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Capability Maximization in Fog-Enabled Connected
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Abstract—Technological advances in fog computing are pre-
cipitating an evolution in conventional vehicle networks to a
new paradigm called fog-enabled connected vehicle networks
(FCVNs). FCVNs provide communication efficiency for ensuring
safe transportation through the massive Internet of vehicles.
In FCVNs, massive vehicles tend to associate with roadside
units and high power nodes, which act as fog nodes (FNs),
when they have a good channel quality and/or popular contents.
This circumstance may lead to a load imbalance among the
FNs. This problem significantly decreases the resource utilization
efficiency and service capability of the networks. In this paper,
we propose a dynamic resource orchestration (DRO) scheme
to harmonize resource allocation for connected vehicles by
migrating the offloaded services among FNs. A graph-theoretic
approach is utilized to transform the FCVN into a directed
graph model, where the maximum resource reduction obtained
by service migrations is considered the weight of the link
between every two FNs. Subsequently, the maximum weight
matching solution is used to determine optimal pairs of FNs
for migrating services to maximize network resource utilization.
Our simulation results reveal that the proposed DRO scheme
achieves significant improvements in terms of service capability,
throughput, and resource utilization efficiency as compared with
existing algorithms.

Index Terms—fog-enabled connected vehicle networks, re-
source orchestration, service capability, matching algorithm.

I. INTRODUCTION

The rapid growth of communication technologies in the
Internet of things paradigm has marked a milestone in the
development of vehicle networks for smart transportation,
wherein millions of vehicles may be connected and commu-
nicate over the Internet [1]. Advanced vehicle networks may
support various applications that require complex data process-
ing, high precision, and real-time responses (e.g., self-driving
cars, navigation, and augmented reality assistants) for ensuring
driving safety, traffic efficiency, and great convenience in
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transportation [2]. These applications are characterized by
relatively high data communication, computation, and storage
capacity requirements, which present great challenges to ex-
isting vehicle networks. In this context, fog-enabled connected
vehicle networks (FCVNs) that integrate fog computing into
conventional vehicle networks have emerged as a promising
candidate to satisfy these requirements [3], [4]. Fig. 1 il-
lustrates the architecture of FCVNs. In FCVNs, high power
nodes (HPNs) are deployed to provide wide-area coverage and
execute the control operations. The HPNs are interconnected
via crosshaul links and coordinated by a central orchestrator,
which interfaces between the HPNs and the cloud servers in
the Internet. In contrast, roadside units (RSUs) are equipped
with local caches, in which the interesting contents can be
stored, as well as with computing processors for handling
offloaded services, and are deployed mainly in close proximity
to connected vehicles [5]. This allows the connected vehicles
to access and request services promptly at a high-speed rate
and very low transmission and computing latency. These RSUs
are controlled by the HPNs. In the fog computing perspective,
HPNs and RSUs are in general considered fog nodes (FNs).

The exploding number of smart vehicles that generate very
large amounts of data each day has resulted in a significant
increase in bandwidth consumption and competition, in the
sense that a connected vehicle must compete against other
devices for finite bandwidth [6]–[9]. To evaluate the resource
utilization efficiency in FCVNs, the service capability, which
represents the availability of the network for serving connected
vehicles such that their diverse requirements are met, is
considered a key criterion [10]. In other words, the service
capability of a network is determined by the percentage of
remaining resources relative to the total network resources.

Owing to radio resource constraints, efficient resource man-
agement for improving service capability is considered an
emerging challenge in FCVNs [11]. For instance, some FNs
tend to be heavily utilized by a very large number of connected
vehicles when the FNs have a good signal-to-interference-
plus-noise ratio (SINR), popular caching contents, or/and a
high processing ability [12], [13]. This drives device associa-
tion to apply either signal-aware (SA), content-aware (CoA),
or capacity-aware (CaA) approaches. With the objective of
providing a higher data rate and service quality, the device
association in the SA approach prefers FNs that have a high
signal quality [14]. Although this approach can achieve better
network throughput and spectral efficiency, it also causes
an imbalance among FNs, which can seriously degrade the
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Fig. 1. Fog-enabled connected vehicle network architecture.

network service capability and availability. In contrast, the
CoA approach focuses on directing users to associate with FNs
that have their favorite contents [15]. This approach obtains
a lower content-access latency and better service experiences.
However, the resource utilization efficiency is not considered,
resulting in a decrease in the service capability for massive
numbers of connected vehicles. Finally, the CaA approach
drives user association with respect to the resource availability
of the FNs [16]. Although this approach addresses the resource
imbalance and unfairness among FNs, it cannot ensure their
service capability for massive numbers of connected vehicles
owing to the low resource utilization efficiency [17].

In the aforementioned approaches, a device is associated
with its preferred FNs without systematic orchestration; thus,
these FNs may suffer from overload situations, whereas the
other FNs are free. This circumstance leads to an imbalance
in the resource utilization among FNs. Hence, this negatively
affects the uplink services of connected vehicles. Because of
the inefficient resource utilization, the uplink service quality
of vehicles may not be guaranteed when connected to popular
FNs (a.k.a the most preferred FNs).

To address these problems, we propose a dynamic re-
source orchestration (DRO) scheme to harmonize the resource
scheduling among FNs for upstream offloading services to
improve their service capability. On the basis of graph theory,
the DRO scheme considers FNs as vertices, and the weight
of the edge between two vertices is provided by the amount
of maximum resource reduction when optimal service mi-
gration is conducted among the FNs. The optimal service
migration in each pair of FNs for minimizing the resource
utilization is obtained by using the steepest descent method.
Finally, the maximum weight matching solution determines
the optimal pairs of FNs for migrating connected vehicle
services to achieve service capability maximization. The main
contributions of this paper are summarized as follows.

