
1

Intelligent Heterogeneous Aerial Edge Computing
for Advanced 5G Access

Tri-Hai Nguyen, Thanh Phung Truong, Anh-Tien Tran, Nhu-Ngoc Dao, Laihyuk Park, and Sungrae Cho

Abstract—In the context of the Internet of Things (IoT), aerial
computing platforms (ACPs) such as unmanned aerial vehicles
and high-altitude platforms with edge computing capabilities
have the potential to significantly expand coverage, enhance
performance, and handle complex computational tasks for IoT
devices (IoTDs). Non-orthogonal multiple access (NOMA) has
also emerged as a promising multiple access technology for
advanced 5G networks. This paper presents a multi-ACP-enabled
NOMA edge network, which enables heterogeneous ACPs to
provide computational assistance to IoTDs. To minimize delay
and energy consumption, we formulate a joint task offloading
and resource allocation problem that considers IoTD association,
offloading ratio, transmit power, and computational resource
allocation variables. To address the complexity of the optimiza-
tion problem, it is modeled as a multi-agent Markov decision
process and solved using a multi-agent deep deterministic policy
gradient (MADDPG)-based solution. Extensive simulation results
demonstrate that the proposed MADDPG-based framework can
remarkably adapt to the dynamic nature of multi-ACP-enabled
NOMA edge networks. It consistently outperforms various bench-
mark schemes regarding energy efficiency and task processing
delay across different simulated scenarios.

Index Terms—aerial computing platform, multi-agent deep
deterministic policy gradient, non-orthogonal multiple access,
resource allocation, task offloading.

I. INTRODUCTION

AS the world prepares for advanced 5G wireless com-
munications, expectations are high for capabilities that

go further mobile Internet to support advanced Internet of
Things (IoT) applications with diverse resource needs and
quality of service (QoS) requirements [1]. By offloading
computation-intensive tasks to nearby computing servers with
multi-access edge computing (MEC) technology, resource-
constrained IoT devices (IoTDs) can perform more complex
tasks or conserve energy [2], [3]. However, the sole reliance
on terrestrial network infrastructure limits the achievement of
truly ubiquitous global connectivity. Economic disparities and

This study was supported by the Research Program funded by the Seoul-
Tech (Seoul National University of Science and Technology). Tri-Hai Nguyen
and Thanh Phung Truong equally contributed to this study. (Corresponding
authors: Laihyuk Park; Sungrae Cho.)

Tri-Hai Nguyen and Laihyuk Park are with the Department of Computer
Science and Engineering, Seoul National University of Science and Tech-
nology, Seoul 01811, Republic of Korea (e-mail: haint93@seoultech.ac.kr;
lhpark@seoultech.ac.kr).

Thanh Phung Truong, Anh-Tien Tran, and Sungrae Cho are with the
School of Computer Science and Engineering, Chung-Ang University, Seoul
06974, Republic of Korea (e-mail: tptruong@uclab.re.kr; attran@uclab.re.kr;
srcho@cau.ac.kr).

Nhu-Ngoc Dao is with the Department of Computer Science and En-
gineering, Sejong University, Seoul 05006, Republic of Korea (e-mail:
nndao@sejong.ac.kr).

environmental factors significantly limit the feasibility of suffi-
cient network coverage in remote areas such as deserts, forests,
and oceans. Furthermore, terrestrial infrastructure is inherently
vulnerable to natural disasters (e.g., earthquakes, floods, and
bushfires) and anthropogenic disruptions (e.g., power failures,
theft, and sabotage). To address these challenges, aerial access
networks leveraging platforms such as unmanned aerial ve-
hicles (UAVs), high-altitude platforms (HAPs), and satellites
have emerged as a captivating prospect for augmenting 5G
and beyond networks [4], [5]. These aerial platforms offer
the capability to provide critical Internet services in regions
where terrestrial network coverage remains economically or
geographically impractical. Notably, the 3rd Generation Part-
nership Project (3GPP) is actively exploring the integration
of UAVs, HAPs, and satellite access into its standards for
advanced 5G access [1], [6], [7]. Utilizing HAPs and UAVs
equipped with computational capabilities as aerial computing
platforms (ACPs), aerial edge computing can offer seamless
communication and computing experiences for IoTDs through
the advantages of line-of-sight (LoS) communication and
flexible deployment [8], [9]. In particular, HAPs, stationed
high in the stratosphere, provide wide-area communication
and monitoring. Powered by sustainable energy, HAPs can
remain aloft for extended periods. Although UAVs have lim-
ited resources and flight time, they can operate at lower
altitudes across varied terrains, offering lower latency and
deployment costs than HAPs. These ACPs can be applied in
diverse use cases and scenarios [8], [9]. For example, in aerial
surveillance [10], UAVs perform face identification and offload
heavy computations to nearby edge servers, overcoming their
limited energy resources. Similarly, UAVs can assist marine
operations by hovering as aerial edge servers for unmanned
surface vehicles collecting underwater sensor data [11]. HAPs
offer high-capacity backhaul links for a wider reach, while
UAVs extend connectivity directly to ground users through
localized access points [12]. The heterogeneous multi-ACP
network leverages the strengths of both HAPs and UAVs,
providing access and computational services for remote IoTDs
or establishing temporary communications for disaster relief
efforts [13]–[15].

A. Motivation

While aerial access infrastructure offers immense potential
for expanding connectivity, it also introduces challenges in
upcoming 3GPP standard releases [4], [5]. Non-orthogonal
multiple access (NOMA) has emerged as the leading access
technology for 5G and beyond, garnering substantial attention



2

in academia and industry [16], [17]. Integrating NOMA into
aerial networks with multiple ACPs is expected to provide
sufficient resources and satisfy the QoS requirements of IoTDs
in different scenarios. To this end, task offloading and resource
allocation strategies have to be carefully designed to exploit
the spectral and computational resources made available by
NOMA and aerial networks effectively while addressing chal-
lenges such as user scheduling, latency, and energy efficiency
optimization. Furthermore, the inherent dynamics of aerial
networks pose difficulties for traditional optimization algo-
rithms, restricting their ability to make real-time decisions
in response to rapidly changing environments. Deep rein-
forcement learning (DRL) has emerged as a suitable tech-
nique for addressing complex decision-making problems in
dynamic, multi-agent wireless networks [14], [15], [18]–[21].
While Deep Q-network (DQN) [22] remains a foundational
DRL algorithm, its discrete optimization capabilities limit its
suitability. Deep deterministic policy gradient (DDPG) [23],
a policy-based DRL adept at high-dimensional continuous
optimization, aligns well with continuous resource allocation
in wireless networks. Notably, multi-agent DDPG (MAD-
DPG) [24] extends DDPG to the multi-agent setting through
centralized training and decentralized execution, making it
particularly suitable for complex aerial network optimization
challenges. Motivated by these factors, this paper explores a
NOMA-based multi-ACP-enabled edge network and proposes
a MADDPG-based solution for jointly optimizing task offload-
ing and resource allocation.

B. Contributions

To the best of our knowledge, the existing literature lacks a
comprehensive investigation into the joint task offloading and
resource allocation (JTORA) problems in multi-ACP-enabled
NOMA edge networks, which serve as the focus of this paper.
We propose a multi-agent DRL-based framework employing
an enhanced MADDPG, where HAPs and UAVs function as
cooperative agents to tackle the JTORA problem. The main
contributions of this paper are as follows.

• To meet the growing demands of IoTDs for computa-
tion offloading across challenging terrains, we propose
a novel heterogeneous multi-ACP-enabled NOMA edge
architecture that combines the broad coverage of a HAP
with the flexibility and localized coverage of multiple
UAVs. In the system, NOMA facilitates efficient spectrum
utilization, while the partial offloading scheme allows for
concurrent processing of the computational task on both
the IoTD and its associated ACP, aiming to minimize
the IoTD’s computing delay and energy consumption. To
achieve this objective, we formulate a JTORA problem
that jointly optimizes IoTD association, task offloading
ratio, transmission power, and computing resource allo-
cation.

• Due to the complexity of the JTORA problem, we adopt
a multi-agent Markov decision process (MAMDP) model
and propose a MADDPG-based framework to learn
optimal computation offloading and resource allocation
policies in the system. In addition, we propose an action

pretreatment function, ensuring that the generated actions
comply with system constraints and correlations between
optimization variables. This enables the agents to learn
policies within the specified limits, preventing penal-
ties or undesirable outcomes. The proposed framework,
characterized by centralized training and decentralized
execution, fosters efficient cooperation among multiple
ACPs to maximize the long-term expected reward and
optimize the computing overhead.

• To evaluate the effectiveness of the proposed method,
we conducted comprehensive simulations. The results
demonstrate the superiority of our approach in terms
of better convergence and improved performance com-
pared to alternative strategies such as single-agent DDPG,
greedy offloading, full offloading, and randomized of-
floading across diverse scenarios.

The remainder of the paper is organized as follows. A
literature review is conducted in Section II. In Section III, we
introduce the system model and formulate the JTORA prob-
lem. Section IV proposes a multi-agent DRL-based framework
to address the formulated optimization problem. In Section V,
we present simulation results to evaluate the performance
of the proposed framework. Finally, conclusions and future
research directions are shown in Section VI.

