcls = Exd,d [− logDcls (d | xd)] (18)

Lfcls = Exc,c [− logDcls(c | Gξ(xd, c))] (19)

The reconstruction loss measures the fidelity of the
reconstructed images to the original ones, ensuring
consistency across multidomain transformations:

Lrec = Exd,c,d

[
∥xd −Gξ(Gξ(xd, c), d)∥1

]
, (20)

Finally, the overall objective functions to optimize
Gξ and Dρ2 are formulated as follows:

LDρ2
= −Ladv + λclsLrcls (21)

LGξ
= Ladv + λclsLfcls + λrecLrec (22)

where λcls and λrec are important factors in controlling
domain classification loss and reconstruction loss. In
this min-max optimization, the generator strives to min-
imize its objective by producing convincing, domain-
appropriate images, while the discriminator aims to
maximize its own objective by distinguishing between
real and generated images. This adversarial process

ultimately improves the generator’s capability to create
authentic and semantically accurate images.

B. Training Algorithm

The training algorithm for MDAN optimizes the
generator Gξ and discriminator Dρ2 within a StarGAN-
based architecture. Starting with a training batch T and
a learning rate η, the algorithm refines the parame-
ters (ξ, ρ2) for the generator and discriminator. Each
iteration begins with extracting real images and their
original labels from T . The labels are shuffled to create
target labels for domain translation. The discriminator
is first trained by calculating the classification loss for
real images, generating fake images using Gξ, and
computing adversarial loss and gradient penalty using a
mix of real and fake images. The total discriminator loss
is then used to update Dρ2 . The generator Gξ is trained
less frequently. It regenerates fake images to recalibrate
adversarial and classification losses, and generates re-
constructed images to maintain cycle consistency. The
generator’s total loss, which includes adversarial, classi-
fication, and reconstruction losses, guides the parameter
updates for Gξ.

Algorithm 2 Training Algorithm for MDAN

1: Input: Training batch T , learning rate η;
2: Output: Updated model parameters (ξ, ρ);
3: for each iteration over the training batch T do
4: Fetch real images and original labels from T ;
5: Shuffle labels to create target domain labels;
6: Calculate classification loss by (18);
7: Generate fake images using Gξ with target

labels;
8: Calculate adversarial loss by (17);
9: Compute total discriminator loss by (21);

10: Update discriminator Dρ2 using its optimizer;
11: if current step % training frequency == 0 then
12: Generate fake images Gξ with target labels;
13: Calculate adversarial loss by (17);
14: Calculate classification loss by (19);
15: Generate reconstructed images;
16: Calculate reconstruction loss by (20);
17: Total generator loss by (22);
18: Update generator Gξ using its optimizer;
19: end if
20: end for

VI. EXPERIMENTS

This section details our experimental setup and eval-
uations. Initially, we focus on the digit datasets to
benchmark our method against recent techniques in



image recognition tasks. Furthermore, we extend our
comparisons to the domain of facial attribute transfer.
All experiments are conducted using model outputs
derived from images that were not seen during the
training phase, ensuring that our results reflect the
model’s ability to generalize to new, unseen data.

A. Comparison Models

As our comparison models, we adopt the DeepJSCC-
V [18] and CycleGAN based data adaptation (DA)
network [8].

• DeepJSCC-V (Retrained): This model has no do-
main adaptation capacity and is retrained on do-
main faced with actual observable data distribution
so that the overhead is significant and lack of
scalability.

• CycleGAN (DA): Utilizes a CycleGAN-based ap-
proach for data adaptation (DA), transforming ac-
tual observable data from a new domain into the
format of the originally trained domain without re-
training the semantic coding network. This method
leverages the existing DeepJSCC-V as a semantic
coding network.

• DeepJSCC-V (no DA): This model is trained only
on the original domain and does not undergo
retraining to adapt to different actual observable
data distributions, serving as a baseline to assess
the necessity and impact of domain adaptation.

