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Abstract

Recently, the emergence of fog computing and big Internet of things (IoT) data
have been considered as the main representatives identifying fifth generation (5G)
mobile networks. In 5G, cloudization is extended from the core to the access tiers,
referred to as fog radio access networks (FRANs). FRANs provide ultralow-latency
offloading services to a massive number of IoT devices in their proximity. In this
paper, we propose a joint energy and latency optimization (JELO) scheme for
upstream IoT offloading services in FRANs. JELO scheme controls the offloaded task
assignment among fog-enabled eNodeBs (FNs) with strict consideration of the sys-
tematic resources and specific characteristics of individual tasks. The joint objective
function aims at optimizing the energy consumption and offload latency for entire
networks. Simulation results demonstrate that the JELO scheme outperforms existing
approaches in terms of the energy consumption and load balancingwhilemaintaining
IoT service satisfaction.
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1 INTRODUCTION

Dealing with the rapid emergence of the Internet of things (IoT) has been considered a big challenge in fifth generation (5G)
mobile networks. As recently reported by Gartner1, nearly 20 billion IoT-connected devices are estimated to be online in 2020.
IoT categories involve diverse applications in all of the cross-industry, vertical-specific, and consumer segments. Despite of the
heterogeneity in application, IoT devices are characterized by a low energy consumption and limited computational capability
while the IoT services increasingly require low latency, complex execution, and big data analysis2,3. This advanced IoTization
forces the 5G networking infrastructure to integrate novel technologies for satisfying a massive number of connections and a
huge volume of offloaded IoT traffic. In such a context, the computing capability has been extended from the cloud to the 5G
eNodeBs at the edge (a.k.a. fog-enabled eNodeBs), resulting in fog radio access networks (FRANs)4,5; see Fig. 1. FRANs provide
ultralow-latency offloading services to a massive number of IoT devices in their proximity, which is especially beneficial for
time-sensitive applications6,7. The FRANs integrate fog computing into radio access networks (RANs) by adding a substantial
amount of storage, communication, and computation resources. In FRANs, high power nodes (HPNs) are deployed to provide
a wide-area coverage and execute the control operations. The HPNs are interconnected via crosshaul links and coordinated by
orchestrators. In a fog computing’s perspective, the macro eNodeBs (MeNBs), pico eNodeBs (PeNBs), and extended remote
radio heads (eRRHs) are generally considered as fog nodes (FNs). The FNs may be equipped with local caches, where the
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FIGURE 1 IoT offloading services in fog radio access network.

interesting contents can be stored, as well as computing processors for offloaded service handling. These FNs are controlled by
HPNs.
In order to minimize the task offloading latency for time-sensitive IoT applications, IoT devices typically intend to associate

with the highest-capacity fog-enabled eNodeBs (FNs) in terms of the CPU power as well as wireless channel quality. These
behaviors may lead the FNs to be overloaded owing to the massive number of requests. In this circumstance, there exist unfair
conditions among FNs8,9. As a result, forthcoming IoT devices possibly suffer from a low quality of service (QoS) problem
compared to the previous ones. Finally, the total latency and energy efficiency for offloaded activities may not be optimal from
a network-wide perspective since some FNs are free, while others are over capacity. Especially, these problems are severe in the
5G paradigm, where green and real-time communication has been considered one of the pilot features10,11.
Our literature review discovers that the joint latency and energy consumption problems have not attracted sufficient attention

form the research community12,13. According our taxonomy, existing studies can be classified into either intrinsic or extrinsic
approaches. Intrinsic approaches mainly consider the internal features of FNs, such as the CPU frequency, cache, temporary
buffer, communication resource, and battery, to develop objectives and solutions. On the other hand, extrinsic approaches focus
on the distinguished characteristics of the served entities (i.e., IoT devices and applications) to design appropriate schemes for
satisfying them effectively. Although these two types of approaches introduced improvements in the computational performance,
they lack a comprehensive consideration that balances both intrinsic and extrinsic features to provide a flexible optimization
solution for energy consumption and latency balancing.
In this paper, we propose a joint energy and latency optimization (referred to as JELO) scheme for upstream IoT offloading

services in FRANs. A balance between the energy consumption and the offload latency, which are generated by task transmis-
sion and execution, has been developed as an objective function. Distinguished from the existing approaches, both systematic
resources (CPU frequency, buffer size, and quality of wireless channels) and task characteristics (size, complexity, and execu-
tion deadline) are strictly considered as the main constraints to design the final solution. In order to reduce the complexity of the
optimization problem, a Lagrangian relaxation method is used to separate the problem into two cooperative subfunctions, which
are resolved by theM 0/1-knapsack and semi-assignment schemes, respectively. As a result, the contributions of this paper can
be summarized as follows:

