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Communication-Efficient Federated Learning
Over-the-Air with Sparse One-Bit Quantization

Junsuk Oh , Donghyun Lee , Dongwook Won , Wonjong Noh , and Sungrae Cho

Abstract—Federated learning (FL) is a framework for realizing
distributed machine learning in an environment where training
samples are distributed to each device. Recently, FL has em-
ployed over-the-air computation enabling all devices to transmit
learning model updates simultaneously. This work proposes
a communication-efficient sparse one-bit analog aggregation
(SOBAA) method, incorporating new power control, layer-wise
scaled one-bit quantization, layer-wise sparsification, and an
error-feedback mechanism. We derive a tight upper bound of the
expected convergence rate of the proposed SOBAA as a closed-
form expression. From this expression, we explicitly identify the
relationship between the convergence rate and compression and
aggregation errors. Based on the theoretical convergence analysis,
we formulate a joint optimization problem of the compression
ratio and power control to minimize compression and aggregation
errors, leading to the fastest convergence. In each communication
round, the optimization problem is decomposed, and solved in
a computationally efficient and feasible way. From this solution,
we characterize the trade-off between learning performance and
communication cost. Through extensive experiments on well-
known MNIST and CIFAR-10 datasets, we confirm that the
proposed method provides an enhanced trade-off performance
between test accuracy and communication costs and a faster
convergence rate than the other state-of-the-art methods. In
addition, it is proven that the proposed method is more effective
for more complex datasets and learning models.

Index Terms—Analog aggregation, federated learning over-the-
air, power control, sparse one-bit quantization

I. INTRODUCTION

MACHINE learning, which has proliferated in recent
years, provides various application services through

big data. However, centralized data center learning faces
privacy challenges because a parameter server (PS) collects
data generated on each device [1]. Federated learning (FL) is
a machine learning paradigm that has emerged to address these
challenges and aims to train one global learning model using
data stored on numerous local devices based on adjustments
of the PS [2]. FL repeats a communication round in which
local gradients of trained local learning models are aggregated
until the global learning model converges. Thus, raw data are
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not collected therefore, FL offers an opportunity to leverage
the computational resources of each device while protecting
privacy, unlike centralized data center learning.

In FL, all types of learning models can be selected de-
pending on the provided application services. However, the
numerous parameters that comprise the learning model can
lead to excessive communication costs that cause bottlenecks
[3]. For example, artificial neural networks, such as ResNet-
152 [4] with 60.3M parameters and VGG-16 [5] with 138M
parameters, must be selected to provide image classification
services. Thus, gradient compression schemes have been con-
sidered in FL to reduce communication costs per device.

First, quantization is a scheme that limits each parameter
to be represented by a few finite bits in the local gradi-
ent. Examples of such schemes include eight-bit quantization
[6], quantized stochastic gradient descent (QSGD) [7], and
signSGD [8]. Second, sparsification is a scheme that removes
some parameters and retains only critical parameters in the
local gradient. Examples of such schemes include top-k [9],
sketched-SGD [10], model pruning [11], and dropout [12].
Third, a hybrid scheme combines quantization with sparsifi-
cation. Examples of such schemes include hard-threshold SGD
[13], sketchML [14], and Qsparse-local-SGD [15]. Moreover,
various gradient compression schemes include low rank [16],
communication censoring [17], and compressive sensing [18].

However, information loss due to local gradient compression
leads to errors in global gradient estimation, degrading the
convergence rate and learning performance. Thus, the gradient
compression schemes tend to incorporate an error-feedback
mechanism [19] that compensates for this information loss in
the following communication round [20], [21].

In contrast, despite the gradient compression scheme, FL
still faces bottlenecks because communication cost is also
affected by the number of devices participating in each com-
munication round. Thus, FL has recently evolved into FL
over the air (FLOA) [22], [23] by integrating it with over-
the-air computation (OAC) [24], which takes advantage of
the waveform superposition property of the multiple access
channel (MAC) to convert the air to computers that perform
computing and communication functions. In FLOA, over the
same time-frequency resources, all devices simultaneously
transmit local gradients, which are analog aggregated in the
air, and the PS receives the aggregated local gradients. Thus,
it enables FLOA to achieve higher bandwidth efficiency than
conventional FL by integrating communication and compu-
tation. However, FLOA has some representative challenges:
high communication costs caused by numerous learning model
parameters, and signal distortion caused by noise and fading.
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To address these problems, in this work, we propose an FLOA-
based new compression and transmission approach.

A. Related Work

In FLOA, high communication costs and signal distortion
are critical problems. Therefore, numerous prior studies have
focused on following types of research: gradient compression
[25]–[31] and power control [22], [23], [32]–[37].

First, some works have considered gradient compression
schemes to mitigate high communication costs. The authors
of [25] treated each iteration of distributed SGD (DSGD)
as a distributed over-the-air lossy computation problem and
remarked that the transmission of learning model parameters in
[22] and [23] results in waste of power. Thus, considering the
physical layer resource constraints in narrow-band channels,
they proposed analog DSGD (A-DSGD). This source-coding
algorithm uses an error-feedback mechanism, gradient sparsi-
fication, and random linear projection for gradient dimension
reduction. Furthermore, to extend the work of [25] consider-
ing additive white Gaussian noise (AWGN) MAC to fading
MAC, they proposed compressed A-DSGD (CA-DSGD) in
[26]. However, the unencoded analog modulation used for
over-the-air aggregation in [25] and [26] is challenging to
deploy in digital modulation-based systems. Therefore, to be
compatible with these systems, the authors of [27] proposed
one-bit broadband digital aggregation (OBDA) based on a
one-bit quantization, digital modulation, and the majority vote
of the PS. Moreover, they analyzed the convergence rate by
the effect of the wireless channel hostilities. The authors of
[28] remarked on the degradation of the convergence rate
and learning performance via one-bit quantization in [27] and
proposed error-feedback OBDA (EFOBDA). Inspired by the
works in [25], [26], and [27], the authors of [29] proposed a
one-bit compressive sensing analog aggregation (OBCSAA).
Furthermore, they provided the relationship between FL and
analog aggregation with this method via convergence analysis.
Moreover, noting that random linear projection in the work of
[25] and [26] increase the computational complexity of the
receiver, the authors of [30] proposed a time-correlated spar-
sification with hybrid aggregation (TCS-H) method, in which
the global sparse gradient (which same between devices) and
the local sparse gradient (which may differ between devices)
are aggregated through OAC and digital communication, re-
spectively. Inspired by the works in [25] and [26], the authors
of [31] proposed the over-the-air federated multi-task learning
(OA-FMTL) by designing a transmission method called model
sparsification and random compression and a reception method
called modified turbo compressive sensing.

Second, other works have proposed power control design
to mitigate signal distortion.1 Some works have considered
device scheduling strategy in power control design to exclude
some devices that cannot mitigate signal distortion depending
on the channel state within limited transmission power. For

1In the analog aggregation model of the FLOA, mitigating signal distortion
caused by noise and fading cannot be ignored in all FLOA-related works [38];
therefore, we remark that all works related to gradient compression considered
channel inversion-based power control.

example, the authors of [22] designed a broadband analog
aggregation method by deriving a trade-off between learning
and communication for power control and device scheduling.
Specifically, the authors introduced a truncated channel inver-
sion approach to exclude devices and some local gradients
according to their channel states. In another study [23], the
authors proposed a joint design for receiver beamforming
and device scheduling to maximize the number of partici-
pating devices by minimizing the requirements of a given
mean squared error in a multi-antenna scenario. Considering
energy-constrained devices, the authors of [32] proposed an
energy-aware device scheduling strategy to maximize the
average number of participating devices. Furthermore, the
relationship between FL and analog aggregation is unclear
therefore, another study [33] quantified the effect of OAC on
FL and proposed the joint optimization of power control and
device scheduling. Considering analog downlink and uplink
communications, the authors of [34] proposed a semidefinite
programming technique-based joint optimization scheme of
power control and device scheduling along with an adaptive
reweighing scheme. The remaining works concentrating on
the power control design without a device scheduling strategy
are as follows. The authors of [35] proposed a gradient-aware
power control design to minimize individual signal distortions
for wireless transmission. The authors of [36] characterized
the effects of the aggregation errors for the bias and mean
squared error and proposed an optimal power control design.
Similarly, the authors of [37] theoretically derived an upper
bound of the optimality gap in the case of aggregation errors
and proposed optimal transmission power control to minimize
the optimality gap under individual power constraints.