B. Dataset and Training

In our experiments, we used two main benchmark
datasets: digit datasets and CelebA. The digit datasets
include MNIST, MNIST-M, SYN, and USPS. These
datasets present various challenges in domain adapta-
tion and image recognition. MNIST consists of hand-
written digits, MNIST-M has mixed backgrounds, SYN
simulates real-world scenarios with different styles and
distortions, and USPS features handwritten digits from
U.S. Postal Service mail. All images are resized to
32 × 32 pixels for neural network processing. These
datasets help test the model’s capability to handle
domain shifts, with the task being digit classification
from 0 to 9.

The CelebA dataset [21] comprises 202,599 face
images of celebrities, annotated with 40 distinct bi-
nary attributes. This extensive dataset is utilized to
train on specific attributes such as hair color (black,
blonde, brown), gender (male), and age (young). For
preprocessing, the original images, sized 178 x 218,
are cropped to 178 x 178 and resized to 128 x 128
to standardize the input size. To evaluate performance,
2,000 images are randomly selected as the test set, with

the remainder serving as the training set. The CelebA
dataset allows for the construction of seven distinct
domains based on combinations of hair color, gender,
and age.

In our experiments, all models are trained using the
Adam optimizer [22] with β1 = 0.5 and β2 = 0.999.
To balance training dynamics, we update MASCN and
MDAN once for every five updates of the discriminator,
following the strategy recommended in [23]. For the
CelebA dataset, we utilize a batch size of 16, while
for digit datasets, the batch size is increased to 128.
All models are initially trained with a learning rate of
0.0001 for the first 10 epochs, after which the rate is
linearly decayed to zero over the subsequent 10 epochs
to ensure smooth convergence. Hyperparameters are set
with λcls = 1, λrec = 10, and λprg = 1.

In evaluating our framework on the digit and CelebA
datasets, we conducted both quantitative and qualitative
analyses. For the quantitative analysis, we tested on
different CRs ranging from 0.1 to 0.9 and SNRs at 3,
10, and 18. For the qualitative analysis, we examined
CRs of 0.2 and 0.7 and an SNR of 3. We constructed a
balanced random test dataset composed of equal sizes
for each domain and assessed the classification accuracy
following specific domain transformations.

C. Experiment Results on Digit Datasets

Fig. 4 (a) to (c) illustrates the MNIST experiment
outcomes across different SNRs. Retrained DeepJSCC-
V set a high benchmark, achieving nearly 99% accu-
racy across SNRs. MASCN and MDAN substantially
outperformed CycleGAN-based DA, with accuracies
improving by approximately 27% to 30% in all SNR
settings. Specifically, MASCN reached accuracies up
to 93.93%, while MDAN achieved up to 91.53%,
significantly surpassing the CycleGAN-based DA and
DeepJSSC-V without DA, which scored lowest at each
SNR.

Fig. 4 (d) through (f) show the USPS dataset out-
comes at different SNRs. MASCN and MDAN out-
shined the CycleGAN-based DA across all settings,
with MASCN achieving up to 88.41% and MDAN
83.60%. Retrained DeepJSSC-V consistently led with
nearly 98% accuracy, while DeepJSSC-V with no DA
lagged behind, never surpassing 41.44%.

As shown in Fig. 4 (g) to (i) for MNISTM,
MASCN demonstrated consistent improvement across
SNRs, achieving accuracies of 91.10%, 92.09%, and
92.37%, respectively. MDAN also showed strong per-
formance with accuracies reaching up to 91.29%. In
contrast, CycleGAN-based DA and DeepJSSC-V with
no DAlagged significantly, with the highest perfor-
mances being 68.95% and 68.58%, respectively. No-



(a) SNR 3, MNIST (b) SNR 10, MNIST (c) SNR 18, MNIST

(d) SNR 3, USPS (e) SNR 10, USPS (f) SNR 18, USPS

(g) SNR 3, MNISTM (h) SNR 10, MNISTM (i) SNR 18, MNISTM

(j) SNR 3, SYN (k) SNR 10, SYN (l) SNR 18, SYN

Fig. 4: Classification accuracy comparison of digit datasets for different CR and SNR.