• We present a graph model of FCVNs and formulate their
characteristics that affect the network service capability

and resource utilization efficiency.
• We propose the DRO scheme, which uses the steepest

gradient method and maximum weight matching solution
to harmonize resource allocation for connected vehicles
by migrating the offloaded connected vehicle services
among FNs.

• We describe rigorous simulations that demonstrate the ef-
fectiveness of the proposed DRO scheme. The evaluation
results demonstrate that the proposed DRO scheme not
only outperforms existing schemes but also achieves an
approximation to the exact solution in terms of the service
capability, throughput, and serviceability.

This paper is organized as follows. Section II summarizes
the related work. Section III presents the problem statement
and formulation. The DRO scheme for optimizing the network
service capability is presented in Section IV. In Section V, we
evaluate and analyze the effectiveness of the proposed DRO
scheme. Finally, Section VI concludes the paper.

II. RELATED WORKS

As aforementioned in Section I, connected vehicle associa-
tion is driven mostly by the SA, CoA, and CaA approaches.
The application of each approach may achieve a better network
performance for downlink services in terms of throughput and
serviceability, as well as spectral efficiency. However, these
approaches may lead to a load imbalance among FNs that may
negatively affect the uplink services of the connected vehicles.
This means that the optimal connection for a downlink may
not be optimal for an uplink [18]. Recently, several researchers
have aimed to resolve the load balancing problem with the
objective of achieving the optimal resource allocation for the
networks [19]–[21]. The resource scheduling algorithms in
FCVNs can be classified based on their objectives including
throughput, spectral efficiency, serviceability, and hybrid opti-
mizations.

A. Throughput

According to these approaches, He et al. [22] proposed
a semi-Markov decision process (SMDP) based resource al-
location scheme to facilitate video streaming applications
in heterogeneous cognitive vehicular networks. The scheme
can boost the bandwidth utilization of the entire network
to improve video streaming quality for vehicle users but
cannot improve the network resource balancing, as well as
serviceability. In contrast, Zheng et al. [23] proposed joint load
balancing of the downlink and uplink for interference coordi-
nation in heterogeneous networks while considering different
service classes. They presented the problem as mixed binary
integer programming and provided a relaxed-rounding solution
to their model. Although their proposed algorithm can obtain
the desired load balance and user data throughput, it cannot
improve the network service capability. Aiming at maximizing
the downlink sum-rate, Vu et al. [24] proposed a strategy that
uses the Hungarian method for resource scheduling in fog-
enabled radio access networks.
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B. Spectral efficiency

Although the aforementioned method can provide data rate
optimization, it cannot obtain resource efficiency because of
the non-exact solution. Meanwhile, a number of research
studies have been conducted on spectral efficiency, which is
a well-known typical metric for network evaluation. Several
researchers have aimed at improving this feature by using
optimization techniques [25], game theoretical models [26],
etc., as indicated by the thorough survey in [12].

C. Serviceability

On the other hand, an adaptive resource balancing (ARB)
scheme was proposed in [27] for serviceability maximization
in fog radio access networks. By migrating the services among
remote radio heads (RRHs), the algorithm can resolve the
imbalance among cells and optimize network serviceability.
However, resource utilization efficiency was not considered.
Such single-objective approaches can achieve the best opti-
mization in one perspective of the network. However, they
do not consider other metrics that may decrease the network
performance.

D. Hybrid optimization

In contrast, hybrid approaches are aimed at orchestrating
the network resource to obtain a combined optimization for
multiple metrics as mentioned above. For instance, to balance
the load among cells in terms of user throughput and service
capability, Xin et al. [28] proposed a joint user association
and user scheduling for load balancing over the downlink of
a wireless heterogeneous network, which they achieved by
addressing a network-wide utility maximization problem. They
approximated the nonconvex throughput achieved with user
scheduling to a concave function and implemented a joint
user association and user scheduling algorithm by exploit-
ing a distributed convex optimization technique. Meanwhile,
Cordeschi et al. [29] proposed a reliable adaptive resource
management scheme for cognitive cloud vehicular networks
to allow energy- and computing-limited car smartphones to
utilize the available vehicle-to-infrastructure WiFi connections
for performing traffic offloading to local or remote clouds.
Their approach improved significantly the bandwidth and
energy resource utilization in the network. Moreover, a number
of joint algorithms were proposed in [30]–[32] aimed at
obtaining load balancing, energy efficiency, and interference
mitigation in heterogeneous cellular networks. Although these
proposed algorithms significantly improve network through-
put, serviceability, and energy efficiency, they cannot achieve
resource utilization efficiency. In general, multiple-objective
approaches can improve the network performance in terms of
multiple metrics. However, the solving of these problems is
complicated and obtains only an incomplete optimal solution.

Existing approaches have significantly contributed to im-
proving the performance of FCVNs; however, most face
drawbacks, such as high computational complexity, standalone
metric optimization, and non-optimal solutions. In this paper,
we propose a DRO scheme that can overcome the issues to

TABLE I
KEY NOTATION DESCRIPTION

Notation Description
N Number of FNs
R Radius of FN coverage area
λ Mean arrival rate of connected vehicles
µ Mean departure rate of connected vehicles
Ci Capacity of the ith FN (unit: RB)

Oi (t) Current occupied capacity of the ith FN assigned
to connected vehicles at time slot t

Ai (t) Remaining capacity of the ith FN at time slot t
Si (t), S(t) Current service capability of the ith FN and the

network at time slot t, respectively
pi Probability that a connected vehicle associates with

the ith FN
Din

i (t), D
out
i (t) Set of connected vehicles arriving and departing

to/from the ith FN at time slot t, respectively
Dcov

i j (t) Set of connected vehicles located in the coverage
area of the ith and jth FNs at timeslot t

Di (t) Set of connected vehicles associated in the ith FN
at time slot t

D
f ea
i j (t) Set of connected vehicles that is feasible for service

migration between the ith FN and the jth FN at
timeslot t

bi j Number of resource blocks required from the ith
FN to satisfy the data rate rj of the jth connected
vehicle

d∗i j (t) Optimal set of connected vehicles for service mi-
gration from FN i to FN j at time slot t

Wi j (t) Weight that is obtained when service migrations of
the connected vehicles between FN i and FN j at
time slot t are conducted

obtain network service capability optimization, as well as to
achieve improvements in terms of throughput and serviceabil-
ity for resource allocation in FCVNs.