B. Motivation, Contribution, and Organization

In FLOA, gradient compression, and power and error con-
trol play a very important role in performance. However, prior
studies have adopted a fixed compression rate, and many joint
optimal controls are performed based on it, which motivated
this study. To the best of our knowledge, this is the first
study that introduces a dynamic control of the sparsification-
based compression ratio and performs joint optimal power and
error control with it in FLOA. Table I summarizes the notable
differences between the proposed and existing methods. The
main contributions of this paper are outlined as follows:

• For the communication-efficient FLOA, we propose the
sparse one-bit analog aggregation (SOBAA) method.
First, the SOBAA employs a new synchronized layer-
wise sparsification, which drives all devices to sparsify
the same layers simultaneously. In FLOA, the gradi-
ent compression comes from gradient quantization, not
from sparsification. However, if the proposed layer-wise
sparsification is employed, it can contribute to gradient
compression. Furthermore, the gradient compression ratio
by layer-wise sparsification can be dynamically controlled
or optimized according to the channel status. Second,
inspired by [39], the SOBAA develops layer-wise scaled
one-bit quantization, advantaging that it generally has
an improved convergence rate due to lower compression
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TABLE I: FLOA considering gradient compression and power control

Method Gradient compression Power control Evaluation metrics

A-DSGD [25] Top-k, random projection, compressive sensing,
error-feedback mechanism Channel inversion (AWGN) Test accuracy

CA-DSGD [26] Top-k, random projection, compressive sensing,
error-feedback mechanism

Truncated channel inversion (fading with
perfect and imperfect CSI) Test accuracy

OBDA [27] One-bit quantization Truncated channel inversion (AWGN, fading
with perfect and imperfect CSI)

Train loss, test accuracy,
communication latency

EFOBDA [28] One-bit quantization, error-feedback mechanism Channel inversion, convex optimization
method (AWGN, fading with perfect CSI) Train loss, test accuracy

OBCSAA [29] One-bit quantization, top-k, random projection,
compressive sensing

Channel inversion, convex optimization
method (fading with perfect CSI)

Train loss, test accuracy,
communication cost

TCS-H [30] Top-k, error-feedback mechanism Channel inversion (fading with perfect CSI) Test accuracy,
communication cost

OA-FMTL [31] Top-k, random projection, compressive sensing,
error-feedback mechanism

Channel inversion, convex optimization
method (fading with perfect CSI)

Test accuracy, running
time, communication cost

Proposed Layer-wise scaled one-bit quantization, layer-wise
sparsification, error-feedback mechanism

Channel inversion, convex optimization
method (fading with perfect CSI)

Train loss, test accuracy,
communication cost

error than entirely scaled or unscaled one-bit quantization
schemes [19], [40]. It optimizes the layer-wise sparsifi-
cation using the estimated layer-wise magnitude scaling
factors. Third, the SOBAA employs analog aggregation
over the air for information transmission. In particular, the
SOBAA indirectly carries the information on magnitude
scaling factors by controlling the power amplitude of the
signal, instead of using additional bits.

• To mitigate the compression error, we consider the error-
feedback mechanism in the proposed SOBAA. Thus, to
show the effectiveness of the error-feedback mechanism,
we derive a tight upper bound on the expected conver-
gence rate of the proposed SOBAA with this mechanism
(SOBAA-EFO) and without this mechanism (SOBAA-
EFX) as a closed-form expression. Through this ex-
pression, we explicitly identify the relationship between
convergence rate and compression and aggregation errors.

• Based on this theoretical convergence analysis, we for-
mulate a joint optimization problem that determines the
optimal compression rate and controls the transmit power
to minimize compression and aggregation errors, leading
to the fastest convergence. In each communication round,
the optimization problem is decomposed and solved in
a computationally efficient and feasible way. From this
solution, we characterize the trade-off between learning
performance and communication costs.

• We perform extensive experimental evaluations using
well-known MNIST and CIFAR-10 datasets and confirm
that, compared with the state-of-the-art approaches, the
proposed approach provides a faster convergence rate and
an enhanced trade-off in terms of communication cost and
test accuracy. The proposed approach is also proven to be
robust for the variations of device populations or network
conditions. In particular, it works more efficiently for
complex datasets and local learning models that comprise
more layers and parameters.

The remainder of this paper is organized as follows. First,
Section II proposes the system model of the proposed SOBAA
method. Section III derives the expected convergence rate as

a closed-form expression for convergence analysis. Next, Sec-
tion IV formulates a joint optimization problem to determine
the compression ratio and transmission power and introduces
the corresponding solutions to minimize communication costs
and compression and aggregation errors. Finally, the exper-
imental results and their setups are provided in Section V,
followed by a conclusion and discussion in Section VI.

II. PROPOSED FLOA SYSTEM MODEL

For wireless networks, we consider an FL system consisting
of a single PS and K devices. Thus, the PS and all devices aim
to train one global learning model collaboratively by exploiting
gradient compression and analog aggregation, as presented in
Fig. 1.

A. Learning Model

In the FL system, device k has its local dataset consisting
of Dk data samples. For training the learning model, the local
loss function Fk(·) with parameter vector w is defined as

Fk(w) =
1

Dk

Dk∑
d=1

Fk,d(w;xk,d, yk,d), (1)

where Fk,d(·) denotes the loss function on sample d consisting
of feature vector xk,d and label yk,d. Then, based on Fk(·) for
all devices, the global loss function F(·) with w is defined as

F(w) =
1

D

K∑
k=1

DkFk(w), (2)

where D =
∑K

k=1 Dk. Thus, the FL system aims to determine
an optimal parameter vector w∗ by minimizing F(·) as

P1: w∗ = argmin
w

F(w). (3)

The FL system adjusts the training process between the
PS and devices to be configured in a distributed manner,
avoiding collecting raw samples directly from each device to
the PS. In each communication round t ∈ {1, . . . , T}, the PS
broadcasts parameter vector wt to all devices. Each device
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Fig. 1: FLOA system model with SOBAA.

updates the received wt based on its local dataset using a
first-order approximation algorithm to minimize the local loss
function and derives local gradient vector gt

k as

gt
k =

1

Dk

Dk∑
d=1

∇Fk,d(w
t;xk,d, yk,d), (4)

where ∇Fk,d(·) denotes the gradient of Fk,d(·) with respect
to wt. Then, each device transmits gt

k, and the PS aggregates
that to derive the global gradient vector gt as

gt =
1

D

K∑
k=1

Dkg
t
k. (5)

Therefore, the PS updates wt as

wt+1 = wt − λgt, (6)

where λ denotes the learning rate. The FL system iterates the
training process including (4), (5), and (6) until the conver-
gence condition is satisfied or the maximum communication
round T is reached.

B. Compression Model

For the communication-efficient FL system, we introduced a
layer-wise scaled one-bit quantization and layer-wise sparsifi-
cation. However, the aggressive gradient compression degrades
the convergence rate and learning performance. Thus, we
incorporated the error-feedback mechanism to mitigate the
negative effect of the compression error. To implement this
in the FL system, we partitioned the local gradient vector into
blocks (i.e., subvectors) and derived the (gradient) magnitude
scaling factor block-wise, which is the average of the parame-
ters in the block. However, if a block comprises parameters of
different layers, the magnitude scaling factor of that block may
not correctly indicate its importance because the magnitude
of the parameters between layers can be significantly different
[41]. To this end, we considered layers to be blocks.