(a) CR = 0.2, SNR = 3 (b) CR = 0.7, SNR = 3

Fig. 5: Qualitative Comparison of digit datasets for different CR and SNR.



tably, the retrained DeepJSSC-V exhibited robust re-
sults, closely matching MASCN with a peak accuracy
of 94.84% at the highest SNR.

For the SYN dataset, evaluations across compression
ratios from 0.1 to 0.9 and SNRs of 3, 10, and 18
demonstrated that MASCN surpassed CycleGAN-based
DA by 50.41%, 49.52%, and 49.21%, respectively. Sim-
ilarly, MDAN outperformed CycleGAN-based DA by
43.25%, 44.69%, and 44.92% at these SNRs. MASCN
also consistently exceeded MDAN’s performance by
7.16%, 4.83%, and 4.29%, highlighting its superior
adaptability in diverse domain scenarios. These find-
ings, detailed in Fig. 4 (j) to (l), affirm the robustness
of our models under various operational conditions.

Fig. 5 presents the visual results for the CR of 0.2 and
0.7. In the scenarios where the transformation targeted
SYN at CR=0.2 and MNIST, at CR=0.7, MNIST-M and
USPS, CycleGAN-based DA doesn’t perform accurate
transformations, altering the semantic information. In
contrast, MDAN and MASCN effectively preserved the
original semantic content, ensuring the images were
sufficiently restored for accurate classification.

D. Experiment Results on CelebA

Fig. 6 (a) to (c) highlights CelebA dataset trans-
formations to blond hair across SNRs of 3, 10, and
18. MASCN significantly outperformed CycleGAN-
based DA with improvements of 48.99%, 50.41%, and
26.45% respectively. MDAN also showed substantial
gains, enhancing performance by 46.06%, 47.95%, and
24.98% across these SNRs. MASCN consistently held
modest advantages over MDAN, solidifying its adapt-
ability in domain transformations.

Transformations to black hair are depicted in Fig.
6 (d) to (f), where MASCN’s improvements of
26.45%, 27.95%, and 29.21% at each SNR distinctly
outpaced CycleGAN-based DA. MDAN’s enhance-
ments at 24.98%, 25.85%, and 26.21% also surpassed
CycleGAN-based DA, with MASCN maintaining leads
over MDAN, emphasizing its robust adaptation capa-
bilities.

For gender transformations, shown in Fig. 6 (g) to
(i), MASCN advanced with improvements of 44.03%,
42.87%, and 42.38%, significantly over CycleGAN-
based DA. MDAN’s performance improvements at
33.70%, 36.48%, and 36.74% also highlighted its ef-
fectiveness, with MASCN outperforming MDAN by
notable margins.

Lastly, age transformations in Fig. 6 (j) to (l) il-
lustrate MASCN’s dominance with gains of 63.25%,
63.72%, and 63.95%, outstripping CycleGAN-based
DA. MDAN’s performance also surged with increments
of 53.91%, 59.31%, and 60.04%, confirming MASCN’s

superior capability in adapting to age attributes under
various conditions.

Fig. 7 presents the visual outcomes at CR of 0.2 and
0.7. As CR decreases, the transformed images exhibit
increased blurriness. Nevertheless, even at a lower CR
of 0.2 and with reduced SNR, MDAN and MASCN
managed to perform transformations that allowed for
accurate classification. In contrast, CycleGAN based
DA sometimes incorrectly translated gender attributes
at CR=0.2, highlighting the robustness of MDAN and
MASCN in maintaining semantic accuracy under strin-
gent conditions.