II. RELATED WORK

Task offloading and resource allocation are vital factors that
significantly influence the overall performance of aerial edge
computing systems [8], [9]. This section surveys recent, rele-
vant studies in network modeling with UAV and HAP-assisted
computation, leveraging DRL-based optimization techniques.

With high mobility and flexibility, UAVs can serve as MEC
servers for aiding IoT computing offloading in a space-air-
ground integrated network as in [25]. Due to the complexity
and dynamics of the system, a policy gradient approach is
used to optimize the offloading policies in the large action
space, while an actor-critic approach accelerates the learning
process. However, the resource allocation issue is not jointly
considered, while the single-agent DRL approach cannot cap-
ture the interactions between multiple UAVs in the network.
Some studies investigated multi-UAV-assisted MEC systems,
in which UAVs cooperate to find optimized policies for com-
putation offloading and resource sharing through multi-agent
DRL frameworks [19], [20]. In [19], MEC servers deployed at
the base station and UAVs collaborate in resource allocation
and computation offloading for vehicles using the MADDPG
algorithm. However, the binary offloading scheme employed
in the computation model lacks flexibility. In [20], MEC-UAVs
manage tasks offloaded from ground devices and redirect them
to a nearby base station if they cannot handle them. However,
the approach lacks consideration for direct offloading from the
device to the base station. If a UAV malfunctions, the associ-
ated task becomes unprocessed. Furthermore, the assumption
of equal allocation of computational resources from the MEC
server to each served device is impractical, as each device
exhibits varying computational demands that require optimal
allocation.



3

Compared to UAVs, HAPs offer greater computing capabil-
ities and broader network coverage due to their higher flight
altitude and larger payload capacity. HAPs are employed to
assist vehicular users in computing offloading and caching,
aiming to reduce delay and energy consumption using DRL
techniques [26]–[29]. In [26], a DQN-based value decomposi-
tion networks approach was proposed to optimize caching and
computation offloading decisions in a three-layer HAP-road
side unit-vehicle network. While the objective is to minimize
system delay, it does not consider energy consumption. In [27],
vehicles can offload their tasks to HAPs or neighboring vehi-
cles. A double DQN (DDQN) approach, which can overcome
the overestimation problem found in DQN, is used to minimize
the total computation and communication overhead. In both
studies [26], [27], the binary offloading scheme, in which
computations are either processed locally or entirely offloaded,
restricts the system’s flexibility and might not be suitable for
scenarios with diverse computational demands. In addition,
DQN and DDQN can only apply for discrete optimization.
Consequently, the action space needs to be discretized, which
reduces the possibility of reaching the optimal solution. As
demonstrated in [28], [29], DDPG effectively tackles contin-
uous optimization, proving valuable for HAP-assisted edge
computing systems. However, the previous studies [26]–
[29] primarily focused on HAP-centric architectures without
integrating multi-UAV-enabled edge computing. In [30], HAP
serves as a centralized computing platform while UAVs act as
aerial users collecting ground data, with the task offloading
problem addressed using the DDPG approach. In [21], the
authors focused on task and energy offloading in a UAV-based
aerial network with a solution based on a multi-agent soft
actor-critic model. HAP is responsible for energy sources of
UAVs and fog nodes. Similar to [30], UAVs act as task owners,
but instead of offloading tasks to HAP, they send tasks to on-
ground fog computing nodes. The role of HAP is limited to the
centralized training process of multi-agent DRL, and it does
not provide direct computing assistance to IoTDs or UAVs.
The works [21], [30] demonstrated the potential of HAPs in
aerial MEC networks. Still, they also reveal a gap in fully
utilizing the complementary strengths of HAPs and UAVs in
a collaborative computing framework.

Recent studies have shifted attention towards the coopera-
tion between UAVs and HAPs, recognizing their potential for
a more comprehensive and effective computational solution.
Task offloading and resource allocation problems in aerial edge
computing systems involving a HAP and several UAVs were
explored [13]–[15]. In [13], IoTDs offload tasks to UAVs,
and if UAVs cannot handle the tasks, they forward them
to a HAP. Similar to [19], [26], [27], the work limits the
computing model to binary offloading, restricting its flexibil-
ity. In [14], UAVs collect tasks from IoTDs and offload a
portion to a HAP. A multi-agent proximal policy optimization
approach addresses the task offloading problem. However, only
UAVs are considered learning agents, while the HAP is not
included despite its involvement in the computation model.
Due to the hierarchical design in both studies [13], [14],
where a HAP can only receive tasks from IoTDs via UAVs,
the IoTDs outside UAV coverage cannot be served and the

TABLE I
KEY NOTATIONS.

Notation Description
n,N,N The index, the number, and the set of ACPs

(n = N indicates the HAP, otherwise, the UAV)
k,K,K The index, the number, and the set of IoTDs
Kn,Kn The number and the set of IoTDs under the

coverage of ACP n
t, T,T The index, the number, and the set of time slots
τk = (sk, wk, dk) Task of IoTD k with task size sk , required

computing resource/bit wk , and delay limit dk
(xk, yk, 0) Coordinates of IoTD k
(xn, yn, zn) Coordinates of ACP n
dk,n Distance between IoTD k and ACP n
pmax Maximum transmit power of IoTDs
gk,n Channel gain between IoTD k and ACP n
g0 Channel gain at a reference distance of 1 m
rk,n Transmission rate between IoTD k and ACP n
κk Energy consumption coefficient of IoTD k
σ2
n Noise power at ACP n

Wn Communication bandwidth of ACP n
Fk, Fn Computational capacity of IoTD k and ACP n

Tk, T
local
k , T offload

k,n Delay cost, IoTD k’s delay, and ACP n’s delay
for processing τk

Ek, E
local
k , Eoffload

k,n Energy cost, IoTD k’s energy, and ACP n’s
energy for processing τk

ωk Objective weight coefficient for IoTD k
Ck Overall computing overhead for processing τk

Decision variables
ak,n Association between IoTD k and ACP n
ok Offloading ratio for task τk
pk Transmit power of IoTD k
fk,n Computing resources of ACP n allocated to

IoTD k

tasks cannot be offloaded in case of UAV failure. In [15],
a heterogeneous HAP-UAV computing system was proposed
to enhance QoS for IoTDs using the MADDPG algorithm.
However, the assumption of equal computing resources for
all IoTDs is unrealistic for systems with varying QoS and
computing demands.

In previous studies, communication models did not incor-
porate advanced multiple access techniques such as NOMA,
which could enhance system spectrum efficiency. Additionally,
computation models assumed equal resource allocation to all
IoTDs and relied on a binary offloading scheme, limiting their
effectiveness. This motivates the exploration of integrating
NOMA into HAP-UAV collaborative computing frameworks
with an intelligent task offloading and resource allocation
scheme.

III. SYSTEM MODEL AND PROBLEM FORMULATION

This section details the system model and problem formula-
tion. Key notations used in the article are presented in Table I.

A. Network Scenario

We examine a heterogeneous multi-ACP-enabled NOMA
edge network with a HAP, multiple UAVs, and various
terrestrial IoTDs within the HAP’s coverage, as shown in
Fig. 1. In remote areas, the proposed heterogeneous multi-
ACP system promises significant advantages regarding avail-
ability and reliability. The HAP offers wide-area coverage and
redundancy for consistent connectivity to a large number of



4

IoT Devices

(IoTDs)

Aerial Computing Platforms

(ACPs)

𝑋𝑛[𝑡], 𝑌𝑛[𝑡], 𝐻𝑛

𝑋𝑁, 𝑌𝑁, 𝐻𝑁

𝑥𝑘[𝑡], 𝑦𝑘[𝑡], 0

NOMA

NOMA

High-Altitude Platform (HAP)

Unmanned Aerial Vehicle (UAV)

Fig. 1. A multi-ACP-enabled NOMA edge network.

IoTDs, while UAVs provide targeted support in specific areas.
Additionally, the HAP is less susceptible to environmental
factors due to its high altitude operation, improving reliabil-
ity compared to UAVs. Finally, the system can dynamically
allocate resources based on real-time demand, with UAVs
assisting areas experiencing high computational load, while
HAPs serve as the backbone for overall connectivity and
processing power. It is also assumed that the UAVs fly con-
stantly along predetermined paths, and harvesting techniques
replenish their energy [15], [19], [25]. The set of IoTDs is
denoted as k ∈ K = {1, . . . ,K}, and the HAP and UAVs
equipped with MEC servers form a set of ACPs, represented
as n ∈ N = {1, . . . , N}, where n = N represents the HAP,
otherwise, the UAV. Each ACP serves as a computing node
for the IoTDs under its coverage. The set of IoTDs covered
by the ACP n is denoted as Kn with the number of IoTDs
Kn accordingly.