• First, JELO provides energy-efficient end-to-end offloading for time-sensitive IoT services while ensuring controllable
latency thresholds. In addition, IoT device associations is driven by the computational performance of the networks to
better adapt task assignments within various network environments.
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• Second, JELO enables relaxation for the objective function, which is an integer linear programming problem, in order to
achieve an approximation of the optimal result with reasonable costs.

• Third, comprehensive simulations and analyses have been performed to demonstrate the computational improvement of
the JELO scheme compared to existing schemes in terms of the energy consumption and offloading QoS.

The rest of this paper is organized as follows. Section 2 reviews the existing works in the literature. Section 3 analyzes the
problem in detail. Section 4 describes our proposed JELO scheme along with the mathematical expressions and their proofs.
Then, Section 5 presents the simulation results. Finally, Section 6 concludes the paper.

2 LITERATURE REVIEW

Resource management techniques have been typically taken into account as a major research issues in FRANs for either energy
efficiency or offload latency purposes. There is a significant number of researchers tackling this problem14,15,16. Unfortunately,
there have been few proposals to resolve the joint optimization between the energy efficiency and the offload latency12,13. As
mentioned in Section 1, our taxonomy consists of two main categories: intrinsic and extrinsic approaches.
As an example of intrinsic approaches, Guan et al.17 formulated the joint optimization of the computation and resource

management in FNs, aiming at providing energy-efficient offloading services. The objective function is addressed by using an
iterative algorithm and a matching-based sub-optimal algorithm. On the contrary, Zhang et al.18 considered the energy capacity
and sensitive latency to develop an energy-aware offloading scheme. Since the problem is a mixed-integer nonlinear problem,
an iterative search algorithm combined with an interior penalty policy has been proposed to find the optimal value. Considering
a small-cell 5G network model, Yang et al.19 formulated an offloading function, which targets the energy consumption of
the system at all system entities. An artificial fish swarm algorithm (AFSA)-based scheme has been proposed to solve the
optimization problem. On the other hand, Jeong et al.20 considered the trust issues in fog computation by using a Vickrey-Clarke-
Groves (VCG)-auction-based hierarchical trust computing algorithm to manage resource allocation. Considering the resource
limitations and the quality of service in FRANs, Chabbouh et al.21 proposed joint service offloading and scheduling to handle
the offloaded tasks within a reduction in the execution cost. An energy-efficient multisite offloading policy (EMOP) using a
Markov decision22 process has been proposed to balance the task processing among FNs in FRANs. The network is transformed
into a graph model considering a delay constraint.
Adopting extrinsic approaches, Munoz et al.23 assumed that multiple antennas are available simultaneously at the user devices

and FNs. A partial closed-form expression of the transmission features such as the transmission power, precoder, and rate in
both the uplink and downlink was developed in order to obtain the optimal energy and latency tradeoff for application offload-
ing. A simple 1-D convex numerical optimization technique was used to resolve the objective function. Focusing on other
scenarios where offloading services are provided by multiple virtual machines through backhaul links24, Lagen et al.25 opti-
mized the offloading strategy at the user devices in order to minimize the energy consumption subject to latency constraint.
The channel conditions at the air interface and the backhaul link capacities are considered in the development of the solution.
On the other hand, a Lyapunov optimization-based dynamic computation offloading (LODCO) algorithm26 has been proposed
to balance the energy consumption and offloading latency for user devices. Lyu et al.27 proposed asymptotically optimal task
admission for delay-sensitive applications in fog computing. The mixed-integer programming of task admission is transformed
into an integer programming (IP) problem with the optimal substructure by pre-admitting resource-restrained devices. Utiliz-
ing network-assisted D2D collaboration28,29, Pu et al.30 proposed efficient task scheduling policies for energy-efficient and
incentive-aware offloading in a D2D fogging framework. The policies adapt to various features of the task type, the user amount,
and the task generation frequency.
Despite the merits of the two types of approaches, both intrinsic and extrinsic features have not been comprehensively

considered in order to provide an adaptive joint optimization solution for the energy consumption and latency.