III. PROBLEM STATEMENT

We consider the FCVN system model in terms of com-
munication and spectral resource management, as depicted in
Fig. 1. The FNs are managed by a central orchestrator and
geographically distributed according to the local traffic density.
Without loss of generality, the arrival rate and departure rate
of the connected vehicles to/from the network are assumed
to follow a Poisson process with a mean value λ and an
exponential process with a mean value µ, respectively. A list
of the key notations used in this paper is provided in Table I.

We assume that the jth connected vehicle issues a request for
services with the required data rate rj to the FNs. Therefore,
the number of resource blocks (RBs) bi j that the ith FN must
assign to the jth connected vehicle [33] is derived as

bi j =
⌈

rj
∆ f log2(1 + SINRi j)

⌉
, (1)

where bi j ∈ N, ∆ f is the bandwidth that one RB utilizes
during 1 ms (i.e., 180 KHz [34]) and SINRi j is the signal-
to-interference-plus-noise ratio (SINR) on the data channel
between the ith FN and the jth connected vehicle [35].

The set of connected vehicles arriving at the ith FN at
time slot t is defined as Din

i (t). Let Dout
i (t) be a set of

connected vehicles departing from the ith FN at timeslot t,
as their offloaded workloads have been successfully executed
and returned by the computing entities. In this circumstance,
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we denote the mean departure rate of the connected vehicles
from the network by µ. It is readily observed that

E

[
N∑
i=0
|Dout

i (t)|

]
= µ, (2)

where N is the number of FNs in the network. Because of the
resource constraints, the FNs can serve only a limited number
of connected vehicles at timeslot t, defined as Di(t). The set
Di(t) can be derived as

Di(t) = Di(t − 1) ∪ Din
i (t)\D

out
i (t). (3)

Accordingly, we can obtain the remaining RBs Ai(t) of the ith
FN after it has been occupied by connected vehicles as

Ai(t) = Ci −Oi(t) = Ci −

|Di (t) |∑
j=0

bi j, (4)

where Ci and Oi(t) are the capacity and occupied RB of the
ith FN at timeslot t, respectively. Following the definition of
service capability in Section I, the service capability of the ith
FN at timeslot t is given by

Si(t) =
Ai(t)
Ci

. (5)

Similarly, we obtain the service capability of the network at
timeslot t as

S(t) =
∑N

i=0 Ai(t)∑N
i=0 Ci

. (6)

Under the popular contents and signal intensity effects,
interesting FNs may attract a massive amount of incoming
connected vehicles. The number of connected vehicles |Di(t)|
arriving at these FNs rapidly increases in the cumulative time.
This leads to the FNs reaching overcapacity and becoming
unable to provide the service capability because of resource
limitations. However, the new incoming connected vehicles
that do not have sufficient competitive capability to be served
by the best FNs are served by the FNs that have poorer
conditions (e.g., a low SINR). This means that these connected
vehicles will consume a larger number of the RBs bi j to satisfy
their desired requirements (e.g., data rate and latency). This
problem leads to a decrease in both the resource utilization
efficiency and the service capability of the network.

With the objective of alleviating the burden on the interest-
ing FNs by balancing resources among the FNs, as well as
optimizing the resource utilization efficiency, we propose the
DRO scheme, which conducts service migration among FNs to
achieve service capability maximization. We observe that the
services of a connected vehicle can be migrated between two
FNs only if the connected vehicle is located in the overlapped
coverage and served by those two FNs.

The service migration among FNs for minimizing the RB
occupation in resource-constrained FCVNs is presented as
a matching problem. In a directed graph model of FNs,
the matching weight between the FNs is determined by the
maximum reduction of the occupied RBs when the services of
the connected vehicles are moved between the FNs. A dynamic
algorithm based on the steepest gradient method for finding

the matching weight between two FNs is proposed. Finally, we
address the maximum weight matching algorithm to achieve
the optimal service migrations among the FNs, which results
in resource utilization efficiency optimization, as well as in
service capability maximization.

IV. DYNAMIC RESOURCE ORCHESTRATION

A. Matching Problem

We consider a graph model G(V, E) of N FNs, where
V and E are the set of vertices of FNs and edges among
FNs, respectively. Let D f ea

i j (t) be a set of connected vehicles
for which services can feasibly me migrated between the
ith and jth FNs at timeslot t. The edge between FN i and
FN j is feasible if these FNs have at least one connected
vehicle in the overlapped coverage served by these FNs. This
means that the set of connected vehicles for which services
can feasibly be migrated is D f ea

i j (t) , �. Matching in a
graph is defined by a set of edges without common vertices.
Accordingly, maximum weight matching is a matching that has
the maximum weight sum of the edges [36]. The maximum
weight matching problem for maximizing the reduction in
RB occupation when the services of connected vehicles are
migrated among FNs can be formulated as

max
N∑
i=1

N∑
j=1

xi jWi j(t) (7)

s.t. xi j ∈ {0, 1}, (8)
xi j = xji ∈ {0, 1}, ∀i, j = 1, 2, . . . , N, (9)
N∑
i=1

xi j ≤ 1, ∀ j = 1, 2, . . . , N, (10)

N∑
j=1

xi j ≤ 1, ∀i = 1, 2, . . . , N, (11)

where the indicator xi j is given by

xi j ,


1 if the services of connected vehicles are migrated

between ith and jth FNs;
0 otherwise,

(12)
and Wi j is the matching weight that can be determined by the
maximum occupied RB reduction when service migration of
the connected vehicles between the ith and jth FNs at timeslot
t is conducted. The optimal service migration between two
FNs for finding the matching weight Wi j can be formulated
as an integer programming problem, which is addressed in
Section III.B. By solving the problem (7), we can minimize
the RB occupation, as well as optimize the resource utilization
efficiency, thereby maximizing the service capability.