The network operates throughout T discrete time slots of
equal duration, with each slot being small enough to assume
that the network is static during that time. The set of time slots
is specified as t ∈ T = {1, . . . , T}. The network coordinates
are represented in a three-dimensional Euclidean coordinate
system. The IoTDs’ positions at time slot t are specified as
(xk[t], yk[t], 0),∀k. The UAVs’ positions at time slot t are
denoted as (xn[t], yn[t], zn),∀n ̸= N , with a constant altitude
of zn. The HAP is deployed at a fixed point over the region
of interest at an altitude of zN in the stratosphere [31], and its
position is denoted as (xN , yN , zN ). Hence, at time slot t, the
distance between IoTD k and UAV n, referred to as dk,n[t],
and the distance between IoTD k and the HAP N , referred to
as dk,N [t], are computed by

dk,n[t] =

√
(xn[t]− xk[t])

2
+ (yn[t]− yk[t])

2
+ z2n, (1)

dk,N [t] =

√
(xn − xk[t])

2
+ (yN − yk[t])

2
+ z2N . (2)

Each IoTD k generates a computation-intensive and time-
sensitive task τk in the network. At time slot t, the task gener-
ated by IoTD k is represented by τk[t] = (sk[t], wk[t], dk[t]).
Here, sk is the task size (bits), wk is the required computa-
tional resources to process a data bit (CPU cycles/bit), and

dk is the limited delay. A partial offloading model is applied
to provide flexibility, allowing for a portion of the task to be
offloaded and the remainder to be processed locally. This is
more flexible than a binary offloading model [2], [32]. Hence,
for each task τk[t], we introduce an offloading rate variable
ok[t] ∈ [0, 1] as the portion of the task offloaded to the ACP,
while the remaining portion (1− ok[t]) is processed locally.

Since the IoTDs can be under the coverage of multiple
ACPs, we introduce an IoTD association variable, ak,n[t] ∈
{0, 1},∀k, n, t, to represent the association between the IoTD
k and the ACP n. Hence, ak,n[t] = 1 indicates that the IoTD k
associate with the ACP n, otherwise, ak,n[t] = 0. At each time
slot, each IoTD is only served by at most one ACP represented
by ∑

n∈N
ak,n[t] ≤ 1,∀k, t. (3)

B. Communication Model

NOMA is used to connect IoTDs and ACPs as it can provide
better spectrum utilization than traditional orthogonal multiple
access (OMA) techniques. In NOMA, multiple users can be
supported in the same time-frequency resource block, while
each user has their time-frequency resource block in OMA.
To ensure reliable data acquisition, we assume each ACP can
obtain accurate channel state information (CSI) and perform
perfect successive interference cancellation (SIC). With the
perfect SIC, the ACP can completely subtract the signals
of IoTDs with stronger channels from those with weaker
channels, enabling significantly improved decoding accuracy
for all IoTD messages [12], [17].

In contrast to densely populated urban environments, the
relative absence of physical obstructions in remote areas
facilitates a dominance of LoS communication for connecting
IoTDs with ACPs [11]–[13], [15], [20]. In addition, the system
leverages the deployment flexibility, mobility, and versatility
of ACPs to readily establish and maintain LoS conditions.
Hence, the contribution of non-LoS (NLoS) propagation can
be ignored. Therefore, the channel gain between IoTD k ∈ Kn

and the associated ACP n at time slot t can be calculated by

gk,n[t] = g0d
−α
k,n[t], (4)

where α ≥ 2 denotes a path loss exponent, and g0 denotes
the channel gain at a reference distance of 1 m. From the
principle of SIC, the signals are decoded in the decreasing
order of channel gains, i.e., g1,n ≥ g2,n ≥ · · · ≥ gKn,n. Thus,
at time slot t, the transmission rate (bits/s) of IoTD k to ACP
n can be estimated as

rk,n[t] = Wn log2

(
1 +

ak,n[t]pk[t]gk,n[t]∑Kn

j=k+1 aj,n[t]pj [t]gj,n[t] + σ2
n

)
,

(5)
where the communication bandwidth of ACP n is represented
as Wn, pk[t] represents the transmit power of IoTD k, and
σ2
n denotes the noise power at ACP n. It is worth noting that

the transmit power of IoTD k is constrained by a maximum
transmit power pmax, i.e., 0 ≤ pk[t] ≤ pmax,∀k, t.



5

C. Computation Model

By leveraging IoTD associations, tasks can be concurrently
offloaded to the corresponding ACPs and processed locally.
This work considers the computing overhead regarding task
processing delay and energy consumption of IoTDs. Similar
to previous studies [2], [15], [32], the overhead associated with
transmitting the results is negligible due to their typically small
size.

1) Local Computation: The local processing delay of (1−
ok[t]) part of the task τk[t] of the IoTD k is computed by

T local
k [t] =

(1− ok[t])sk[t]wk[t]

Fk
, (6)

where Fk denotes the computational capacity of IoTD k (CPU
cycles/s). As in [15], [32], the energy consumed by the IoTD
for processing the task can be calculated as

Elocal
k [t] = κkF

2
k (1− ok[t])sk[t]wk[t], (7)

where κk ≥ 0 represents the energy consumption factor for
IoTD k.

2) ACP-Assisted Computation: If IoTD k delegates ok[t]
portion of task τk to the connected ACP n, then the processing
latency comprises two phases: the offloading duration from
IoTD k to ACP n, and the execution duration at ACP n. Hence,
during time slot t, the latency for handling ok[t] fraction of
task τk through offloading is estimated as

T offload
k,n [t] = ak,n[t]

(
ok[t]sk[t]

rk,n[t]
+

ok[t]sk[t]wk[t]

fk,n[t]

)
, (8)

where fk,n[t] denotes the computing resources of the ACP n
allocated to IoTD k. The allocated computing resources cannot
exceed the available computing capacity Fn of the ACP n,
which should satisfy

∑
k∈K ak,n[t]fk,n[t] ≤ Fn,∀n, t.

Thus, the energy utilization of IoTD k for delegating the
ok[t] part of task τk to ACP n is determined by

Eoffload
k,n [t] =

ak,n[t]pk[t]ok[t]sk[t]

rk,n[t]
. (9)

Offloading a task (τk) to an ACP requires careful resource
allocation to ensure successful execution. This means when
offloading part of the task (ok > 0), we must set non-zero
values for three key variables: ak,n, pk, and fk,n. In other
words, the chosen ACP n, identified by ak,n, must dedicate
processing power fk,n to handle the offloaded part of the task
ok sent from the IoTD k with transmit power pk. This ensures
the offloaded part of the task is fully executed at the ACP and
not dropped or incomplete. Hence, we impose a constraint as∑

n∈N
⌈ak,n[t]pk[t]fk,n[t]⌉ ≥ ⌈ok[t]⌉,∀k, t, (10)

where ⌈·⌉ represents the ceiling function, which returns to the
least integer greater than or equal to the input number.

3) Computing Overhead: Under the partial offloading
scheme, an IoT device’s task can be processed locally and
through offloading simultaneously [2], [32]. Hence, the time
taken to complete IoTD k’s task is determined by

Tk[t] = max
{
T local
k [t], T offload

k,n [t]
}
. (11)

The IoTD k consumes energy for local processing and offload-
ing the task to the ACP, represented by

Ek[t] = Elocal
k [t] + Eoffload

k,n [t]. (12)

Overall, the computation overhead of the task τk[t] for IoTD
k is determined by

Ck[t] = ωkTk[t] + (1− ωk)Ek[t], (13)

where ωk is a coefficient that represents IoTD k’s preference
for task execution latency and energy consumption. To ensure
the QoS, the task has to be completed within a maximum delay
dk[t], expressed as

Tk[t] ≤ dk[t],∀k, t. (14)

D. Joint Optimization Problem
We formulate the JTORA problem in minimizing the con-

sumed energy of the IoTDs and the delay in processing
their tasks, subject to the system constraints. Specifically,
the decision variables to be optimized include IoTD associa-
tion {ak,n[t],∀k, n, t}, offloading ratio {ok[t],∀k, t}, transmit
power of IoTDs {pk[t],∀k, t}, and computing resource allo-
cation of the HAP and UAVs {fk,n[t],∀k, n, t}. The JTORA
problem is formulated as

(P1): min
{ak,n[t],ok[t],pk[t],fk,n[t],∀k,n,t}

∑
k∈K

Ck[t], (15a)

s.t. ak,n[t] ∈ {0, 1},∀k, n, t, (15b)∑
n∈N

ak,n[t] ≤ 1,∀k, t, (15c)

ok[t] ∈ [0, 1],∀k, t, (15d)
0 ≤ pk[t] ≤ pmax,∀k, t, (15e)∑
k∈K

ak,n[t]fk,n[t] ≤ Fn,∀n, t, (15f)∑
n∈N

⌈ak,n[t]pk[t]fk,n[t]⌉ ≥ ⌈ok[t]⌉,∀k, t, (15g)

Tk[t] ≤ dk[t],∀k, t, (15h)

where (15b) and (15c) ensure that each IoTD is assigned to
one ACP at a time, (15d) restricts the offloading ratio to a
valid range, (15e) limits the IoTD’s transmit power not to
exceed the maximum transmit power, (15f) ensures that the
allocated computing resources for all associated IoTDs do
not exceed the ACP’s available computing resources, (15g)
guarantees that the tasks are executed completely, and (15h)
limits the task’s execution delay not to exceed the delay limit,
ensuring the system’s QoS. However, the problem (P1) is
a mixed-integer programming problem, which is non-convex
and NP-hard due to the discrete integer variable (i.e., IoTD
association) and continuous variables (i.e., offloading ratio,
transmission power, and computation resource allocation).
In addition, system states are temporally correlated among
adjacent time slots, and behaviors of ACPs and IoTDs do
not change arbitrarily. Solving the problem using conventional
optimization techniques is challenging. Hence, we turn the
problem into a MAMDP model and leverage a MADDPG
algorithm to handle complex problem dynamics and achieve
efficient policies for task offloading and resource allocation.