In each communication round t, each device derives the
compensated local gradient vector ut

k by adding a compression
error vector ctk as

ut
k = λgt

k + ctk, (7)

where ctk compensates for information loss caused by gradient
compression in the previous round. Then, each device derives
the magnitude scaling factor vtk,i layer-wise as

vtk,i =
1

Ji

∥∥ut
k,i

∥∥
1
, (8)

where i ∈ {1, . . . , I} denotes the layer i. In addition, each
device derives the quantized ut

k parameter-wise as

u̇t
k,i,j =

{
+1, ut

k,i,j ≥ 0,

−1, otherwise,
(9)

where j ∈ {1, . . . , Ji} represents the parameter j of the layer
i. Thus, the compressed ut

k is defined as

üt
k,i = stiv

t
k,iu̇

t
k,i, (10)

where sti denotes the sparse masking indicator (i.e., sti = 0
if the layer i is not transmitted at each round t, and sti = 1,
otherwise). Thus, ctk is updated as

ct+1
k = ut

k − üt
k, (11)

where ct+1
k is locally stored on device k.

Remark 1. From [42], it is known that aggregating layers with
small gradients cannot improve the test accuracy significantly
and only increases communication costs, i.e., transmitting
only some layers with higher gradients lowers costs while
maintaining test accuracy compared to transmitting all layers.

Remark 2. The proposed layer-wise sparsification operates
in a synchronized manner, that is, all devices’ same specific
layers are sparsified for each round. Through this, the averaged
gradient information at PS can be transmitted without losing
sparsity to the downlink. It can reduce the amount of downlink
traffic and enhance the drop-out effect in terms of information
abstraction by each layer in the learning model.
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C. Aggregation Model

Based on the observation that the PS requires only aggre-
gated local gradients, FL evolved to FLOA by incorporating
OAC, exploiting the waveform superposition property of the
MAC. In the FLOA system, analog aggregation enables the
simultaneous transmission of local gradients for all devices to
the PS over the same uplink time-frequency channels.

In each communication round t, each device transmits üt
k,i,

which is supposed to be aggregated to derive üt
i layer-wise as

üt
i =

1

D

K∑
k=1

Dkü
t
k,i. (12)

However, since üt
k,i is transmitted in an analog manner and

aggregated over the air, the received signal subvector ūt
i on

the PS is given by

ūt
i =

K∑
k=1

ht
kp

t
k,iü

t
k,i + stiz

t
i, (13)

where ht
k denotes the channel coefficient between the device

k and the PS, modeled as i.i.d. Rayleigh fading by generating
from N (0, 1).2 In addition, ptk,i represents the transmit power,
and zti denotes the AWGN subvector (i.e., zti,j ∼ N (0, σ2),
where σ2 indicates the noise power).

In order to ensure that (13) can be approximate to (12) as
closely as possible by mitigating the signal distortion caused
by the noise and fading, we designed ptk,i as

ptk,i =
btiDk

ht
k

, (14)

where bti is the (power) amplitude scaling factor. The transmit
power constraint must be satisfied on each device as

∣∣ptk,iüt
k,i,j

∣∣2 =

∣∣∣∣∣btiDks
t
iv

t
k,i

ht
k

∣∣∣∣∣
2

≤ P, (15)

where P denotes the maximum transmit power, and u̇t
k,i,j is

eliminated because of u̇t
k,i,j = ±1.

By substituting (14) into (13), ūt
i is rewritten as

ūt
i =

K∑
k=1

btiDkü
t
k,i + stiz

t
i, (16)

where Dk represents the pre-processing factor. Upon ūt
i, the

PS derives the estimated üt
i as

ũt
i =

ūt
i

btiD
= üt

i +
stiz

t
i

btiD
, (17)

where btiD denotes the post-processing factor. Then, the PS
broadcasts ũt to all devices to update parameter vector as

wt+1 = wt − ũt, (18)

where we assumed that all devices receive perfect ũt through
error-free downlink channels by the high transmit power and
bandwidth of the PS.

2For the sake of simplicity, we assumed the perfect uplink channel state
information (CSI) and that the CSI of the block fading channels is unchanged
in each round t, but may be changed independently over different rounds.

III. CONVERGENCE ANALYSIS

This section formally characterizes the effects of layer-wise
scaled one-bit quantization, layer-wise sparsification, the error-
feedback mechanism, and an analog aggregation on the FLOA
system by analyzing its convergence rate.

A. Basic Assumptions

To facilitate convergence analysis, we made widely adopted
assumptions regarding the compression operator, loss function,
and gradient vector.

Assumption 1. (Compression Operator): The operator C(·) :
RJ → RJ denotes a δ-approximate compression operator with
approximation factor δ ∈ [0, 1], that is,

∥C(u)− u∥22 ≤ (1− δ) ∥u∥22 , ∀u ∈ RJ , (19)

where J =
∑I

i=1 Ji. In addition, this is extended and defined
in the layer-wise form as follows:

∥C(ui)− ui∥22 = ∥siviu̇i − ui∥22
= Jisi (vi)

2 − 2sivi ∥ui∥1 + ∥ui∥22

=

(
1− Jisi(vi)

2

∥ui∥22

)
∥ui∥22

≤ (1− siδ) ∥ui∥22 , ∀i. (20)

Assumption 2. (Loss Function Bound): The global loss func-
tion F(·) is lower bounded by an optimal parameter vector
w∗ for the given parameter vector w, that is,

F(w) ≥ F(w∗), ∀w ∈ RJ . (21)

Assumption 3. (Smoothness and Lipschitz Continuity): The
global loss function F(·) is L-smooth and the corresponding
gradient vector ∇F(·) is L-Lipschitz continuous, that is,∣∣∣F(w′)−

(
F(w) +∇F(w)

⊤
(w′ −w)

)∣∣∣
≤ L

2
∥w′ −w∥22 , ∀w′,w ∈ RJ , (22)

where L is a non-negative constant. In addition, this is defined
in an alternate form as follows:

∥∇F(w′)−∇F(w)∥2 ≤ L ∥w′ −w∥2 . (23)

Assumption 4. (Gradient Vector Bound): The local gradient
vector gk is independent and unbiased estimate of the global
gradient E [g] = ∇F(w), that is,

∥gk∥22 ≤ G2, ∀k, (24)

where G is a positive constant. In addition, this is extended
and defined in the layer-wise form as follows:

∥gk,i∥22 ≤ G2
i , ∀i. (25)
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B. Main Results

Based on the assumptions, we provided the expected conver-
gence rate of the proposed SOBAA as a closed-form expres-
sion. First, we derived Lemma 1 to describe the compression
error caused by layer-wise scaled one-bit quantization, layer-
wise sparsification, and the error-feedback mechanism.

Lemma 1. In the FL system, under Assumptions 1 and 4,
the compression error is bounded by

E

∥∥∥∥∥ 1

D

K∑
k=1

Dkc
t+1
k

∥∥∥∥∥
2

2

≤
I∑

i=1

(1− stiδ)(2− δ)λ2G2
i

δ

×
(
(t− Si)

2
+

(2− δ)M2
i

δ

)
, (26)

where Si is most recent communication round t with sti = 1.
In addition, Mi ≥ 1 is the maximum non-transmit period (i.e.,
t− Si ≤ Mi).

Proof: See Appendix A.
In addition, we derived Lemma 2 to describe the aggrega-

tion error caused by analog aggregation.