B. Optimal Service Migration

The optimal service migration of connected vehicles be-
tween the ith and jth FNs is that which achieves the maximum
reduction in RB occupation while guaranteeing the quality
of service of the connected vehicles. We define the set of
connected vehicles located in the overlapped coverage area
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of the ith and jth FNs as Dcov
i j (t). As previously mentioned,

it is observed that the services of connected vehicles can be
migrated between two FNs if these connected vehicles are
served and located in the overlapped coverage area of the two
FNs. The set of connected vehicles D f ea

i j (t) for which services
can feasibly be migrated between the ith and jth FNs can be
determined as

D f ea
i j =

(
Di(t) ∪ Dj(t)

)
∩ Dcov

i j (t), (13)

where Di(t) and Dj(t) are the sets of connected vehicles that
are served by the ith and jth FNs at timeslot t, respectively.
The RBs occupied by the connected vehicles in set D f ea

i j (t)
before the service Oi j(t) is migrated are derived as

Oi j(t) =

|Di (t)∩D
f ea
i j (t) |∑

k=1
bik +

|D j (t)∩D
f ea
i j (t) |∑

k=1
bjk . (14)

Let D∗i (t) and D∗j (t) be the sets of connected vehicles associ-
ated in the ith and jth FNs after optimal service migration has
been conducted. Thus, the RBs occupied by these connected
vehicles in set D f ea

i j (t) after service migration O∗i j(t) can be
obtained by

O∗i j(t) =

|D∗i (t)∩D
f ea
i j (t) |∑

k=1
bik +

|D∗j (t)∩D
f ea
i j (t) |∑

k=1
bjk . (15)

Accordingly, the weight matching Wi j(t) is the marginally
occupied RBs after the services between are moved the ith
and jth FNs, given as

Wi j(t) = Oi j(t) −O∗i j(t). (16)

Similarly, the optimal set of connected vehicles for service
migrations from the ith FN to the jth FN and its converse are
defined as d∗i j(t) and d∗ji(t), respectively, derived as{

d∗i j(t) = Di(t)\D∗i (t),

d∗ji(t) = Dj(t)\D∗j (t).
(17)

With the aim to of maximizing the resource utilization effi-
ciency, we migrate the services of connected vehicles in the
overlapped coverage area of the ith and jth FNs to minimize
the number of RBs occupied by the connected vehicles.
The optimal service migration between FNs i and j can be
formulated as

min
∑

m∈{i, j }

|D
f ea
i j (t) |∑
n=1

bmnxmn (18)

s.t.

|D
f ea
i j (t) |∑
n=1

bmnxmn ≤ δm, ∀m ∈ {i, j}, (19)∑
m∈{i, j }

xmn = 1, ∀n = 1, 2, . . . , |D f ea
i j (t)|, (20)

xmn ∈ {0, 1}, ∀m ∈ {i, j}, ∀n = 1, 2, . . . , |D f ea
i j (t)|, (21)

where the indicator xmn is given by

xmn ,


1 if the services of the n-th connected vehicle are

migrated to the m-th FN;
0 otherwise,

(22)
and 

δi = Ai(t) +
∑ |Di (t)∩D

f ea
i j (t) |

k=1 bik,

δj = Aj(t) +
∑ |D j (t)∩D

f ea
i j (t) |

k=1 bjk .
(23)

The constraint (19) ensures that the RBs occupied by the
connected vehicles when services are moved do not exceed the
capacity of the FNs. By addressing the problem in (18), we
obtain the matching weight Wi j(t), optimal set d∗i j(t), and d∗ji(t)
of the connected vehicles for the optimal service migration
between the ith and jth FNs. We define

Xm =

{
(xmn)

|D
f ea
i j (t) |

n=1 |(19) and (21) are satisfied
}

=

{
(xkmn)

|D
f ea
i j (t) |

n=1 |k = 1, 2 . . . ,Km

}
,

(24)

where Km is the maximum number of elements in Xm and

(xkmn)
|D

f ea
i j (t)

n=1 is the k-th element of the set Xm. The certain
values of xmn, n = 1, 2, . . . , |D f ea

i j (t)| fulfill the constraints in
(19) and (21) only if

xmn =

Km∑
k=1

ykmxkmn, n = 1, 2, . . . , |D f ea
i j (t)|, (25)

where
∑Km

k=1 y
k
m = 1 and ykm ∈ {0, 1}. Then, the problem in

(18) is equivalent to

min
∑

m∈{i, j }

|D
f ea
i j (t) |∑
n=1

Km∑
k=1

bmny
k
mxkmn

=
∑

m∈{i, j }

Km∑
k=1

©­­«
|D

f ea
i j (t) |∑
n=1

bmnxkmn

ª®®¬ ykm
(26)

s.t.
∑

m∈{i, j }

Km∑
k=1

ykmxkmn = 1, ∀n = 1, 2, . . . , |D f ea
i j (t)|, (27)

Km∑
k=1

ykm = 1, ∀m ∈ {i, j}, (28)

ykm ∈ {0, 1}, ∀m ∈ {i, j}, k = 1, 2, . . . ,Km. (29)

Let un and wm be the dual variables associated with the con-
straints in (27) and (28), respectively. The linear programming
dual problem of the continuous relaxation of the equivalent
problem in (26) can be obtained by

max
∑

m∈{i, j }

wm +

|D
f ea
i j (t) |∑
n=1

un (30)

s.t.

|D
f ea
i j (t) |∑
n=1

xkmnun + wm ≤

|D
f ea
i j (t) |∑
n=1

bmnxkmn,

∀m ∈ {i, j}, k = 1, 2, . . . ,Km.