6

IV. MULTI-AGENT DRL FRAMEWORK FOR
MULTI-ACP-ENABLED NOMA EDGE COMPUTING

In this section, we undertake a normalization process to
eliminate the impact of the diversity of optimization variables.
Then, the MAMDP model is constructed for the normalized
problem and solved using the MADDPG-based framework.

A. Problem Normalization

To eliminate the effect of the diversity of the decision
variables, we normalize them into a continuous range suitable
for activation functions in the multi-agent DRL framework.
First, we utilize power variable p′k[t], and resource variable
f ′
k,n[t] ∈ [0, 1] as the normalized variables of pk[t], and fk,n[t],

respectively. Then, the values of pk[t] and fk,n[t] are computed
by

pk[t] = p′k[t]pmax,

fk,n[t] = f ′
k,n[t]Fn.

(16)

Furthermore, we relax the binary association variables ak,n to
the continuous variables a′k,n with the range [0, 1]. Then, the
binary association variable ak,n is represented by

ak,n =

1, if n = argmax
n
{a′k,n,∀n},

0, otherwise,
(17)

where the argmax function returns the maximum index in
the considered list. By using the relaxation variables a′k,n and
the argmax function, the constraints (15b) and (15c) in the
problem (P1) are naturally satisfied. Besides, the ACPs’ com-
puting resources are assumed to be fully utilized to optimize
system performance regarding cost function minimization.
Consequently, the constraints (15e), (15f), (15g) in the problem
(P1) are rewritten with normalized variables as

p′k[t], f
′
k,n[t] ∈ [0, 1], (18)∑

k∈K

ak,n[t]f
′
k,n[t] =

{
1, if

∑
k∈K ak,n[t] ≥ 1,

0, otherwise,
(19)

∑
n∈N

⌈ak,n[t]p′k[t]f ′
k,n[t]⌉ = ⌈ok[t]⌉. (20)

After normalizing the variables, the original problem (P1)
can be reformulated as

(P2): min
{a′

k,n[t],ok[t],p
′
k[t],f

′
k,n[t],∀k,n,t}

∑
k∈K

Ck[t],

s.t. a′k,n[t], ok[t] ∈ [0, 1], (14), (18), (19), (20),∀k, n, t.
(21)

B. Multi-Agent Markov Decision Process Transformation

In this part, the problem (P2) is transformed into a MAMDP
model, where ACPs act as agents that sense their environment
and jointly optimize task offloading and resource allocation.
The set of ACP agents is denoted by n ∈ N = {1, . . . , N},
where n = N indicates the HAP agent; otherwise, the
UAV agent. We define a tuple (S,O,A,R) to describe
the interaction process within MAMDP. Here, S denotes the
global state space, On ∈ O = {O1, . . . ,ON} represents the
set of observations, An ∈ A = {A1, . . . ,AN} indicates the

set of actions, and Rn ∈ R = {R1, . . . ,RN} represents the
set of rewards. In a given state s[t] ∈ S, each agent n receives
a local observation on[t] ∈ On, takes an action an[t] ∈ An,
and obtains an individual reward rn[t] ∈ Rn. Furthermore,
we propose an action pretreatment function that ensures the
action is feasible before interacting with the environment to
handle constraints in the problem (P2).

1) State: The current system state that includes the ACP-
IoTD channel information and computational tasks is denoted
as the state s[t] ∈ S. Formally, the state s[t] during time slot
t can be expressed by

s[t] = {g1,n[t], . . . , gKn,n[t], τ1[t], . . . , τK [t],∀n ∈N }.
(22)

2) Observation: The observation of each ACP agent n is
a partial view of the state available to each agent, including
its channel information with the associated IoTDs and corre-
sponding tasks. Hence, the observation on[t] ∈ On of ACP
agent n during time slot t is described as

on[t] = {g1,n[t], . . . , gKn,n[t], τ1[t], . . . , τKn [t]}. (23)

3) Action: The action is the decision made by each agent
based on its observation. Accordingly, the ACP agents make
decisions on the device association, the ratio of task offloading,
the transmit power, and the computing resource allocation.
According to the problem (P2), the action an[t] ∈ An of ACP
agent n at time slot t is defined as

an[t] = {a′k,n[t], ok[t], p′k[t], f ′
k,n[t],∀k ∈ Kn}. (24)

4) Action Pretreatment: An action pretreatment function
ensures that the agent’s actions adhere to the environmental
constraints. This enables the agent to learn policies within the
specified limits, preventing penalties or undesirable outcomes.
Initially, a sigmoid function, defined as sigmoid(x) = 1

1+e−x ,
is applied as the activation function for the actor network’s
output. This scales the action values within the [0, 1] range.
To address the remaining constraints in the problem (P2), a
multi-stage mapping function (Algorithm 1), denoted asM(·),
is introduced. It operates as follows.

• Stage 1: If the offloading ratio variable for the IoTD k
is 0, indicating no intention to offload, the corresponding
mapping IoTD association variable is also set to 0. This
signifies that no ACP is designated for that particular
IoTD.

• Stage 2: The binary IoTD association variables ak,n
in (17) are recalculated based on the updated mapping
IoTD association variables obtained from Stage 1.

• Stage 3: When no ACP is available to execute the task’s
offloaded portion ok, the offloading ratio variable is set to
0. This ensures that no offloaded task is left unassigned,
satisfying constraint (20).

• Stage 4: Computing resources are allocated exclusively
to IoTDs intended to offload to a specific ACP n, as
determined by the mapping IoTD association variables.
The vector of computing resource allocation variables
for ACP n, after filtering out non-associated IoTDs, is
denoted as {ffilter

k,n ,∀k ∈ Kn}.



7

Algorithm 1: Multi-stage mapping function M(·)
1: Input: Action an
2: Stage 1: Map association variables amap

k,n observing
offloading ratio variables ok,∀n, k ∈ Kn

amap
k,n =

{
0, if ok = 0,

a′k,n, otherwise.

3: Stage 2: Re-calculate ak,n,∀n, k ∈ Kn

ak,n =

1, if n = argmax
n
{amap

k,n,∀n} and amap
k,n > 0,

0, otherwise.

4: Stage 3: Map offloading ratio variables omap
k observing

remaining variables ak,n, p
′
k, f

′
k,n,∀n, k ∈ Kn

omap
k =

{
0, if

∑
n∈N ak,np

′
kf

′
k,n = 0,

ok, otherwise.

5: Stage 4: Filter out non-associated IoTDs for the ACPs

ffilter
k,n = ak,nf

′
k,n,∀n, k ∈ Kn

6: Stage 5: Map computing resource allocation variables
fmap
k,n

fmap
k,n = softmax(ffilter

k,n ) =
ef

filter
k,n∑Kn

j=1 e
ffilter
j,n

,∀n, k ∈ Kn

7: return amap
k,n, o

map
k , p′k, f

map
k,n

• Stage 5: We apply the softmax function to normalize the
vector of filtered computing resource allocation variables
{ffilter

k,n ,∀k ∈ Kn} into a probability distribution, repre-
sented by {fmap

k,n ,∀k ∈ Kn}. This normalization ensures
that the available computing resources of ACP n are fully
utilized, as stated in constraint (19).

With the implementation of the action pretreatment func-
tion, only the QoS constraint (14) remains unaddressed. This
constraint, along with the delay limit value, aids in determin-
ing whether a task is successfully executed, contributing to
the calculation of the task success rate, a key performance
evaluation metric.

5) Reward: The reward evaluates the effect of an agent’s
action on the current state. In this paper, it is defined as the
negative of the computing overhead of tasks with a penalty
factor. The reward of each ACP agent n is defined by

rn[t] =
∑

k∈Kn

−(Ck[t] + λk[t]∆), (25)

where ∆ is the value of the penalty and λk[t] denotes the
binary penalty variable, which is expressed by

λk[t] =

{
1, if Tk[t] > dk[t],

0, otherwise.
(26)

Each ACP agent n aims to maximize its long-term expected
reward as

Rn = max
an[t]

E

[
T∑

t=1

γt−1rn[t]

]
, (27)

where γ ∈ [0, 1] is a discount factor that determines how much
importance should be given to future rewards and E[·] returns
the expected value.

C. Multi-Agent DRL Design for JTORA Optimization

MADDPG [24] is a potent algorithm for addressing contin-
uous optimization challenges in multi-agent systems within
the realm of multi-agent DRL. MADDPG expands on the
DDPG algorithm [23] by employing a centralized training
and decentralized execution framework. Each agent’s policy
is represented by a DNN, which is trained using the DDPG
algorithm. During training, agents leverage information from
other agents’ observations and actions to refine their policies,
fostering cooperation. During execution, each agent relies
solely on its observations to determine its actions.