3 PROBLEM STATEMENT

We consider an FRAN system model includingM FNs that are geographically deployed according to the IoT traffic intensity
and service requirements. The FNs are equipped with multiple antennas, local caches, and possible fog-based computation that
might provide computation offloading services to the resource-constrained IoT devices. Without loss of generality, we assume
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TABLE 1 Notation Definitions.

Symbol Definition

Ω A set of FNs
M Number of FNs
Γ[t] A set of tasks generated by IoT devices at timeslot t
Γi[t] A set of tasks assigned to the i-th FN at timeslot t
N Number of tasks generated by IoT devices at timeslot t
vj Desired rate of the j-th IoT device
rij Number of resource blocks required from the i-th FN to satisfy the data rate vj of the

j-th IoT device
Ci Radio resource capacity of the i-th FN according to the RB unit
Fi Computation capability of the i-th FN
wj Task generated by the j-th IoT device
uj Upload data size of task wj
dj Response data size of task wj
cj Average computational complexity of task wj
�j Execution deadline to accomplish task wj
Ec
j Energy consumption of the i-th FN for computation of task wj

Et
j Energy consumption for data transmission of task wj

Ej Total energy consumption of the IoT device and FNs when task wj is offloaded to the
FNs

Lcj Computation latency for executing task wj
Ltj Transmission latency to accomplish task wj
Lj Total latency in the network when task wj is offloaded to the FNs
�j Amount of computation specified by the computing cycles to execute the task wj of

the j-th IoT device
� The coefficient denoting the energy consumed per CPU cycle
P Power consumption when using 1 RB for transmitting data
Q[t] Computing queue of the i-th FN at timeslot t
� A balance coefficient for energy and latency in the network

that there are N IoT devices that generate their tasks and offload them to the FNs. The IoT tasks are processed and responded
to the IoT devices on-demand. The notation used in this paper is summarized in Table 1.

We assume that the j-th IoT device assigns a task wj to the FNs and receives response data with the same required data rate
vj due to the trivial quality of the signal change for uplink and downlink transmission31. The number of resource blocks (RBs)
rij that the i-th FN must assign to the j-th IoT device is derived as

rij =
⌈ vj
Δf log2(1 + SINRij)

⌉

, (1)

where rij ∈ ℕ, Δf is the bandwidth that 1 RB utilizes during 1 ms (i.e., 180 KHz32), and SINRij is the signal-to-interference-
plus-noise ratio on the data channel between the i-th FN and the j-th IoT device.
In terms of task execution offloading, taskwj of the j-th IoT device is characterized by a four dimensional feature vector given

by
⃖⃖⃖⃖⃗wj ≜

[

uj , cj , dj , �j
]

, (2)
where uj and dj are respectively defined as the upload data size and response data of the task according to the bit unit, cj is
average computational complexity of the task, and �j is the execution deadline to accomplish the task.
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When a task is assigned to the FNs, the FNs perform task execution. Let �j be amount of computation that is determined by
the computing cycle unit to execute wj . �j is obtained by

�j = ujcj . (3)

Accordingly, the energy consumption Ec
j of the i-th FN for task execution wj

33 is given by

Ec
j = �F

2
i �j , (4)

where � is the coefficient denoting the energy consumed per CPU cycle, and Fi is the CPU computation capability of the i-th
FN. Meanwhile, the energy consumption Et

j for the data transmission of task wj to the i-th FN in the network is derived as

Et
j = rijP , (5)

where P is power consumption when using 1 RB for transmitting data2. The total energy consumption Ej for the IoT device
and FNs when task wj is offloaded to i-th FN is given by

Ej = Ec
j + E

t
j , (6)

In order to ensure service quality requirements (e.g., the data rate, and the latency), each task wj is required to execute in a
time duration of �j . The computation latency Lcj for executing task wj at the i-th FN is determined by

Lcj =
Qi[t] + �j

Fi
, (7)

where Qi[t] denotes the computing queue of the i-th FN at timeslot t. Similarly, we can obtain the transmission latency Ltj for
uploading the input data and receiving the response data of task wj from the i-th FN by

Ltj =
uj + dj
vj

, (8)

Accordingly, total latency in the network when task wj is offloaded to the FNs is derived as