Lemma 2. In the FLOA system, according to (17) and the
variance expression by expected value, the aggregation error
is given by

E
∥∥at∥∥2

2
=

I∑
i=1

E
∥∥∥∥stiztibtiD

∥∥∥∥2
2

=

I∑
i=1

Jis
t
iσ

2

(bti)
2D2

. (27)

Based on Lemmas 1 and 2, we represented the convergence
rate of the proposed SOBAA-EFO in Theorem 1.

Theorem 1. Under Assumptions 2-4, the convergence rate of
SOBAA-EFO is given by

1

T

T∑
t=1

∥∥∇F(wt)
∥∥2
2
≤ 2(F(w1)−F(w∗))

δλT
+

G2

δ

+
1

T

T∑
t=1

I∑
i=1

Jis
t
iσ

2

δ(bti)
2λ2D2

+
1

T

T−1∑
t=1

I∑
i=1

(1− stiδ)G
2
i

δ2

×
(
(t− Si)

2
+

(2− δ)M2
i

δ

)
. (28)

Proof: See Appendix B.
To show the effectiveness of the error-feedback mechanism,

based on Lemma 2, we also represented the convergence rate
of SOBAA-EFX in Theorem 2.

Theorem 2. Under Assumptions 1-4, the convergence rate of
SOBAA-EFX is given by

1

T

T∑
t=1

∥∥∇F(wt)
∥∥2
2
≤ 2(F(w1)−F(w∗))

λT

+
1

T

T∑
t=1

I∑
i=1

Jis
t
iσ

2

(bti)
2λ2D2

+
1

T

T∑
t=1

I∑
i=1

(1− stiδ)G
2
i . (29)

Proof: See Appendix D.
According to observations on Theorems 1 and 2, the FLOA

system can achieve an improved convergence performance by
minimizing total error in the upper bound. On the right-hand
side (RHS) of (28), the second term is constant, which is
the weighted upper bound of the gradient, and other terms
decrease as maximum communication round T increases. No-
tably, the third and last terms denote the weighted aggregation
error (WAE) and weighted compression error (WCE), respec-
tively. Similarly, on the RHS of (29), all terms decrease as
maximum communication round T increases, and the second
term and last term denote WAE and WCE, respectively.

WAE (i.e., the negative effect of the noise) decreases as the
amplitude scaling factor bti increases. In addition, the effect
is eliminated when the sparse masking indicator sti = 0 (i.e.,
the layer i is not transmitted). However, WCE decreases when
sti = 1 (i.e., the layer i is transmitted). That is, when sti = 0,
WAE decreases, and WCE increases. In contrast, when sti = 1,
vice versa. Therefore, sti and bti determine WAE and WCE,
affecting the learning performance and communication costs.
Using this theoretical convergence analysis, we proposed the
joint optimization design that determines the compression ratio
via sti and controls the transmit power via bti to minimize the
total error in the upper bound of the convergence rate. Using
the solution, we characterize the trade-off between learning
performance and communication costs.

IV. JOINT MINIMIZATION OF ERRORS AND COSTS

For the communication-efficient FLOA system, this section
formulates the joint optimization problem and derives compu-
tationally feasible solutions.

A. Formulation of Joint Optimization Problem

For SOBAA-EFO, the PS aims to determine all amplitude
scaling factors bt = {bti}Ii=1 and all sparse masking indicators
st = {sti}Ii=1 to minimize (28) in each communication round
t. Thus, by eliminating the common factors after dropping the
irrelevant terms in (28), we defined the total error et as

et =

I∑
i=1

Jis
t
iσ

2

(bti)
2λ2D2

+

I∑
i=1

(1− stiδ)G
2
i

δ

×
(
(t− Si)

2
+

(2− δ)M2
i

δ

)
, (30)

where we can find two observations: 1) For üt
i,j of (17) not to

be significantly distorted by the noise, based on the variance
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expression by expected value, the post-processed noise needs
to be reduced as

E
∣∣∣∣ zti,jbtiD

∣∣∣∣2 =
σ2

(bti)
2D2

≤ ϵσ2, (31)

where ϵ ∈ [0, 1] is reduction rate. According to the observation
when ϵ → 0, (30) is less when sti = 1 than when sti = 0. Thus,
in all rounds, all layers are transmitted and negatively affected
by the noise. 2) In each round t, the communication cost is
defined as [43]

Communication cost =
I∑

i=1

Jis
t
i, (32)

which is the same form as WAE in which some factors are
eliminated. This means that the communication cost and WAE
increase or decrease simultaneously at roughly the same rate
by st. Namely, according to the observations, all layers should
not be transmitted in all rounds to minimize the negative effect
of the noise and the communication cost.

Therefore, to improve the convergence rate and communi-
cation efficiency, we defined r1,t as

r1,t = (1− θ)

I∑
i=1

Jis
t
iσ

2

(bti)
2λ2D2

+ θ

I∑
i=1

(1− stiδ)G
2
i

δ

×
(
(t− Si)

2
+

(2− δ)M2
i

δ

)
, (33)

where θ ∈ [0, 1] is weight factor.
To determine bt and st, the PS must consider the transmit

power constraint (15) on each device. However, in the middle
of (15), the magnitude scaling factor vtk,i should be estimated
because it is unknown to the PS.3 Thus, under Assumption 1
and Appendix A, we assumed δ = Ji(v

t
k,i)

2/∥ut
k,i∥22 and then

bounded vtk,i as(
vtk,i
)2

=
δ

Ji

∥∥ut
k,i

∥∥2
2

≤ (2− δ)λ2G2
i

Ji

(
(t− Si)

2
+

(2− δ)M2
i

δ

)
=
(
V 1,t
i

)2
, (34)

where (V 1,t
i )2 is defined as an achievable upper bound of

(vtk,i)
2. Using this, we redefined the transmit power constraint

(15) as∣∣∣∣∣btiDks
t
iv

t
k,i

ht
k

∣∣∣∣∣
2

≤ stiD
2
k(V

1,t
i )2(bti)

2

(ht
k)

2
= stio

1,t
k,i

(
bti
)2

, (35)

where o1,tk,i is defined by the rest of the factors, except bti and
sti. To make (35) satisfy the power constraint,

stio
1,t
k,i

(
bti
)2 ≤ P, (36)

3Among factors, we assume that Dk (i.e., the number of samples on each
device) is known to the PS when the FL system initializes the training process
and is unchanged until the iteration is over. In addition, we assumed that
channel coefficient ht

k is known to the PS and can be easily estimated through
uplink pilot signals, defined in 3GPP standards, transmitted by devices.

using (31) and assuming t−Si = Mi, we made the additional
assumption that the maximum non-transmit period Mi is upper
bounded layer-wise by a positive constant, that is,

E
[
M2

i

]
≤ E

[
δPJi(h

t
k)

2

2 (2− δ) (bti)
2λ2G2

iM(D2
k)

]
≤ ϵδPJiD

2

(2− δ)λ2G2
iD

2
k

, (37)

where M(·) is max function. Then, Mi is bounded as

Mi ≤ M

(
1,

⌊√
ϵδPJiD2

(2− δ)λ2G2
iM(D2

k)

⌋)
. (38)

Thus, under this assumption, (36) can be satisfied. Based on
(33) and (36), the joint optimization problem for SOBAA-EFO
is formulated as follows:

P2: min
bt,st

r1,t, (39a)

s.t. stio
1,t
k,i

(
bti
)2 ≤ P, ∀k, i, (39b)

t− Si ≤ Mi, ∀i, (39c)
I∑

i=1

sti ≥ 1, (39d)

sti ∈ {0, 1} , ∀i. (39e)
bti > 0, ∀i, (39f)

where (39d) is the layer-wise sparsification constraint to ensure
that at least one layer is transmitted for convergence perfor-
mance in each communication round t.