We propose a MADDPG-based framework to solve the
described MAMDP. For simplicity, we have omitted the time
slot index in the following. In the centralized training phase,
we consider a set of agents denoted by N . Each agent n has
its own set of parameters denoted by θn = {θµn, θQn , θµ

′

n , θQ
′

n },
where θµn and θQn are the parameters of its actor network µn

and critic network Qn, respectively. Additionally, θµ
′

n and θQ
′

n

are the parameters of the target actor network µ′
n and target

critic network Q′
n, respectively. The actor network generates

actions based on the agent’s local observation, while the critic
network evaluates the quality of the chosen action. Meanwhile,
the target networks enhance the stability of the training process
by periodically updating them with the parameters from the
main networks [23]. Each agent n aims to maximize its
long-term expected reward through an objective function,
J (θµn) = E

[∑T
t=1 γ

t−1rn[t]
]
, and can choose an action based

on its local observation, an = µn(on | θµn). The agent n can
calculate the gradient of the deterministic policy µn by

∇θµ
n
J = Es,a∼D[∇θµ

n
µn(on | θµn)

∇anQn

(
s,a | θQn

)
|an=µn(on|θµ

n)],
(28)

where D denotes the experience replay buffer recording
all agents’ experiences, which contains a series of tuples
(s,a, r, s′). Here, s, a = {an,∀n}, r = {rn,∀n}, and s′

represent the states, actions, rewards, and next states for all
agents, respectively. Qn

(
s,a | θQn

)
|an=µn(on|θµ

n) is a central-
ized critic function, also known as an action-value function.
In the training procedure, the critic network Qn is updated by
minimizing a loss function parameterized by θQn as

L
(
θQn
)
= Es,a,r,s′

[(
Qn

(
s,a | θQn

)
− Yn

)2]
,

Yn = rn + γQ′
n

(
s′,a′ | θQ

′

n

)∣∣∣
a′
n=µ′

n

(
o′
n|θ

µ′
n

) , (29)

where Yn is the target state-action value estimated by the target
networks, a′ = {a′n,∀n}, and a′n denotes the action of the
agent n given its next observation o′

n in the next state s′. Then,



8

Environment

𝒐𝑁[𝑡] 𝒂𝑁[𝑡]

Actor N

Critic N

Action 

pretreatment

Agent N

Replay 

Buffer

S
to

re
 

(𝐬,𝐚
,𝐫,𝐬

′)

𝒐1[𝑡] 𝒂1[𝑡]

Actor 1

Critic 1

Action 

pretreatment

Agent 1

𝒐𝑛[𝑡] 𝒂𝑛[𝑡]

Actor n

Critic n

Action 

pretreatment

Agent n

. . . . . .

Sample 

(𝐬𝐦, 𝐚𝐦, 𝐫𝐦, 𝐬′𝐦)

EnvironmentSample

Action pretreatment

𝑠𝑖𝑔𝑚𝑜𝑖𝑑 ∙ → ℳ(∙)

Actor network

Critic network

Policy gradient

S
a

m
p

le

𝐨𝑛[𝑡]

𝒂𝑛[𝑡]

Target actor 

network

Target critic 

network

Critic loss function

Update 𝜽𝒏
𝝁

𝐨𝑛
𝑚

𝐬𝑚, 𝐚𝑚

𝜇𝑛(𝐨𝑛
𝑚)

𝑄𝑛(𝐬
𝑚, 𝐚𝑚)

Update 𝜽𝒏
𝑸

Update 𝜽𝒏
𝑸′

Update 𝜽𝒏
𝝁′

𝐬′𝑚

𝐫𝑚

𝐨𝑛
′𝑚

𝜇𝑛
′ (𝐨𝑛

′𝑚)

𝑄𝑛
′ (𝐬′𝑚, 𝜇𝑛

′ )

E
x

ec
u

ti
o

n
T

ra
in

in
g

Fig. 2. MADDPG-based optimization framework for multi-ACP-enabled NOMA edge network.

the parameters of the n-th actor network can be updated based
on the critic network using the policy gradient given by

∇θµ
n
J ≈ 1

M

M∑
m

[∇θµ
n
µn(o

m
n | θµn)

∇an
Qn(s,a | θQn )|an=µn(om

n |θµ
n)],

(30)

where M is the size of the mini-batch randomly sampled from
the relay buffer D. Finally, the parameter update process for
the target networks is performed by each agent n to enhance
learning stability as

θQ
′

n ← ςθQn + (1− ς)θQ
′

n ,

θµ
′

n ← ςθµn + (1− ς)θµ
′

n ,
(31)

where ς ≪ 1 is the soft update coefficient.
The proposed MADDPG framework is illustrated in Fig. 2,

which is the centralized training and decentralized execution
as considered in many previous works [18]–[20], [24]. In the
centralized training stage, besides local observation, each agent
is trained using extra information, including other agents’
observations and actions. In the decentralized execution stage,
each agent n decides its action an according to the local
observation on and applies the proposed action pretreatment
function to satisfy the action constraints. We detail the pro-
posed framework in Algorithm 2. Initialization of networks,
hyperparameters, and the network environment is performed
(lines 1–4). Each episode involves observing the initial state
and observations (line 6). The workflow comprises data col-
lection and training. At time slot t, each agent determines
an action based on its observation using its actor network
(line 10). To enhance agent performance and encourage action

exploration, we add noise to the actor policy, resulting in
the action an = µn(on) + OU , where OU is augmented
Ornstein-Uhlenbeck noise. A pretreatment function handles
constraints (line 11). Each agent interacts independently with
the environment, obtaining reward rn and storing (s,a, r, s′) in
replay buffer D (lines 13–14). Training is enforced through in-
formation sharing. In each training step, a batch of experience
samples (sm,am, rm, s′m) is randomly drawn from D (line
18). Agent n obtains its sample observation om

n from sample
state sm (line 19). Each agent updates its critic and actor
networks accordingly (lines 20–21). Finally, the soft update
rule updates the target networks (line 23). The algorithm
repeats until convergence or the desired number of episodes is
reached, yielding optimal actor network parameters {θµn,∀n}
(line 26). After training, each UAV downloads the trained
action networks from the HAP and performs actions in a
decentralized manner.

D. Computational Complexity

We examine the computational complexity of the proposed
MADDPG-based framework. The DNNs in the framework
have an input layer, two hidden layers, and an output layer,
which are fully connected. The computational complexity is
mainly determined by the number of matrix multiplications in
DNNs [33]. Hence, in each training step, the computational
complexity of each agent is computed as

O

(
La−1∑
la=0

Xa
laX

a
la+1 +

Lc−1∑
lc=0

Xc
lcX

c
lc+1

)
, (32)



9

Algorithm 2: MADDPG-based framework for joint
task offloading and resource allocation.

1: Initialize actor and critic networks with random weights
2: Initialize target networks with the same weights as

corresponding networks
3: Initialize hyperparameters: number of episodes Z,

number of time steps T , learning rates (lra, lrc), relay
buffer D, mini-batch size M , discount factor γ

4: Initialize network environment
5: for z = 1, . . . , Z do
6: Reset environment, observe initial state s[1] and

observations {on[1],∀n}
7: for t = 1, . . . , T do
8: # Collecting observed data
9: for n = 1, . . . , N do

10: Select action an = µn(on) +OU
11: Perform action pretreatment M(an)
12: end for
13: Execute joint actions a, obtain rewards r, and

observe new state s′

14: Add experience tuple (s,a, r, s′) to D
15: Set s← s′

16: # Training process
17: for n = 1, . . . , N do
18: Randomly sample a mini-batch of M samples

(sm,am, rm, s′m) from D
19: Obtain observations {om

n ,∀n} from state sm

20: Update critic network by (29)
21: Update actor network by (30)
22: end for
23: Update target networks for each agent by (31)
24: end for
25: end for
26: return {θµn,∀n}

where La and Lc are the number of layers in the actor
and critic networks, respectively, and Xa

la and Xc
lc are the

number of nodes in the la-th actor layer and the lc-th critic
layer, respectively. The overall computational complexity of
the MADDPG-based training framework is given by

O

(
NTZM

(
La−1∑
la=0

Xa
laX

a
la+1 +

Lc−1∑
lc=0

Xc
lcX

c
lc+1

))
, (33)

where N is the number of agents, T is the number of training
steps, Z is the number of training episodes, and M is the mini-
batch size. The training stage can be done in the HAP, which
has a powerful computation capability [18], [21]. During
the decentralized execution phase, each ACP agent simply
executes its policy based on the trained actor network with the
computational complexity given as O

(∑La−1
la=0 Xa

laX
a
la+1

)
,

which is favorable and suitable for real-time inference.

V. PERFORMANCE EVALUATION

In this section, we evaluate the convergence and perfor-
mance of the proposed MADDPG-based framework in a
simulated multi-ACP-enabled NOMA edge network.

TABLE II
SIMULATION PARAMETERS.