VII. DISCUSSION

In this section, we examine the strategic advan-
tages of MDAN compared to MASCN. MDAN can
be trained significantly faster than MASCN because
they reuse existing semantic coding frameworks. This
makes MDANs highly advantageous in environments
characterized by frequent domain shifts, facilitating
fast adaptation to new domains. While MDAN offer
quick adaptability, this comes at the cost of increased
computational overhead from additional data adapta-
tion network. Conversely, MASCN is inherently de-
signed to adapt across multiple domains efficiently. This
capability is crucial, especially when the transmitter
and receiver operate in distinctly different domains, or
when there is a prior understanding of multidomain
attributes in the source data. MASCN leverages this pre-
awareness to ensure that the system is well-prepared to
adapt for each domain.

Moreover, the integration of MDAN and MASCN
offers a complementary strategy, for dynamic environ-
ments with frequent domain shifts, deploying a MDAN
can provide an immediate, albeit temporary, solution
while MASCN is being trained in the backend. Once
MASCN training is complete, it can replace the MDAN,
combining the benefits of rapid initial adaptability with
robust, long-term stability. This dual approach ensures
that the system benefits from the quick adaptability of
MDAN initially, followed by the long-term stability of
MASCN.



(a) SNR 3, Black Hair (b) SNR 10, Black Hair (c) SNR 18, Black Hair

(d) SNR 3, Blond Hair (e) SNR 10, Blond Hair (f) SNR 18, Blond Hair

(g) SNR 3, Gender (h) SNR 10, Gender (i) SNR 18, Gender

(j) SNR 3, Age (k) SNR 10, Age (l) SNR 18, Age

Fig. 6: Quantitative comparison of CelebA for different CR and SNR.

(a) CR = 0.2, SNR = 3 (b) CR = 0.7, SNR = 3

Fig. 7: Qualitative Comparison of digit datasets for different CR and SNR.



VIII. CONCLUSION

This paper introduced the MA-DeepSC framework,
comprising MASCN and MDAN. This framework not
only enhances scalability but also retains high levels
of classification accuracy in various SNR compared
to existing methods. Our experimental results demon-
strate that MA-DeepSC achieves performance compa-
rable to that of the retrained DeepJSCC-V and signifi-
cantly outperforms the CycleGAN-based DA approach
in multidomain scenarios. Unlike DeepJSCC-V, which
requires a separate trained model for each domain,
MA-DeepSC adapts to multiple domains with a single
model, greatly simplifying deployment and reducing
overhead. In conclusion, MA-DeepSC advances the
field of semantic communications by addressing the
critical need for systems that operate effectively across
multidomain. We envision that our findings will con-
tribute to the ongoing development of practical and
efficient semantic communication systems, potentially
influencing future standards and implementations in the
industry.
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source-channel coding for wireless image transmission,” IEEE
Transactions on Cognitive Communications and Networking,
vol. 5, no. 3, pp. 567–579, 2019.

[18] W. Zhang, H. Zhang, H. Ma, H. Shao, N. Wang, and V. C.
Leung, “Predictive and adaptive deep coding for wireless image
transmission in semantic communication,” IEEE Transactions
on Wireless Communications, 2023.

[19] J.-Y. Zhu, R. Zhang, D. Pathak, T. Darrell, A. A. Efros,
O. Wang, and E. Shechtman, “Toward multimodal image-to-
image translation,” Advances in neural information processing
systems, vol. 30, 2017.

[20] A. Odena, C. Olah, and J. Shlens, “Conditional image synthesis
with auxiliary classifier gans,” in International conference on
machine learning. PMLR, 2017, pp. 2642–2651.

[21] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face
attributes in the wild,” in Proceedings of the IEEE international
conference on computer vision, 2015, pp. 3730–3738.

[22] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

[23] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C.
Courville, “Improved training of wasserstein gans,” Advances
in neural information processing systems, vol. 30, 2017.