(31)
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Moreover, it is observed that the constraint in (31) is equivalent

to wm ≤
∑ |D f ea

i j (t) |

n=1 (bmn − un)xkmn. This means that wm ≤

min
∑ |D f ea

i j (t) |

n=1 (bmn − un)xmn = max
∑ |D f ea

i j (t) |

n=1 (un − bmn)xmn.
Thus, the dual problem can be represented as

max

|D
f ea
i j (t) |∑
n=1

un

+
∑

m∈{i, j }


max

∑ |D f ea
i j (t) |

n=1 (un − bmn)xmn

s.t.
∑ |D f ea

i j (t) |

n=1 bmnxmn ≤ δm,

xmn ∈ {0, 1}, n = 1, 2, . . . , |D f ea
i j (t)|.

(32)

Further, the problem in (32) is equivalent to finding ϕ∗ =
max
u≥0

ϕ(u), where ϕ(u) is given by

max f (x) = −
∑

m∈{i, j }

|D
f ea
i j (t) |∑
n=1

bmnxmn

+

|D
f ea
i j (t) |∑
n=1

un
©­«1 +

∑
m∈{i, j }

xmn
ª®¬

s.t.

|D
f ea
i j (t) |∑
n=1

bmnxmn ≤ δm, ∀m ∈ {i, j},

xmn ∈ {0, 1}, ∀m ∈ {i, j}, n = 1, 2, . . . , |D f ea
i j (t)|,

(33)

which is the Lagrangian dual problem. It is found that the
problem (33) can be represented as two independent Knapsack
problems [37], wherein m = i and m = j, respectively. Here,
ϕ(u) is transformed to be

max f (x) =
∑

m∈{i, j }

|D
f ea
i j (t) |∑
n=1

(un − bmn) xmn +

|D
f ea
i j (t) |∑
n=1

un

=

|D
f ea
i j (t) |∑
n=1

(un − bin) xin +

|D
f ea
i j (t) |∑
n=1

(
un − bjn

)
xjn

+

|D
f ea
i j (t) |∑
n=1

un

s.t.

|D
f ea
i j (t) |∑
n=1

binxin ≤ δi,

|D
f ea
i j (t) |∑
n=1

bjnxjn ≤ δj,

xin ∈ {0, 1}, ∀n = 1, 2, . . . , |D f ea
i j (t)|,

xjn ∈ {0, 1}, ∀n = 1, 2, . . . , |D f ea
i j (t)|.

(34)

It is observed that the problem in (18) can derive the exact
solution using the branch and bound (BAB) method [38].
However, this method is relatively complicated because of the
computational complexity, O(n2n). In this paper, we propose
a dynamic heuristic scheme based on the steepest descent

method to obtain rapidly the near optimal solution for the
problem in (34), and thus the solution for the problem in
(18). First, the proposed algorithm solves the two Knapsack
problems in (32) with the given u to find the maximum value
of f (x). Thereafter, the steepest descent method [39] is used to
find the optimal u∗ to maximize ϕ(u). A problem arises when
we address the two Knapsack problems separately, in that
we can find two different sets of connected vehicles defined
by x∗i and x∗j . Then, it cannot be ensured that the constraint∑

m∈{i, j } xmn = 1, n = 1, 2, . . . , |D f ea
i j (t)|. This means that we

cannot ensure that a service of connected vehicles is assigned
to an FN. This leads to a solution of the Knapsack problem
that is infeasible. In order to guarantee the feasibility of the
solution after the two Knapsack problems have been solved,
we propose an approximation algorithm that comprises solving
KP1 and KP2:

KP1: max

|D
f ea
i j |∑
n=1
(un − bin)xin (35)

s.t.

|D
f ea
i j (t) |∑
n=1

binxin ≤ δi, (36)

xin ∈ {0, 1}, ∀n = 1, 2, . . . , |D f ea
i j (t)|, (37)

KP2: max
∑

n∈n∗
KP1

[
(un − bjn) − (un − bin)

]
xjn

+
∑

n<n∗
KP1

(un − bjn)xjn

=
∑

n∈n∗
KP1

(bin − bjn)xjn +
∑

n<n∗
KP1

(un − bjn)xjn

(38)

s.t.

|D
f ea
i j (t) |∑
n=1

bjnxjn ≤ δj, (39)

xjn ∈ {0, 1}, ∀n = 1, 2, . . . , |D f ea
i j (t)|, (40)

where sets n∗
KP1 and n∗

KP2 are the solutions of the KP1 and
KP2 problems, respectively. This means that xin = 1 and xjn =
1 if n ∈ n∗

KP1 and n ∈ n∗
KP2, respectively. It is noteworthy that

some elements in set n∗
KP2 might belong to set n∗

KP1. Hence,
set n∗

KP1 must be updated by n∗
KP1 = n∗

KP1\n
∗
KP2.