Parameter Value
Environment parameters

Time slot duration 0.5 s
Noise power, σ2

n -170 dBm/Hz
Reference channel gain, g0 1.42e−4

Path loss exponent, α 2
HAP bandwidth, WN 200 MHz
HAP computing resource, FN 100 GHz
UAV bandwidth, Wn 20 MHz
UAV computing resource, Fn 20 GHz
Number of IoTDs, K 20
IoTDs computing resource, Fk 1 GHz
IoTDs energy coefficient, κk 1e−28

IoTDs maximum transmit power, pmax 20 dBm
Task size, sk [0.8, 1.2] Mbits
Required computation per task, wk [700, 900] CPU cycles/bit
Task delay constraint, dk [0.4, 0.5] s
Weight coefficient, wk 0.5

Algorithm parameters
Penalty value, ∆ 10000
Actor hidden layer 1 512 nodes
Actor hidden layer 2 128 nodes
Critic hidden layer 1 1024 nodes
Critic hidden layer 2 256 nodes
Replay buffer size 5e4

Soft update coefficient, ς 0.01
Number of episodes for training 4000
Number of episodes for testing 100
Number of time steps per episode 200

A. Simulation Configurations

We use Python 3.10 and Pytorch 1.13.1 to simulate and
train agents in an IoT edge network environment with a
1000m × 1000m area. The HAP is positioned at (500, 500)
(m) at a 20 km altitude, covering a 500 m radius. Twenty
IoTDs (K = 20) are randomly distributed. The UAVs fly along
predetermined paths at a velocity of 10 m/s and an altitude of
100 m with a coverage radius of 100 m. We evaluate two
network environments: 3ACPs-env with one HAP and two
UAVs (N = 3), and 5ACPs-env with one HAP and four
UAVs (N = 5). Unless otherwise specified, the simulation
parameters are given in Table II as in [13]–[15]. Given the lack
of a standard, directly comparable algorithm for our specific
optimization problem, we evaluate the performance of the
proposed framework against several customized benchmarks
below.

• Proposed MADDPG-based Task Offloading and Resource
Allocation (MADDPG): The proposed MADDPG frame-
work jointly optimizes IoTD association, offloading ratio,
transmit power, and computing resource allocation in a
multi-agent setting, where all ACPs act as cooperative
agents.

• DDPG-based Task Offloading and Resource Allocation
(DDPG) [2], [30]: Via the DDPG algorithm, the HAP
as a single agent observes the network environment and
specifies the IoTD association, offloading ratio, transmit
power, and computing resource allocation decisions for
all IoTDs.

• Greedy-based Task Offloading and Resource Allocation
(GREEDY) [29]: This scheme involves discretizing ac-



10

tions into discrete spaces, each comprising six value lev-
els. A local search algorithm based on a greedy strategy
determines the action at each step.

• Full Task Offloading (FULL) [15], [27]: All IoTD tasks
are fully offloaded to the associated HAP or UAV.

• Random Task Offloading (RANDOM) [15], [27]: The
IoTD tasks are processed with random decision variables.

The total reward obtained during each training episode is the
evaluation metric for convergence analysis. For performance
analysis, the following metrics are employed.

• Episode cost: It quantifies the average cost (or computing
overhead) incurred per episode during the testing phase,
which comprises 100 episodes. A lower episode cost
indicates a more efficient and cost-effective approach.

• Energy consumption (Joule): It measures the overall en-
ergy consumed by the IoTDs during task execution.

• Tasks success rate (%): It represents the proportion of
completed tasks within the delay limit. It is calculated
as the number of successful tasks divided by the total
number of tasks.

B. Convergence Analysis

To optimize the MADDPG-based framework, we perform
Monte Carlo simulations by testing and analyzing the impact
of four hyperparameters, i.e., learning rate, batch size, and
discount factor, on the convergence of the proposed framework
in 3ACPs-env. The simulation results are displayed in Fig. 3.
The same hyperparameters are used for all agents.

Firstly, we assess the convergence of the
proposed training algorithm by testing three pre-
determined values for the learning rates, (lra, lrc) =
{(2e−3, 5e−3), (1e−3, 5e−3), (1e−3, 3e−3)}, where lra refers
to the learning rate of the actor network and lrc refers to
the learning rate of the critic network. The batch size used
for training is 32, and the discount factor is 0.9. As shown
in Fig. 3a, the learning rate set of (1e−3, 5e−3) achieves
the best performance. The algorithm starts to converge after
around 500 episodes with this learning rate set. Meantime,
the learning rate set of (1e−3, 3e−3) starts to converge after
approximately 1500 episodes. On the other hand, the set
of (2e−3, 5e−3) fails to reach convergence. As a result, the
set of learning rate (1e−3, 5e−3) is set as defaults in the
following evaluations.

Secondly, we vary the batch size M = {16, 32, 64} to
investigate its impact on the training process. The discount
factor is set to 0.9. As depicted in Fig. 3b, the proposed
algorithm performs best when M = 32, while a smaller value
of M (i.e., M = 16) results in slower convergence, and a
larger value of M (i.e., M = 64) results in instability during
training due to the noise introduced by the larger batch size.
Hence, the batch size M = 32 is fixed during the following
evaluations.

Thirdly, we analyze how changing the discount factor γ
affects the convergence of the proposed MADDPG-based
algorithm. The discount factor is a crucial hyperparameter that
significantly impacts how the agent values future rewards. If
the discount factor is set to 0, then only the immediate reward

is considered, while a value of 1 would mean that all future
rewards are considered. If the agent focuses on short-term
rewards within a dynamic environment, the reward may fail to
accurately capture the effectiveness of action over an extended
period, especially when the environment undergoes changes;
otherwise, convergence becomes unattainable when using a
large discount factor, as it deviates significantly from the
fundamental nature of the environment. As shown in Fig. 3c,
a small discount factor (γ = 0.8) cannot correctly affect the
nature of the dynamic environment, which makes the agent
converge to a bad sub-optimal point. Also, a significant big
discount factor (γ = 0.99) fails to capture the essence of the
environment because of the significant focus on future rewards,
which causes a big drop in the chaotic environment when the
environment state in the training sample is large enough. The
results indicate that a discount factor of γ = 0.9 performs the
best in our system. Then, this discount factor value is used
throughout the remaining simulations.

Finally, we assess the improvement of the MADDPG over
the single-agent DDPG by modeling performance in two
scenarios: 3ACPs-env and 5ACPs-env. For a fair comparison,
MADDPG and single-agent DDPG use the same set of optimal
hyperparameters evaluated above. Fig. 4a depicts the training
performances of 3-agent DDPG and 1-agent DDPG in the
3ACPs-env, whereas Fig. 4b depicts the training performances
of 5-agent DDPG and 1-agent DDPG in the 5ACPs-env. The
findings in Fig. 4 indicate that MADDPG performs better
than single-agent DDPG in both cases. The 3-agent DDPG
performs approximately 35.33% better than the 1-agent DDPG
in the first scenario. The 5-agent DDPG performs approx-
imately 59% better than the 1-agent DDPG in the second
scenario. MADDPG involves a centralized training phase
followed by decentralized execution of the trained policies
in the individual agents. MADDPG differs from single-agent
DDPG by allowing agents to interact and coordinate their
actions, enabling better collaboration and collective decision-
making for improved system performance [15], [20], [21].

C. Performance Analysis

In this part, we assess the proposed MADDPG framework
performance compared with other benchmarks in two scenar-
ios, i.e., 3ACPs-env and 5ACPs-env.

We evaluate the system performance in the 3ACPs-env sce-
nario by changing the task size from 0.8 to 1.2 Mbits, as shown
in Fig. 5. Increasing the task size leads to a rise in system cost
due to the increased resource demands (Fig. 5a). In particular,
the cost in our proposed approach grows by about 66.2%
when increasing the size by 0.1 Mbits. In addition, a larger
task size makes the environment more challenging, reducing
the task success rate (Fig. 5b). Our MADDPG framework
had a high task success rate of approximately 95% in the
case of 0.8 Mbits and about 70% in the case of 1.2 Mbits.
Similarly, the system energy consumption increases with the
rise in task size as the number of bits to execute and offload
increases (Fig. 5c). Our proposed framework demonstrates
superior performance compared to other approaches. Notably,
the episode cost is reduced by approximately 30% compared



11

0 500 1000 1500 2000 2500 3000 3500 4000
Training Episode

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

Tr
ai

ni
ng

 R
ew

ar
d

1e7

lra = 2e 3, lrc = 5e 3

lra = 1e 3, lrc = 5e 3

lra = 1e 3, lrc = 3e 3

(a) Learning rate.

0 500 1000 1500 2000 2500 3000 3500 4000
Training Episode

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

Tr
ai

ni
ng

 R
ew

ar
d

1e7

M = 16
M = 32
M = 64

(b) Batch size.

0 500 1000 1500 2000 2500 3000 3500 4000
Training Episode

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

Tr
ai

ni
ng

 R
ew

ar
d

1e7

= 0.8
= 0.9
= 0.99

(c) Discount factor.

Fig. 3. Model convergence concerning training hyperparameters.