Similarly, we defined r2,t for SOBAA-EFX by dropping the
irrelevant terms in (29) and using weight factor θ as

r2,t = (1− θ)

I∑
i=1

Jis
t
iσ

2

(bti)
2λ2D2

+ θ

I∑
i=1

(
1− stiδ

)
G2

i . (40)

Then, based on ut
k = λgt

k and Cauchy–Schwarz inequality,
we bounded vtk,i as(

vtk,i
)2

=
1

J2
i

∥∥λgt
k,i

∥∥2
1
≤ 1

Ji

∥∥λgt
k,i

∥∥2
2

≤ λ2G2
i

Ji
=
(
V 2,t
i

)2
, (41)

where (V 2,t
i )2 is defined as an achievable upper bound of

(vtk,i)
2. Therefore, the joint optimization problem for SOBAA-

EFX is formulated as follows:

P3: min
bt,st

r2,t, (42a)

s.t. stio
2,t
k,i

(
bti
)2 ≤ P, ∀k, i, (42b)

I∑
i=1

sti ≥ 1, (42c)

sti ∈ {0, 1} , ∀i, (42d)
bti > 0, ∀i, (42e)

where o2,tk,i is defined by (V 2,t
i )2 instead of (V 1,t

i )2.
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B. Derivation of Computationally Feasible Solution
Because of the combination of the real-valued variable am-

plitude scaling factor bti and the binary-valued variable sparse
masking indicator sti, P2 is a mixed-integer programming and
a non-convex problem. However, bti and sti are not correlated
with each other within and between the layers. That outcome
means that no matter what given sti, P2 can become a convex
problem that determines the optimal solution of bti. Therefore,
we decomposed P2 into two subproblems for finding bti and
sti, respectively.

First, we defined an auxiliary function to determine bti and
reformulate the part of P2 as follows:

P4: min
bt

R1(b
t) = (1− θ)

I∑
i=1

Jiσ
2

(bti)
2λ2D2

, (43a)

s.t. o1,tk,i

(
bti
)2 ≤ P, ∀k, i, (43b)

(39f).

All bti are not correlated with each other. Thus, we decomposed
P4 into smaller I parallel subproblems as follows:

min
bti

R1,i(b
t
i) = (1− θ)

Jiσ
2

(bti)
2λ2D2

. (44)

For solving P4, we utilized the Lagrange dual method. There-
fore, we introduced the multipliers qt = {qti}Ii=1 to constraint
(43b) and derived the partial Lagrangian as follows:

L(bt,qt) = R1(b
t) +

K∑
k=1

I∑
i=1

qti

(
o1,tk,i

(
bti
)2 − P

)
. (45)

Then, the dual problem is derived as follows:

P5: max
qt

D(qt), (46a)

s.t. qti ≥ 0, ∀i, (46b)

where the dual function D(·) is given by

D(qt) = min
bt

L(bt), (47)

s.t. (39f).

According to the strong duality between problems, the primal
problem P4 is solved by solving its dual problem P5. Thus, P5
was decomposed into smaller I parallel convex subproblems
as follows:

min
bti

Li(b
t
i) = R1,i(b

t
i) +

K∑
k=1

qti

(
o1,tk,i

(
bti
)2 − P

)
, (48)

which can be solved via efficient convex optimization tools.
Second, we defined another auxiliary function to determine

sti and reformulate the part of P2 as follows:

P6: min
st

R1
2(s

t) = (1− θ)

I∑
i=1

Jis
t
iσ

2

(bt,∗i )2λ2D2

+ θ

I∑
i=1

(1− stiδ)G
2
i

δ

×
(
(t− Si)

2
+

(2− δ)M2
i

δ

)
, (49)

s.t. (39c), (39d), (39e),

where bt,∗ = {bt,∗i }Ii=1 are all determined amplitude scaling
factors. Then, P6 can be solved using the enumeration-based
method that enumerates all cases of st and derives the best case
among them. However, since this method requires all 2I cases
for the proposed SOBAA-EFO, the result is a computationally
infeasible solution. All sti are not correlated with each other;
thus, we decomposed P6 into smaller I parallel subproblems
as follows:

min
sti

R1
2,i(s

t
i) = (1− θ)

Jis
t
iσ

2

(bt,∗i )2λ2D2
+ θ

(1− stiδ)G
2
i

δ

×
(
(t− Si)

2
+

(2− δ)M2
i

δ

)
, (50)

where if t − Si = Mi in (39c), the subproblem i is solved
to sti = 1. Otherwise, this is solved by comparing cases of
sti = 0 and sti = 1, which are expressed as follows:

R1
2,i(0) = θ

G2
i

δ

(
(t− Si)

2
+

(2− δ)M2
i

δ

)
(51)

and

R1
2,i(1) = (1− θ)

Jiσ
2

(bt,∗i )2λ2D2
+ θ

(1− δ)G2
i

δ

×
(
(t− Si)

2
+

(2− δ)M2
i

δ

)
, (52)

respectively. Thereafter, the constraint (39d) may not be sat-
isfied. To minimize (49), a layer with smallest (52) should be
derived. However, this only derives a specific layer because
of differences in the number of parameters and differences in
the magnitude of gradients, degrading the convergence rate
and learning performance because each layer has a different
contribution [44]. Therefore, we derived the layer i∗ with the
smallest growth rate as follows:

i∗ = argmin
i

R1
2,i(1)

R1
2,i(0)

. (53)

Then, we obtained all determined sparse masking indicators
st,∗ = {st,∗i }Ii=1 by setting sti∗ = 1.

The computational complexity of solving P5 and P6 is both
O(I) because the computational complexity of solving smaller
parallel subproblems is scaled with I . Thus, the computational
complexity of the proposed method to solve P2, which solves
P5 and P6 sequentially, is O(I), which is scaled linearly with
I . Therefore, the proposed method determines a solution with
the computationally feasible complexity. Moreover, the pro-
posed method is expressed as the pseudo-code in Algorithm 1,
where o1,t denotes all o1,tk,i for all k and i.

In each communication round t, the PS determines bt,∗ and
st,∗ using Algorithm 1 and broadcasts them to all devices.
Thus, given bt,∗ and st,∗, each device derives üt

k based on
(10) and then transmits it based on (16).

For solving P3, we also used (43a) as the auxiliary function
and defined another auxiliary function as follows:

R2
2(s

t) = (1− θ)

I∑
i=1

Jis
t
iσ

2

(bt,∗i )2λ2D2

+ θ

I∑
i=1

(
1− stiδ

)
G2

i , (54)
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TABLE II: Experiment parameter setup.

Parameter
Value

Parameter
Value

MNIST
dataset

CIFAR-10
dataset

MLP classifier 4NN classifier 5NN classifier

EFO EFX EFO EFX EFO EFX

Number of devices K [5, 25] Approximation factor δ 0.02 0.30 0.01 0.10 0.01 0.07

Learning rate λ 0.01

Weight
factor θ

for (K,σ2)

(5, 10−4) 5.e-8 5.e-5 5.e-8 5.e-5 5.e-8 5.e-5

Maximum
communication round T 200 500

(10, 10−4) 5.e-8 5.e-6 5.e-8 5.e-5 5.e-8 5.e-5
(15, 10−4) 5.e-8 5.e-6 5.e-8 5.e-6 5.e-8 5.e-6

Maximum
transmit power P 10

(20, 10−4) 5.e-8 5.e-6 5.e-8 5.e-8 5.e-8 5.e-6
(25, 10−4) 5.e-8 5.e-6 5.e-8 5.e-8 5.e-8 5.e-6

Noise power σ2 [1, 10−4]
(25, 10−3) 5.e-8 5.e-5 5.e-8 5.e-8 5.e-8 5.e-5
(25, 10−2) 5.e-8 5.e-4 5.e-8 5.e-8 5.e-8 5.e-4

Reduction rate ϵ 5.e-7
(25, 10−1) 5.e-8 5.e-3 5.e-8 5.e-8 5.e-8 5.e-3
(25, 1) 5.e-8 5.e-2 5.e-8 5.e-8 5.e-7 5.e-2

Algorithm 1 Decomposition-Based Feasible Solution

Input: o1,t.
Output: bt,∗, st,∗.