The proposed scheme is summarized in Algorithm 1. In
this scheme, we initialize the value of u0

n = 0, n =

1, 2, . . . , |D f ea
i j (t)| in the first step. In each step k, we solve the

two Knapsack problems in (32) with the given uk in sequence
to find the maximum value of f (x). The new value uk+1 is up-
dated following the gradient value ∇ϕ(uk) = 1+

∑
m∈{i, j } xmn

with respect to xk at step k. According to the steepest descent
method, the value of ϕ(u) increases after each iteration and
converges to the near optimal value. When the magnitude
| |∇ϕ(uk)| | is less than a very small tolerance ξ, the iteration
stops. Subsequently, we obtain the near optimal value x∗,
which results in Wi j(t), d∗i j(t), and d∗ji(t). The complexity of the
dynamic heuristic algorithm is O(ξ−2nW), where n = |D f ea

i j |

and W = max(δi, δj). Because |D f ea
i j | is large for a massive
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Fig. 2. Example of service migration using the dynamic resource orchestration algorithm.

Algorithm 1 Dynamic Heuristic Algorithm.
Input: D

f ea
i j (t)

Output: Wi j (t), d∗i j (t), d
∗
j i (t)

1: • Initialization
2: uk and xk are u and x at k-th step, respectively, u0 = 0
3: ξ is the tolerance, γ is the step size
4: ∇ϕ(u) = 1 +

∑
m∈{i, j} xmn is the gradient of ϕ(u)

5: repeat
6: Given uk , solve the Knapsack problem in (35) and (38) to derive xk

and max f k (x)

7: uk+1 = uk + γ∇ϕ(uk )

8: k = k + 1
9: until | |∇ϕ(uk ) | | ≤ ξ

10: u∗ = uk and x∗ = xk

11: From x∗, obtain D∗i (t), D
∗
j (t) and Wi j (t) by (20), and d∗i j (t), d

∗
j i (t) by

(21)

number of connected vehicles, the dynamic heuristic algorithm
is relatively effective and allows a fast derivation of the
near optimal value as compared to the BAB method, the
computational complexity of which is O(m2m), where m is
the number of connected vehicles served in the network.

C. Dynamic Resource Orchestration

By obtaining the optimal service migration between two
FNs, we can determine whether the services should be mi-
grated between these two FNs to minimize the amount of their
occupied RBs. With the aim of optimizing the resource utiliza-
tion efficiency, as well as to minimize the amount of occupied
RBs for the entire network, we need to find the pairs of FNs
that allow optimal service migration. The problem is presented
as maximum weight matching in (7) and considered an NP-
hard problem. An exact algorithm was presented by Edmonds
[36] to address the maximum weight matching problem having
a complexity of O(em2), where e and m are the number of
edges and vertices of the graph, respectively. Although the
Edmonds algorithm provides a method to achieve the exact
solution in polynomial time, its complexity is high. With the
objective of decreasing the complexity, we propose a greedy
algorithm for finding the maximum weight matching having
a complexity of O(e log |m|). A DRO scheme is proposed for

Algorithm 2 Dynamic Resource Orchestration.
Input: Set of the FNs Ω, G(V, E)
Output: Set of the matching FNs conducting service migration Φ
1: Find Wi j, i, j = 1, 2, . . . , N by Algorithm 1
2: Φ = �
3: repeat
4: ei j = {e ∈ E |Wi j is the largest}
5: Φ = Φ ∪ ei j
6: E = E\{ei j and all edges incident to ei j }
7: until E == �

migrating services among FNs such as resource harmonization
and efficient resource utilization are achieved, resulting in a
maximized service capability. The DRO scheme is described
in Algorithm 2.

In the first step, the DRO scheme finds all matching weights
(i.e., the weight of the edge) Wi j between two FNs according
to Algorithm 1 presented in Section III.B. In the next step,
the DRO scheme addresses the problem in (7) by finding the
edges (i.e., the matching FNs) in a descending sequence of
the matching weights. The edge that has the largest matching
weight is chosen and updated to the matching FN set Φ.
Because matching involves a set of edges without common
vertices, the chosen edge and all edges incident to it are
removed from the edge set E to guarantee the next finding
iteration. The iteration is completed if the edge set E is empty.
The DRO scheme obtains the set of matching FNs. In other
words, the services of the connected vehicles matching FNs
are migrated to achieve RB occupation minimization, which
results in an optimized resource utilization efficiency.

Fig. 2 illustrates an example of the DRO scheme for
minimizing the number of occupied RBs among FNs. The
red solid lines between connected vehicles and FNs indicate
that the connected vehicles are currently served by the FNs.
Meanwhile, the red dashed lines show that the services of
the connected vehicles are possibly migrated to the FNs.
The numbers on the red lines represent the number of RBs
that the connected vehicles require from the FNs to satisfy
their desired data rates. Moreover, the numbers on the blue
lines determine the maximum resource reduction when optimal
service migrations are conducted in each pair of FNs. The
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optimal service migration for maximizing the occupied RB
reduction is derived by the dynamic heuristic algorithm. In
Fig. 2, two connected vehicles in the overlapped area of FN1
and FN4 are feasible for service migration. In particular, the
total numbers of RBs occupied by these vehicles before and
after conducting service migration are 942 (i.e., 260 + 682)
and 625 (i.e., 412 + 213), respectively. Therefore, the weight
matching (i.e., maximum resource reduction) if migrating
services between FN1 and FN4 is calculated by 932 - 625
= 317. Similarly, we can obtain the weight matching for the
remaining pairs such as {FN1, FN2}, {FN2, FN3}, and {FN3,
FN4}. According to Algorithm 2, the selection of FN pairs
for service migration is based on a descending order of the
matching weights. Therefore, the pair {FN1, FN4} is selected
first owing to its largest matching weight. Consequently, the
next selected pair is {FN2, FN3}. As a result, the maximum
weight matching of the network is 565 (i.e., 317 + 248), and
the matching set involves {FN1 ↔ FN4, FN2 ↔ FN3}. This
means that the services of the connected vehicles should be
migrated between FN1 and FN4 and between FN2 and FN3
to minimize the number of RBs occupied by the connected
vehicles.