0 500 1000 1500 2000 2500 3000 3500 4000
Training Episode

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

Tr
ai

ni
ng

 R
ew

ar
d

1e7

MADDPG
DDPG

(a) Learning rate.

0 500 1000 1500 2000 2500 3000 3500 4000
Training Episode

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

Tr
ai

ni
ng

 R
ew

ar
d

1e7

MADDPG
DDPG

(b) Batch size.

Fig. 4. Convergence comparison between MADDPG and single-agent DDPG.

to DDPG and by factors of 2.4, 2.99, and 3.44 compared
to FULL, RANDOM, and GREEDY schemes, respectively.
Moreover, in a highly complex problem, using GREEDY with
discretized variables resulted in poor performance. Discrete
spaces can contain many sub-optimal points, and the greedy-
based searching approach can get stuck at a sub-optimal point,
leading to possibly low performance.

We also assess the system performance in the 5ACPs-env
scenario with the varying task size, as shown in Fig. 6. Similar
to the previous scenario, increasing the task size decreases the
system performance (i.e., increases the episode cost, reduces
the task success rate, and increases the energy consumption).
Our proposed MADDPG framework outperforms the remain-
ing benchmarks in this scenario with the highest task success
rate and lowest episode cost. The 5ACPs-env scenario also
performs better than the 3ACPs-env scenario, with an overall
reduction in episode cost of about 1.28, 1.48, and 1.59 times
in the MADDPG, DDPG, and FULL schemes, respectively,
and approximate reductions of 11% and 9% in the RANDOM
and GREEDY schemes, respectively. This is because more
ACPs provide more computing and communication resources,
increasing the system’s capacity. In particular, the task success

rate in this scenario is about 79.4% in the strictest case (i.e.,
task size 1.2 Mbits), while it is about 70% in the 3ACPs-
env scenario. Therefore, environmental requirements should
be carefully considered when deploying a multi-ACP-enabled
edge system to provide suitable resources and ensure system
performance.

VI. CONCLUSION

This paper investigated a multi-ACP-enabled NOMA edge
system with one HAP and several UAVs that assist in the
computational tasks offloaded by IoTDs. Our goal was to
minimize task processing latency and energy consumption of
IoTDs by formulating a JTORA problem. This formulation
considered device association, offloading ratio, transmit power,
and computational resource allocation. The problem is trans-
formed into the MAMDP, which is then addressed using the
proposed MADDPG-based framework with the action pretreat-
ment function. Our numerical results show that, compared to
single-agent DDPG and other benchmark schemes, the pro-
posed MADDPG-based approach can determine the efficient
offloading and resource allocation policies while significantly
reducing task computation overhead. In future works, we will



12

0.8 0.9 1.0 1.1 1.2
Task size (Mbits)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ep
iso

de
 C

os
t

1e7
MADDPG
DDPG

GREEDY
FULL

RANDOM

(a) Episode cost.

0.8 0.9 1.0 1.1 1.2
Task size (Mbits)

10
20
30
40
50
60
70
80
90

Ta
sk

 su
cc

es
s r

at
e 

(%
)

MADDPG
DDPG

GREEDY
FULL

RANDOM

(b) Task success rate.

0.8 0.9 1.0 1.1 1.2
Task size (Mbits)

0

20

40

60

80

100

En
er

gy
 c

on
su

m
pt

io
n 

(Jo
ul

e)

MADDPG
DDPG

GREEDY
FULL

RANDOM

(c) Energy consumption.

Fig. 5. System performance with respect to task sizes in 3ACPs-env.

0.8 0.9 1.0 1.1 1.2
Task size (Mbits)

0.5

1.0

1.5

2.0

2.5

3.0

Ep
iso

de
 C

os
t

1e7
MADDPG
DDPG

GREEDY
FULL

RANDOM

(a) Episode cost.

0.8 0.9 1.0 1.1 1.2
Task size (Mbits)

20

30

40

50

60

70

80

90

Ta
sk

 su
cc

es
s r

at
e 

(%
)

MADDPG
DDPG

GREEDY
FULL

RANDOM

(b) Task success rate.

0.8 0.9 1.0 1.1 1.2
Task size (Mbits)

0

10

20

30

40

50

60

En
er

gy
 c

on
su

m
pt

io
n 

(Jo
ul

e)

MADDPG
DDPG

GREEDY
FULL

RANDOM

(c) Energy consumption.

Fig. 6. System performance with respect to task sizes in 5ACPs-env.

delve into alternative prominent multi-agent DRL optimization
algorithms and other emerging communication technologies.

REFERENCES

[1] W. Chen, X. Lin, J. Lee, A. Toskala, S. Sun, C. F. Chiasserini, and L. Liu,
“5G-Advanced toward 6G: Past, present, and future,” IEEE Journal on
Selected Areas in Communications, vol. 41, no. 6, pp. 1592–1619, jun
2023.

[2] V. D. Tuong, T. P. Truong, T.-V. Nguyen, W. Noh, and S. Cho, “Par-
tial computation offloading in NOMA-assisted mobile-edge computing
systems using deep reinforcement learning,” IEEE Internet of Things
Journal, vol. 8, no. 17, pp. 13 196–13 208, 2021.

[3] C. Feng, P. Han, X. Zhang, B. Yang, Y. Liu, and L. Guo, “Computation
offloading in mobile edge computing networks: A survey,” Journal of
Network and Computer Applications, vol. 202, p. 103366, 2022.

[4] N.-N. Dao, Q.-V. Pham, N. H. Tu, T. T. Thanh, V. N. Q. Bao, D. S.
Lakew, and S. Cho, “Survey on aerial radio access networks: Toward a
comprehensive 6G access infrastructure,” IEEE Communications Surveys
& Tutorials, vol. 23, no. 2, pp. 1193–1225, 2021.

[5] M. M. Azari, S. Solanki, S. Chatzinotas, O. Kodheli, H. Sallouha,
A. Colpaert, J. F. M. Montoya, S. Pollin, A. Haqiqatnejad, A. Mostaani,
E. Lagunas, and B. Ottersten, “Evolution of non-terrestrial networks
from 5G to 6G: A survey,” IEEE Communications Surveys & Tutorials,
vol. 24, no. 4, pp. 2633–2672, 2022.

[6] X. Lin, S. Rommer, S. Euler, E. A. Yavuz, and R. S. Karlsson, “5G
from space: An overview of 3GPP non-terrestrial networks,” IEEE
Communications Standards Magazine, vol. 5, no. 4, pp. 147–153, 2021.

[7] X. Lin, “An overview of 5G advanced evolution in 3GPP release 18,”
IEEE Communications Standards Magazine, vol. 6, no. 3, pp. 77–83,
2022.

[8] Q. Zhang, Y. Luo, H. Jiang, and K. Zhang, “Aerial edge computing: A
survey,” IEEE Internet of Things Journal, vol. 10, no. 16, pp. 14 357–
14 374, 2023.

[9] Q.-V. Pham, R. Ruby, F. Fang, D. C. Nguyen, Z. Yang, M. Le, Z. Ding,
and W.-J. Hwang, “Aerial computing: A new computing paradigm,
applications, and challenges,” IEEE Internet of Things Journal, vol. 9,
no. 11, pp. 8339–8363, 2022.

[10] S. Jung, C. Park, M. Levorato, J.-H. Kim, and J. Kim, “Two-stage self-
adaptive task outsourcing decision making for edge-assisted multi-uav
networks,” IEEE Transactions on Vehicular Technology, vol. 72, no. 11,
pp. 14 889–14 905, 2023.

[11] M. Dai, Y. Wu, L. Qian, Z. Su, B. Lin, and N. Chen, “UAV-assisted
multi-access computation offloading via hybrid NOMA and FDMA in
marine networks,” IEEE Transactions on Network Science and Engi-
neering, vol. 10, no. 1, pp. 113–127, Jan. 2023.

[12] P. Qin, X. Wu, Z. Cai, X. Zhao, Y. Fu, M. Wang, and S. Geng, “Joint
trajectory plan and resource allocation for uav-enabled c-noma in air-
ground integrated 6g heterogeneous network,” IEEE Transactions on
Network Science and Engineering, vol. 10, no. 6, pp. 3421–3434, 2023.

[13] Z. Jia, Q. Wu, C. Dong, C. Yuen, and Z. Han, “Hierarchical aerial
computing for internet of things via cooperation of HAPs and UAVs,”
IEEE Internet of Things Journal, vol. 10, no. 7, pp. 5676–5688, 2023.

[14] H. Kang, X. Chang, J. Mišić, V. B. Mišić, J. Fan, and Y. Liu,
“Cooperative UAV resource allocation and task offloading in hierarchical
aerial computing systems: A MAPPO-based approach,” IEEE Internet
of Things Journal, vol. 10, no. 12, pp. 10 497–10 509, 2023.

[15] D. S. Lakew, A.-T. Tran, N.-N. Dao, and S. Cho, “Intelligent offloading
and resource allocation in heterogeneous aerial access IoT networks,”
IEEE Internet of Things Journal, vol. 10, no. 7, pp. 5704–5718, 2023.