1: Initialize bt, st, qt.
2: for each layer i ∈ {1, . . . , I} in parallel do
3: Obtain bti by solving (48).
4: Obtain sti by solving (50).
5: end for
6: if (39d) is not satisfied then
7: Obtain i∗ by solving (53).
8: Set sti∗ = 1.
9: end if

10: return bt,∗, st,∗.

where the remaining process is the same as the solving process
for P2, thus it is omitted.

V. EXPERIMENTAL RESULTS

This section evaluates the learning performance and com-
munication efficiency of the proposed SOBAA-based FLOA
system. We considered the FLOA system with one server and
K = 25 devices, which were referenced from [25], [26], and
considered maximum transmission power P = 10 mW and
noise power σ2 = 10−4 mW, which were referenced from
[29]. We compared the proposed SOBAA with OBDA [27] and
EFOBDA [28], In terms of the gradient compression scheme,
the previous work OBDA [27] is a method that adopts unscaled
one-bit quantization, but it does not adopt sparsification and
error-feedback mechanism. The latter work EFOBDA [28]
is a more advanced method that adopts unscaled one-bit
quantization and error-feedback mechanism, but it does not
adopt sparsification. The proposed SOBAA-EFO/EFX is the
method that adopts layer-wise scaled one-bit quantization
and layer-wise sparsification with/without the error-feedback
mechanism.

As an application of this experimental evaluation, we con-
sidered image classification which is a fundamental task in
vision recognition, using well-known MNIST and CIFAR-10
datasets. The MNIST dataset consists of 10 classes with black-
and-white handwritten digits ranging from 0 to 9 that are one

color with 28× 28 pixels, where D = 60000 labeled training
samples and 10000 test samples are available. The CIFAR-10
dataset consists of 10 mutually exclusive classes with colorful
objects or animals that are RGB color with 32 × 32 pixels,
where D = 50000 labeled training samples and 10000 test
samples are available.

In the numerical experiments, we considered two cases
of partitioning the dataset over 25 devices: 1) an i.i.d. case
for both MNIST and CIFAR-10 datasets, where the samples
are shuffled and partitioned into 25 devices, each receiving
Dk = D/25 samples, and 2) a non-i.i.d. case for only MNIST
dataset, where the samples are sorted by digit label divided
into 200 shards with 300 samples and then assigned to the 25
devices, each receiving 8 shards.

In particular, for the i.i.d. MNIST dataset, the classifier is
implemented using a simple MLP that consists of two hidden
layers with 200 units each using the rectified linear units
(ReLU) activation function (i.e., I = 3 and J = 199210).
For the non-i.i.d. MNIST dataset, the classifier is implemented
using a CNN consisting of two 5×5 convolutional layers with
ReLU activation (the first with 32 channels, and the second
with 64 channels, each followed by 2×2 max-pooling), a fully
connected layer with 512 units and ReLU activation, and a
final softmax output layer (i.e., I = 4 and J = 582026),
which is denoted as 4NN. For the i.i.d. CIFAR-10 dataset,
the classifier is implemented using a CNN consisting of
two convolutional layers, two fully connected layers, and a
linear transformation layer to produce logits (i.e., I = 5 and
J = 940362), which is denoted as 5NN. For the sake of
reliability, we used the same classifiers implemented for each
dataset in prior FL-related works. That is, the MLP and 5NN
are referred from [2], and the 4NN is referred from [27].

All environments were implemented using the Matlab opti-
mization toolbox and Python programming language including
Pytorch library on an Intel(R) Core i9-13900K machine with
NVIDIA Geforce RTX 4080 and 32 GB memory, and all meth-
ods were evaluated in the same environment. By observing the
parameters where all combinations of classifier and method
converge in test accuracy, the learning rate λ is set to 0.1,
and the maximum communication round T of the MNIST and
CIFAR-10 datasets are set to 200 and 500, respectively.
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(a) Gradient bound G2
i . (b) Approximation factor δ. (c) Reduction rate ϵ for Mi.

(d) Weight factor θ for (K,σ2 = 10−4). (e) Weight factor θ for (K = 25, σ2). (f) Magnitude scaling factor.

Fig. 2: Preliminary experiments for parameter setup on MLP classifier with i.i.d. MNIST dataset.

Also, we performed preliminary experiments for parameter
setup, for example, on MLP classifier with i.i.d. MNIST
dataset. Fig. 2 shows experiment results. Assuming an error-
free channel (i.e., ht

k = 1 and zt = 0), both EFO and EFX
do not perform layer-wise sparsification at all communication
rounds. Therefore, we set G2

i by maxk ∥gt
k,i∥22 in (25) using

Fig. 2a. In addition, we set δ by mink,i Ji(v
t
k,i)

2/∥ut
k,i∥22 in

(20) using Fig. 2b. Moreover, we set ϵ based on (38) so that
all Mi becomes smaller than or equal to 10 (i.e., each layer
being transmitted at least once within 10 rounds) as shown in
Fig. 2c.

On the other hand, under a fading channel, we set the weight
factor θ for each device population and each network condition
using Figs. 2d and 2e, respectively. This plots the required
communication costs based on (32) to achieve a 0.95 target
test accuracy. When the target test accuracy is not achieved,
the communication cost is calculated as J × T . Regardless of
θ, EFO is always lower than EFX due to the error-feedback
mechanism. For both EFO and EFX, as θ decreases, the first
term on the RHS of (33) and (40) increases, resulting in
infrequent transmission of layers and lower communication
costs. However, EFX fails to achieve the 0.95 target test
accuracy when θ is significantly lower than a certain threshold,
resulting in dramatically increased communication costs. In
FLOA, because all devices transmit simultaneously over the
same time-frequency resources, the communication cost does
not increase linearly with the number of devices, and it is
the same as the communication cost of a single device [43].
On the other hand, as the number of devices increases, the

learning performance converges faster (because of increased
training samples, D = Dk ×K). That is, the required number
of communication rounds to the convergence decreases, and
it brings reduced communication costs as shown in Fig. 2d.
Moreover, it also reduces the thresholds of θ since the positive
effect from the increased number of training samples mitigates
the negative effect from the infrequent transmission of layers.
Similarly, Fig. 2e shows that as a noise power decreases,
the learning performance converges faster (because of a less
distorted signal) and the required communication cost is
decreased. Thus, for each combination (K,σ2), we selected
an appropriate θ that requires the least communication cost
to achieve the 0.95 target test accuracy. To set parameters
on the other classifiers and datasets, we performed similar
preliminary experiments and then determined the parameters.
Table II lists the experiment parameter setup.

Based on (8), (34), and (41), we measured maxk(v
t
k,1)

2,
(V 1,t

1 )2, and (V 2,t
1 )2. As shown in Fig. 2f, the transmitted

magnitude scaling factor is always lower than the estimated
for both EFO and EFX in all communication rounds, thus we
showed that the estimation operation is well performed.

A. Evaluation of Learning Performance

The effectiveness of the SOBAA-EFO and SOBAA-EFX are
evaluated for the MLP with the i.i.d. MNIST, the 4NN with
the non-i.i.d. MNIST, and the 5NN with the i.i.d. CIFAR-10.
Table III listed the maximum test accuracy, minimum train
loss, and ranking in the error-free channels. Fig. 3 plotted the
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TABLE III: Evaluation of learning performance on error-free channels.