D. Computational Complexity Analysis

As analyzed in Sections III.B and III.C, the proposed DRO
scheme finds the optimal service migration among FNs by
using a dynamic heuristic algorithm and then utilizes the
maximum weight matching algorithm to determine the pairs of
FNs for realizing these service migrations. The complexities of
these algorithms are O(ξ−2nW) and O(e log |m|), respectively,
where ξ is the tolerance, n = |D f ea

i j |, W = max(δi, δj), and
m is the number of served connected vehicles in the network.
Hence, the complexity of the DRO scheme is O(ξ−2mnW).
Meanwhile, the complexity of the exact algorithm, i.e., branch
and bound (BAB) [38], is O(m2m). Because n � m, the DRO
scheme introduces a much lower complexity than the BAB
scheme while maintaining an approximate performance (see
the following sections for detailed comparisons).

V. PERFORMANCE EVALUATION

The simulation and evaluation of the performance of our
proposed DRO scheme are described in this section. We
operated a network model including 10∼90 FNs deployed
in a region measuring (500∼1500)2 square meters. During
each timeslot unit, an arbitrary number of service connections
from the connected vehicles arrived at and departed from the
network. The duration of each simulation was 300 timeslots.
One hundred Monte-Carlo simulations were conducted and
the average results were obtained. Table II summarizes the
details of the simulation parameters. To evaluate the effects
of the DRO scheme on individual device associations, we
conducted simulations for three association schemes: the SA,
capacity-aware CaA, and CoA schemes. We also performed
the simulation using additional migration schemes, such as
the ARB [27] and BAB [38] (i.e., the exact solution), to
demonstrate the performance of our method. The effectiveness
of the proposed DRO scheme was determined in terms of the

TABLE II
SIMULATION PARAMETERS

Parameter Value
Network area (500∼1500)2 m2

Number of FNs 10∼90
FN coverage radius (R) 100∼500 m
FN bandwidth {10, 15, 20} MHz
Cumulative number of service con-
nections

6000

Mean arrival rate (λ) 20 service connections/s
Mean departure rate (µ) 10 service connections/s
Desired data rate (rj ) 0.5∼2 Mbps
Timeslot duration 1 s

service capability, serviceability, availability, and throughput.
The serviceability and availability of the network are defined
as the ability of the network to serve connected vehicles within
the desired and minimum requirements (e.g., the throughput
and delay), respectively [27]. In other words, the serviceability
and availability are defined by the percentage of connected
vehicles that are served per cumulative number of connected
vehicles arriving at the network during an interval of time
within the desired and minimum requirements, respectively.
In this study, for determining network availability the mini-
mum data rate of the connected vehicles was considered the
minimum requirement.

Fig. 3 shows the effects of the DRO scheme as compared to
those of the corresponding device association schemes in terms
of network service capability. During the first 100 timeslots,
the service capability rapidly decreases, because the radio
resource is occupied to serve numerous connected vehicles
arriving at the network. In the CaA and CoA approaches,
the resource is not efficiently managed, because their device
association prefers FNs that have a high resource availability
and interesting contents, respectively. This means that the
FNs may allocate a larger amount of RBs for the connected
vehicles to guarantee the data rate requirements because of
the lower SINR. This leads FNs to reach sooner the state
where they are unable to serve connected vehicles, because the
resource is exhausted. Meanwhile, the SA approach overcomes
the shortcomings of the two aforementioned approaches and
achieves better service capability, because the spectral resource
efficiency is considered when the connected vehicles are
associated with the FNs having a high SINR. However, the
problem arises that these FNs may attract an enormous number
of users, resulting in an overcapacity issue, and then these FNs
cannot provide services to new incoming connected vehicles.
This means that the later incoming connected vehicles may be
served by FNs that have a lower SINR, and thus, the network
service capability decreases. By migrating the services of the
connected vehicles among FNs, the resource in the DRO
scheme is orchestrated with the aim of maximizing the spectral
resource utilization, which results in better service capability.
The simulation results show that the DRO scheme significantly
improves the network service capability by up to 37.92%,
44.87%, and 8.04% as compared to the standalone CaA, CoA,
and SA approaches, respectively.

Fig. 4 depicts the aggregate network throughput achieved
by each device association scheme. A comparison of the six
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Fig. 3. Network service capability of six device association schemes.

schemes in more than the first 50 timeslots reveals that the
network throughput steadily increases and the difference in
throughput is small because the capacity of almost all the FNs
is sufficient to serve the incoming connected vehicles with
their required data rate. Thereafter, the cumulative number of
connected vehicles arriving at the network increases rapidly.
This leads to some interesting FNs that have a high SINR,
favorite contents, and/or high resource availability suffering
from an overload. This means that the new incoming con-
nected vehicles may associate with the poorer FNs or drop
from the network, which results in a network throughput
decrease. The SA approach is aimed at maximizing the data
sum-rate, and thus obtains a better throughput performance
than the CaA and CoA approaches. By migrating the services
among FNs, the DRO scheme harmonizes resource occupation,
alleviates the burden on the preferred FNs, and guarantees
resource availability to provide service to the greatest pos-
sible number of connected vehicles, which results in better
network throughput. The simulation results demonstrate the
effectiveness of the DRO scheme in that it improves the
network throughput by up to 43.09%, 34.28%, and 13.96% as
compared to the CoA, CaA, and SA approaches, respectively.