[16] Y. Yuan, Z. Yuan, and L. Tian, “5G non-orthogonal multiple access
study in 3GPP,” IEEE Communications Magazine, vol. 58, no. 7, pp.
90–96, 2020.



13

[17] Y. Liu, S. Zhang, X. Mu, Z. Ding, R. Schober, N. Al-Dhahir, E. Hossain,
and X. Shen, “Evolution of NOMA toward next generation multiple
access (NGMA) for 6G,” IEEE Journal on Selected Areas in Commu-
nications, vol. 40, no. 4, pp. 1037–1071, 2022.

[18] Y. Zhang, Z. Mou, F. Gao, J. Jiang, R. Ding, and Z. Han, “UAV-enabled
secure communications by multi-agent deep reinforcement learning,”
IEEE Transactions on Vehicular Technology, vol. 69, no. 10, pp. 11 599–
11 611, 2020.

[19] H. Peng and X. Shen, “Multi-agent reinforcement learning based re-
source management in MEC- and UAV-assisted vehicular networks,”
IEEE Journal on Selected Areas in Communications, vol. 39, no. 1, pp.
131–141, 2021.

[20] N. Zhao, Z. Ye, Y. Pei, Y.-C. Liang, and D. Niyato, “Multi-agent deep
reinforcement learning for task offloading in UAV-assisted mobile edge
computing,” IEEE Transactions on Wireless Communications, vol. 21,
no. 9, pp. 6949–6960, 2022.

[21] Z. Cheng, M. Liwang, N. Chen, L. Huang, X. Du, and M. Guizani,
“Deep reinforcement learning-based joint task and energy offloading in
UAV-aided 6G intelligent edge networks,” Computer Communications,
vol. 192, pp. 234–244, 2022.

[22] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533,
2015.

[23] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” in 4th International Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings, Y. Bengio and Y. LeCun, Eds., 2016.

[24] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch, “Multi-
agent actor-critic for mixed cooperative-competitive environments,” in
Proceedings of the 31st International Conference on Neural Information
Processing Systems, ser. NIPS’17. Red Hook, NY, USA: Curran
Associates Inc., 2017, p. 6382–6393.

[25] X. Cheng, F. Lyu, W. Quan, C. Zhou, H. He, W. Shi, and X. Shen,
“Space/aerial-assisted computing offloading for IoT applications: A
learning-based approach,” IEEE Journal on Selected Areas in Commu-
nications, vol. 37, no. 5, pp. 1117–1129, 2019.

[26] Q. Ren, O. Abbasi, G. K. Kurt, H. Yanikomeroglu, and J. Chen,
“Caching and computation offloading in high altitude platform station
(HAPS) assisted intelligent transportation systems,” IEEE Transactions
on Wireless Communications, vol. 21, no. 11, pp. 9010–9024, 2022.

[27] N. Waqar, S. A. Hassan, A. Mahmood, K. Dev, D.-T. Do, and M. Gid-
lund, “Computation offloading and resource allocation in MEC-enabled
integrated aerial-terrestrial vehicular networks: A reinforcement learning
approach,” IEEE Transactions on Intelligent Transportation Systems,
vol. 23, no. 11, pp. 21 478–21 491, 2022.

[28] T.-H. Nguyen, T. P. Truong, N.-N. Dao, W. Na, H. Park, and L. Park,
“Deep reinforcement learning-based partial task offloading in high
altitude platform-aided vehicular networks,” in 2022 13th International
Conference on Information and Communication Technology Conver-
gence (ICTC). IEEE, 2022.

[29] T.-H. Nguyen and L. Park, “HAP-assisted RSMA-enabled vehicular
edge computing: A DRL-based optimization framework,” Mathematics,
vol. 11, no. 10, p. 2376, 2023.

[30] T. P. Truong, N.-N. Dao, and S. Cho, “HAMEC-RSMA: Enhanced aerial
computing systems with rate splitting multiple access,” IEEE Access,
vol. 10, pp. 52 398–52 409, 2022.

[31] G. K. Kurt, M. G. Khoshkholgh, S. Alfattani, A. Ibrahim, T. S. J.
Darwish, M. S. Alam, H. Yanikomeroglu, and A. Yongacoglu, “A vision
and framework for the high altitude platform station (HAPS) networks
of the future,” IEEE Communications Surveys & Tutorials, vol. 23, no. 2,
pp. 729–779, 2021.

[32] M. Min, L. Xiao, Y. Chen, P. Cheng, D. Wu, and W. Zhuang, “Learning-
based computation offloading for IoT devices with energy harvesting,”
IEEE Transactions on Vehicular Technology, vol. 68, no. 2, pp. 1930–
1941, 2019.

[33] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press:
Cambridge, MA, USA, 2016, http://www.deeplearningbook.org.

Tri-Hai Nguyen is a Research Professor at the
Department of Computer Science and Engineering,
Seoul National University of Science and Tech-
nology (SeoulTech), Seoul, Korea. He received his
Ph.D. degree in Computer Science and Engineering
from Chung-Ang University, Seoul, Korea, in 2022;
his M.Eng. degree in Information and Communi-
cation Technology from Soongsil University, Seoul,
Korea, in 2017; and his B.S. degree (honor program)
in Computer Science from the University of Infor-
mation Technology, VNU-HCM, Vietnam, in 2015.

His research interests include Intelligence of Things, aerial computing, and
beyond 5G/6G networks.

Thanh Phung Truong received his B.S. degree in
Electronics-Telecommunications Engineering from
Ho Chi Minh City University of Technology, Viet-
nam, in 2018, and M.S. degree in Computer Science
and Engineering from Chung-Ang University, Korea,
in 2022. He is pursuing his Ph.D. in Computer
Science and Engineering at Chung-Ang University,
Korea. His research interests include machine learn-
ing, mobile edge computing, and wireless commu-
nication.

Anh-Tien Tran received his B.S. degree in Electron-
ics and Telecommunications from Da Nang Univer-
sity of Science and Technology, Da Nang, Vietnam,
in 2018. He is pursuing his Ph.D. in Computer
Science and Engineering at Chung-Ang University,
Seoul, Korea. His research interests include wireless
network communication, video streaming, and ma-
chine learning.

Nhu-Ngoc Dao is an Assistant Professor at the
Department of Computer Science and Engineering,
Sejong University, Seoul, Republic of Korea. He
received his M.S. and Ph.D. degrees in Computer
Science at the School of Computer Science and
Engineering, Chung-Ang University, Seoul, Repub-
lic of Korea, in 2016 and 2019, respectively. He
received his B.S. degree in Electronics and Telecom-
munications from the Posts and Telecommunications
Institute of Technology, Hanoi, Vietnam, in 2009.
Prior to joining Sejong University, he was a visiting

researcher at the University of Newcastle, NSW, Australia, in 2019 and a
postdoc researcher at the Institute of Computer Science, University of Bern,
Switzerland, from 2019 to 2020. He is currently an Editor of the Scientific
Reports and PLOS ONE journals. His research interests include network
softwarization, mobile cloudization, intelligent systems, and the Intelligence
of Things. Dr. Dao is a Senior Member of IEEE and a Professional Member
of ACM.



14

Laihyuk Park received the B.S., M.S., and Ph.D.
degrees in computer science and engineering from
Chung-Ang University, Seoul, Korea, in 2008, 2010,
and 2017, respectively. From 2011 to 2016, he was
a Research Engineer with Innowireless, Bundang,
Korea. From 2018 to 2019, he held the position
of Assistant Professor at Chung-Ang University.
He is an Assistant Professor at the Department of
Computer Science and Engineering, Seoul National
University of Science and Technology (SeoulTech),
Seoul, Korea. His research interests include demand

response, smart grids, and the Internet of Things.

Sungrae Cho received the B.S. and M.S. degrees
in Electronics Engineering from Korea University,
Seoul, Korea, in 1992 and 1994, respectively, and
the Ph.D. degree in Electrical and Computer Engi-
neering from the Georgia Institute of Technology,
Atlanta, GA, USA, in 2002. He is a Professor at
the School of Computer Science and Engineering,
Chung-Ang University (CAU), Seoul, Korea. Prior
to joining CAU, he was an Assistant Professor
with the Department of Computer Sciences, Georgia
Southern University, Statesboro, GA, USA, from

2003 to 2006, and a Senior Member of Technical Staff with the Samsung
Advanced Institute of Technology (SAIT), Kiheung, Korea, in 2003. From
1994 to 1996, he was a Research Staff Member with the Electronics and
Telecommunications Research Institute (ETRI), Daejeon, Korea. From 2012 to
2013, he held a Visiting Professorship with the National Institute of Standards
and Technology (NIST), Gaithersburg, MD, USA. His research interests
include wireless networking, ubiquitous computing, and ICT convergence. He
has been a Subject Editor of Electronics Letter (IET) since 2018 and was an
Area Editor of Ad Hoc Networks (Elsevier) from 2012 to 2017. He has served
numerous international conferences as an Organizing Committee Chair, such
as IEEE SECON, ICOIN, ICTC, ICUFN, TridentCom, and IEEE MASS, and
as a Program Committee Member, such as IEEE ICC, GLOBECOM, VTC,
MobiApps, SENSORNETS, and WINSYS.