Classifier and dataset
Maximum test accuracy (Ranking) Minimum train loss (Ranking)

OBDA
[27]

EFOBDA
[28]

SOBAA-
EFO

SOBAA-
EFX

OBDA
[27]

EFOBDA
[28]

SOBAA-
EFO

SOBAA-
EFX

MLP classifier with
i.i.d. MNIST dataset 0.94613 (4) 0.97213 (1) 0.96893 (2) 0.95767 (3) 0.24557 (4) 0.12638 (1) 0.13544 (2) 0.18245 (3)

4NN classifier with
non-i.i.d. MNIST dataset 0.97660 (4) 0.98843 (2) 0.98950 (1) 0.98680 (3) 0.03967 (4) 0.02307 (2) 0.02121 (1) 0.03374 (3)

5NN classifier with
i.i.d. CIFAR-10 dataset 0.62230 (4) 0.72470 (3) 0.73187 (1) 0.72660 (2) 0.81729 (4) 0.00082 (2) 0.00081 (1) 0.00748 (3)

(a) Test accuracy of MLP classifier with
i.i.d. MNIST dataset.

(b) Test accuracy of 4NN classifier with
non-i.i.d. MNIST dataset.

(c) Test accuracy of 5NN classifier with
i.i.d. CIFAR-10 dataset.

(d) Train loss of MLP classifier with
i.i.d. MNIST dataset.

(e) Train loss of 4NN classifier with
non-i.i.d. MNIST dataset.

(f) Train loss of 5NN classifier with
i.i.d. CIFAR-10 dataset.

Fig. 3: Evaluation of learning performance on fading channels.

test accuracy and train loss according to the communication
rounds on the fading channels.

For the MLP with the i.i.d. MNIST, in the error-free chan-
nels, SOBAA-EFO achieves better performance than SOBAA-
EFX and OBDA. However, it achieves slightly lower perfor-
mance than EFOBDA, which is because aggregating only the
sign (EFOBDA) may achieve better learning performance than
aggregating both the sign and the magnitude (SOBAA-EFO)
depending on the dataset and model [8]. However, the test
accuracy and train loss gap are significantly small (i.e., 0.003
and 0.009, respectively). In fading channels, SOBAA-EFO
achieves the same ranking as shown in Figs. 3a and 3d.

For the 4NN with the non-i.i.d. MNIST, in error-free chan-
nels, SOBAA-EFO achieves the highest learning performance,
followed in order by EFOBDA, SOBAA-EFX, and OBDA. In
fading channels, SOBAA-EFO achieves the same ranking as

shown in Figs. 3b and 3e, but SOBAA-EFX has a little bit
higher train loss than OBDA due to layer-wise sparsification.

For the 5NN with the i.i.d. CIFAR-10, in error-free chan-
nels, SOBAA-EFO achieves the highest learning performance,
followed in order by SOBAA-EFX, EFOBDA, and OBDA
with test accuracy, but followed in order by EFOBDA,
SOBAA-EFX, and OBDA with train loss. In fading channels,
SOBAA-EFO achieves the same ranking with test accuracy as
shown in Fig. 3c, but it has a little bit higher train loss than
EFOBDA due to layer-wise sparsification as shown in Fig. 3f.

Therefore, the proposed SOBAA showed a better learning
performance as the classifier and dataset became more com-
plex. Notably, for the 5NN with the i.i.d. CIFAR-10, SOBAA-
EFX achieves better test accuracy than EFOBDA.
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(a) Compression ratio of MLP classifier
with i.i.d. MNIST dataset.

(b) Compression ratio of 4NN classifier
with non-i.i.d. MNIST dataset.

(c) Compression ratio of 5NN classifier
with i.i.d. CIFAR-10 dataset.

(d) Communication cost of MLP classifier
with i.i.d. MNIST dataset.

(e) Communication cost of 4NN classifier
with non-i.i.d. MNIST dataset.

(f) Communication cost of 5NN classifier
with i.i.d. CIFAR-10 dataset.

Fig. 4: Evaluation of communication efficiency.

B. Evaluation of Communication Efficiency

In each communication round t, the compression ratio is
defined as [45]

Compression ratio =
1

32J

I∑
i=1

Jis
t
i, (55)

where 32 denotes the number of bits by FloatTensor of the
Pytorch library. Based on (55), Figs. 4a, 4b, and 4c showed
that the proposed SOBAA optimized the gradient compres-
sion ratio along with the communication round compared to
conventional methods. Unlike OBDA and EFOBDA, which
show a fixed compression ratio of 1/32 across all classifiers
and all datasets, SOBAA-EFX shows a different compression
ratio according to the communication round.

Then, we compared the proposed SOBAA with the conven-
tional schemes in terms of the trade-off between the communi-
cation cost and test accuracy (i.e., the required communication
cost to obtain a target test accuracy). When the target accuracy
is not achieved, the communication cost is calculated as J×T .
As presented in Figs. 4d, 4e and 4f, the communication cost of
OBDA increases dramatically as the test accuracy increases,
exhibiting the worst trade-off. Moreover, OBDA may fail to
achieve a 0.95, 0.95, and 0.6 test accuracy on the MLP, 4NN,
and 5NN, respectively. In addition, the trade-off for EFOBDA
is improved much more than that for OBDA because EFOBDA
achieved a faster convergence rate than OBDA due to the error-
feedback mechanism and power control optimization, resulting
in lower required communication costs than OBDA. Notably,

SOBAA-EFX achieved a better trade-off than EFOBDA except
for 0.95 target test accuracy on the MLP and 4NN. However,
SOBAA-EFO provides the best trade-off. For a 0.95 target test
accuracy, compared to EFOBDA, SOBAA-EFO has 70.5%
and 59.8% reduced communication costs on the MLP and
4NN, respectively. In addition, for a 0.7 target test accuracy,
SOBAA-EFO has 59.6% reduced communication cost on the
5NN, compared to EFOBDA.

C. Effect of Device Population

In Fig. 5, we set the maximum communication round
T to 50 and compared the proposed SOBAA with other
methods in terms of the test accuracy according to the number
of devices K. For all methods, as K decreases, the test
accuracy decreases because the small K results in the small
training samples that can be utilized. In particular, it degrades
exponentially fast when K goes below a certain threshold.

Furthermore, we showed the robustness of the proposed
methods by comparing the test accuracy with K = 25 and
5. When the number of devices k decreases from 25 to 5, for
the MLP with i.i.d. MNIST, the test accuracy of the proposed
SOBAA-EFO decreases only by 0.006, and it can be seen
that SOBAA-EFO is more robust than OBDA and SOBAA-
EFX, and a little bit less robust than EFOBDA. For the 4NN
with non-i.i.d. MNIST and the 5NN with CIFAR-10, the test
accuracy of the proposed SOBAA-EFO decreases only by
0.01, and it can be seen that SOBAA-EFO is more robust
than OBDA, EFOBDA, and SOBAA-EFX.



13

(a) Test accuracy of MLP classifier with
i.i.d. MNIST dataset.

(b) Test accuracy of 4NN classifier with
non-i.i.d. MNIST dataset.

(c) Test accuracy of 5NN classifier with
i.i.d. CIFAR-10 dataset.

Fig. 5: Effect of device population.

(a) Test accuracy of MLP classifier with
i.i.d. MNIST dataset.

(b) Test accuracy of 4NN classifier with
non-i.i.d. MNIST dataset.

(c) Test accuracy of 5NN classifier with
i.i.d. CIFAR-10 dataset.

Fig. 6: Effect of network condition.

D. Effect of Network Condition

In Fig. 6, we set the maximum communication round T to
50 and compared the proposed methods with other methods
in terms of the test accuracy according to the noise power σ2.
For all methods, as σ2 increases, the test accuracy decreases
because the signal distortion by noise (i.e., the negative effect
of noise) is increased, and its degradation goes exponentially
fast when σ2 goes beyond a certain threshold. Moreover, for
both SOBAA-EFO and SOBAA-EFX, the WCE almost does
not change while the WAE increases proportionally degrading
the convergence rate and learning performance. However, the
proposed SOBAA can mitigate this degeneration by adopting
an appropriate weight factor θ.