The proposed DRO scheme also significantly improves the
network performance in terms of serviceability, as shown on
the left hand of Fig. 5. The network serviceability is almost
maintained at the maximum value in the first 40 timeslots.
This means that the FNs can ensure services to all incoming
connected vehicles within the expected data rate requirement
in the 0.5–2 Mbps range, because the resource is available.
Subsequently, when the connected vehicles arrive the network
increases. Consequently, the preferred FNs reach overload and
cannot provide services to the new incoming connected vehi-
cles. This leads to a decrease in the serviceability of the net-
work. The DRO scheme maximizes the resource availability,
and thus derives the best serviceability. The simulation results
reveal that the proposed DRO scheme improves performance
by 14.95%, 11.39%, and 4.81% as compared to the CoA, CaA,
and SA approaches, respectively. Similarly, the right part of
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Fig. 4. Aggregate network throughput achieved by each device association
scheme.
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Fig. 5 presents the network availability satisfying the minimum
connected vehicle data rate of 512 Kbps. Because FNs allocate
only the resource amount that ensures the minimum rate, the
capacity is sufficient to serve all incoming connected vehicles
until timeslot 100. As a consequence, the network availability
decreases when the cumulative number of connected vehicles
arriving at the network increases. It is noteworthy that the DRO
scheme may achieve the best improvement when applied to the
SA approach when the FNs rapidly reach overcapacity and a
large number of connected vehicles are associated with the
poorer FNs. In this case, the FNs slowly reach overload in
the SA approach. Hence, the DRO scheme slightly improves
the network availability. The DRO scheme’s effectiveness is
demonstrated in terms of improving network availability by
14.53%, 11.25%, and 1.25% as compared to the standalone
CoA, CaA, and SA approaches, respectively.

Fig. 6 shows a comparison of the six schemes in terms
of the resource utilization efficiency (effRB) of the network.
The height of the box represents the distribution of the effRB
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Fig. 6. Resource utilization efficiency of the network.

of FNs, and the red median line inside the box represents the
effRB of the entire network. It is readily observed that the DRO
scheme provides a better performance in terms of resource
utilization. The DRO scheme can minimize the amount of
occupied RBs of the FNs, thus achieving a better spectral
efficiency. Among the device association schemes, the SA
approach obtains the best effRB, because it considers the signal
quality. The simulation results shows that the application of
the DRO scheme improves resource utilization efficiency by
up to 30.33%, 25.70%, and 11.71% as compared to the CoA,
CaA, and SA schemes, respectively. In addition, a significant
communication latency (lRB) reduction is obtained as a result.
Assume that each connected vehicle remains the number of
assigned RBs from the FNs within all association schemes.
Therefore, a given desired data rate of a connected vehicle
rj = #RB × effRB × lRB. Since rj and #RB are constant,
the lRB is inversely proportional to the effRB. In other word,
communication latency reduction is equal to the effRB as
aforementioned.

Fig. 7 and Fig. 8 present the network throughput and
service capability in comparison with those of other migration
schemes, respectively. During the early timeslots, the FNs
possess a sufficient resource amount to satisfy the services re-
quired by the connected vehicles. Thus, there is little difference
in the network throughput and service capability. Thereafter,
the numerous connected vehicles arriving at the network cause
the FNs to reach overload rapidly. It is observed that the
proposed DRO scheme achieves a better performance than the
ARB scheme and approximately the same performance as the
BAB scheme in terms of throughput and service capability.
This is because the ARB scheme simply migrates the services
of the connected vehicles from the FNs that have a high
resource availability to the FNs that have a low resource avail-
ability to obtain resource balancing among them. This results
in inefficient resource utilization. Meanwhile, our proposed
scheme migrates the optimal services to achieve resource
optimization. The BAB scheme provides the best performance
of all schemes. However, its computational complexity is high.
The effectiveness of the DRO scheme when it has approximate
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Fig. 8. Service capability of three migration algorithms.

results is demonstrated. Furthermore, its complexity is lower
than that of to the BAB scheme. Similarly, Fig. 9 depicts the
network serviceability achieved by each migration scheme. It
can be seen that the DRO scheme obtains better serviceability
than the ARB scheme. In particular, it almost achieves the
optimal results of the BAB scheme. The simulation results
show that the DRO scheme significantly improves the network
throughput, service capability, and serviceability by up to
9.57%, 9.67%, and 3.3% and approximately 0.56%, 0.14%,
and 0.08% as compared to the ARB and BAB schemes,
respectively.

Fig. 10 illustrates the main metrics, serviceability and net-
work throughput, in various network configurations, where the
network area is increased to 1500 × 1500 square meters. In this
topology, the number of FNs and the FN coverage radius are
adjusted in ranges of (10 – 90) and (100 – 500) m, respectively.
The demonstrated results were captured after 150 timeslots in
two cases, with and without the proposed DRO scheme on the
SA algorithm. Both subfigures show a proportional increase of
serviceability and throughput depending on the FN coverage
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radius and #FNs increases. In addition, the proposed DRO
scheme provides up to approximate 70% and 25% increase
for the SA algorithm in terms of serviceability and throughput,
respectively.

VI. CONCLUDING REMARKS

In this paper, a dynamic resource orchestration scheme to
schedule resource allocation in FCVNs by migrating con-
nected vehicle services among FNs to maximize the service
capability and resource utilization efficiency was proposed. On
the basis of graph theory, the DRO scheme considers FNs
as vertices, and the weight of an edge between two vertices
is given by the maximum resource reduction when optimal
service migration among the FNs is conducted. The optimal
service migration between each pair of FNs for minimizing
resource utilization is obtained by using the steepest descent
method. Then, the maximum weight matching solution is used
to determine the optimal pairs of FNs for migrating services,
with the aim of maximizing network resource utilization effi-
ciency. The results of simulation analyses demonstrate that the

proposed DRO scheme achieves significant improvements in
terms of service capability, resource utilization efficiency, and
throughput as compared to existing algorithms. In future work,
deep learning and power consumption will be considered as an
extension of our current studies. In addition, a latency-aware
task execution scheduling scheme in FNs will be a target.
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