Thus, we showed the robustness of the proposed methods by
comparing the test accuracy with σ2 = 10−4 and 1. When the
noise power σ2 increases from 10−4 to 1, for the MLP with
i.i.d. MNIST, the test accuracy of the proposed SOBAA-EFX
decreases only by 0.0004, and it can be seen that SOBAA-
EFX is more robust than OBDA, EFOBDA, and SOBAA-EFO.
For the 4NN with non-i.i.d. MNIST, the test accuracy of the
proposed SOBAA-EFO decreases only by 0.003, and it can
be seen that SOBAA-EFO is more robust than OBDA and
SOBAA-EFX, but a little bit less robust than EFOBDA. For
the 5NN with CIFAR-10, the test accuracy of the proposed
SOBAA-EFO decreases only by 0.007, and it can be seen

that SOBAA-EFO is more robust than OBDA, EFOBDA, and
SOBAA-EFX.

VI. CONCLUSION

For communication-efficient FL, a framework for realizing
distributed machine learning, many over-the-air transmission
schemes have been proposed. However, in FLOA, some
problems remain, such as a slow convergence rate caused
by compression and aggregation errors. This work addressed
this problem by proposing the SOBAA scheme, incorporat-
ing layer-wise scaled one-bit quantization, layer-wise sparsi-
fication, error-feedback mechanism, and power control into
FLOA. We derived the upper bound of the convergence rate
of the proposed method as a closed-form expression. From
this, we identified the relationship between the convergence
rate and aggregation and compression errors. Based on this
relationship, we determined a compression ratio and transmit
power that minimizes compression and aggregation errors,
leading to the fastest convergence. The optimization problem
was decomposed and solved with polynomial complexity.
From this solution, we characterized the trade-off between
learning performance and the communication cost. Through
extensive simulations with the i.i.d. and non-i.i.d. datasets, we
confirmed that the proposed SOBAA approach provides an
enhanced trade-off between test accuracy and communication
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cost and an enhanced convergence rate compared to state-of-
the-art approaches. The proposed approach is more effective
with complex datasets and learning models.

APPENDIX

A. Proof of Lemma 1

According to (7), (11), and Assumption 1, the compression
error ct+1

k is bounded layer-wise as∥∥∥ct+1
k,i

∥∥∥2
2
=
∥∥C(ut

k,i)− ut
k,i

∥∥2
2
≤
(
1− stiδ

) ∥∥ut
k,i

∥∥2
2

=
(
1− stiδ

) ∥∥∥∥∥
t∑

τ=Si+1

λgτ
k + cSi+1

k

∥∥∥∥∥
2

2

. (56)

Thus, we have the recurrence relation on the bound. Using the
Peter-Paul inequality with any η > 0, Jensen’s inequality, and
Assumption 4, we obtain

∥∥∥ct+1
k,i

∥∥∥2
2
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2

≤
(
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)
(1 + 1/η) (t− Si)

2
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+
(
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)
(1 + η)

∥∥∥cSi+1
k
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2
. (57)

To solve the recurrence relation, we defined the memory mi ∈
{0, . . . , Si} that stores all Si from the past to the present. By
applying (56) and (57) to all communication rounds stored in
mi, we obtain

E
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where n ∈ {1, . . . , Ni} is the address n. In addition, we set
η = δ

2(1−δ) . Then, according to Jensen’s inequality,
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which completes the proof.

B. Proof of Theorem 1
Following the widely adopted strategy in this proof under

Assumption 3, we considered the non-compression scenario
that sets the actual parameter vector wt to be an approximation
to the ideal parameter vector ŵt, defined as

ŵt = wt − 1

D

K∑
k=1

Dkc
t
k. (60)

Then, we have Lemma 3.

Lemma 3. The ideal parameter vector ŵt is updated as

ŵt+1 = ŵt − λgt − at. (61)

Proof: See Appendix C.
According to Assumption 3, in each communication round,

the global loss function F(·) with ŵt+1 is bounded by

F(ŵt+1) ≤ F(ŵt) +
(
ŵt+1 − ŵt
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By Assumption 4,
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+
L

2
E
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On the RHS of (63), the second term is bounded by the Peter-
Paul inequality with any ρ > 0 as

λ∇F(wt)
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2
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2
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2
, (64)
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where the second term on the RHS is bounded by Assump-
tion 3 and Lemma 1 as
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Therefore, the second term on the RHS of (63) is bounded by
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Then, the last term on the RHS of (63) is bounded by Jensen’s
inequality, Assumption 4, and Lemma 2 as
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By inserting (66) and (67) into (63), we obtain
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According to Assumption 2, we rearrange the terms and take
the average over t on both sides as
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where L and ρ are set to 1/λ and 2 − δ, respectively, for a
simpler expression without compromising generality, then
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which completes the proof.

C. Proof of Lemma 3

By sequentially inserting (18), (17), (11), and (7) into (60),
we obtain

ŵt+1 = wt+1 − 1

D

K∑
k=1

Dkc
t+1
k

= wt − ũt − 1
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Then, we complete the proof.

D. Proof of Theorem 2

Based on ut
k = λgt

k and ctk,i = λgt
k,i − C(λgt

k,i), we have
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According to Assumption 3, in each communication round t,
the global loss function F(·) with wt+1 is bounded by
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By Assumption 4,
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For a simpler expression without compromising generality, L
is set to 1/λ. Then, ∥ctk,i∥22 ≤ (1− stiδ)λ

2G2
i according to

Assumption 1. Thus, by Lemma 2 and Jensen’s inequality,
(74) is bounded as
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According to Assumption 2, we rearrange the terms and take
the average over t on both sides as
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Then, we complete the proof.
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[32] Y. Sun, S. Zhou, and D. Gündüz, “Energy-aware analog aggregation for
federated learning with redundant data,” in Proc. IEEE ICC, Dublin,
Ireland, Jun. 2020, pp. 1–7.

[33] X. Fan, Y. Wang, Y. Huo, and Z. Tian, “Joint optimization of com-
munications and federated learning over the air,” IEEE Trans. Wireless
Commun., vol. 21, no. 6, pp. 4434–4449, Jun. 2022.

[34] W. Guo, R. Li, C. Huang, X. Qin, K. Shen, and W. Zhang, “Joint device
selection and power control for wireless federated learning,” IEEE J. Sel.
Areas Commun., vol. 40, no. 8, pp. 2395–2410, Aug. 2022.

[35] N. Zhang and M. Tao, “Gradient statistics aware power control for over-
the-air federated learning,” IEEE Trans. Wireless Commun., vol. 20,
no. 8, pp. 5115–5128, Aug. 2021.

[36] X. Cao, G. Zhu, J. Xu, Z. Wang, and S. Cui, “Optimized power control
design for over-the-air federated edge learning,” IEEE J. Sel. Areas
Commun., vol. 40, no. 1, pp. 342–358, Jan. 2022.

[37] X. Cao, G. Zhu, J. Xu, and S. Cui, “Transmission power control for
over-the-air federated averaging at network edge,” IEEE J. Sel. Areas
Commun., vol. 40, no. 5, pp. 1571–1586, May 2022.

[38] G. Zhu, J. Xu, K. Huang, and S. Cui, “Over-the-air computing for
wireless data aggregation in massive IoT,” IEEE Wireless Commun.,
vol. 28, no. 4, pp. 57–65, Aug. 2021.

[39] S. Zheng, Z. Huang, and J. T. Kwok, “Communication-efficient dis-
tributed blockwise momentum SGD with error-feedback,” in Proc.
NeurIPS, Vancouver, BC, Canada, Dec. 2019, pp. 11 450–11 460.

[40] E. Ozfatura, K. Ozfatura, and D. Gündüz, “Time-correlated sparsification
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