Lj = Lcj + L
t
j . (9)

In the context of the IoT era, the devices are required to be operated under rigorous requirements featuring a high preci-
sion, real-time responses, and high automation. However, almost all IoT devices are lightweight embedded platforms with the
restricted computing resources, storage, and power transmission. Hence, it is inappropriate to execute real-time services using
the constrained resources of IoT devices. In FRANs, the heavy tasks (i.e., high �j) and time-sensitive services (i.e., very low
�j) are offloaded to the FNs which are equipped with processors with a high processing power. A problem emerges when the
enormous number of tasks of the IoT devices is offloaded to the FNs. This consumes a large amount of FN resources for han-
dling these tasks. If these tasks are not assigned optimally to the FNs, this might lead to an overloading issue due to inefficient
resource utilization. In the energy-aware approach, the IoT devices prefer to connect and assign tasks to the FNs that have a high
SINR. This is because these devices will consume a lower transmission energy since a lower number of the RBs rij are used.
Meanwhile, the latency-aware approach drives IoT tasks to FNs that have a high processing power to reduce the computation
latency Lcj . As a consequence of this approach, these FNs reach overcapacity owing to a very large number of assigned tasks.
These two approaches cause an imbalanced load among FNs, resulting in increases in the energy consumption and latency. This
motivates the combined optimization for the energy and latency of the whole network. The problem that jointly considers the
energy and latency for uploading the tasks of the IoT devices to FNs is formulated as

() min
N
∑

j=1

[

�Ej + (1 − �)Lj
]

, (10)

where � is a balance coefficient. This primarily effects the joint energy and latency optimization problem. If � is large enough,
this means that the network energy consumption minimization is more important. Otherwise, a small � means that the network
latency optimization is mainly considered. An appropriate value of � results in the optimal energy and latency for entire net-
works. In this paper, we propose the JELO algorithm to address problem  in order to achieve the network energy and latency
minimization. The JELO scheme is presented in the next section.
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4 JOINT ENERGY AND LATENCY OPTIMIZATION

With the aim of achieving the optimal task assignments, we address problem  to obtain the combined optimization of the
energy consumption and latency for whole networks. Problem  is concretely reformulated as

() min
M
∑

i=1

[

�

(

�F 2i

N
∑

j=1
xij�j +

N
∑

j=1
xijrijP

)

+ (1 − �)

( N
∑

j=1
xij
Qi[t] + �j

Fi
+

N
∑

j=1

uj + dj
vj

)]

(11)

s.t. ⃖⃖⃖⃖⃗wj
(

uj , cj , dj , �j
)

∈ Γ[t],∀j = 1, 2,⋯ , N, (12)
N
∑

j=1
xijrij ≤ Ci,∀i = 1, 2,⋯ ,M, (13)

M
∑

i=1

(

xij
Qi[t] + �j

Fi
+
uj + dj
vj

)

≤ �j ,∀j = 1, 2,⋯ , N, (14)

M
∑

i=1
xij = 1,∀j = 1, 2,⋯ , N, (15)

xij ∈ {0, 1},∀i = 1, 2,⋯ ,M,∀j = 1, 2,⋯ , N. (16)

The constraint in (13) ensures that the number of RBs allocated to IoT devices does not exceed the capacity of the FNs. The
constraint in (14) guarantees the completion deadline of a task when it is assigned to the FNs. The constraint in (15) ensures that
one task is assigned to only one FN. It is observed that problem  can be transformed into an integer Programming problem as
follows:

() min
M
∑

i=1

[ N
∑

j=1
xij

(

�
(

�F 2i �j + rijP
)

+ (1 − �)
Qi[t] + �j

Fi

)

+ (1 − �)
N
∑

j=1

uj + dj
vj

]

(17)

s.t.
M
∑

i=1
xij
Qi[t] + �j

Fi
≤ �j −

uj + dj
vj

,∀j = 1, 2,⋯ , N, (18)

(12), (13), (15), (16).

For a given �, the value of
∑M
i=1

[

(1 − �)
∑N
j=1

uj+dj
vj

]

is constant for each timeslot. Hence, problem  is equivalent to

() min
M
∑

i=1

N
∑

j=1
xij

[

�
(

�F 2i �j + rijP
)

+ (1 − �)
Qi[t] + �j

Fi

]

(19)

s.t. (12), (13), (15), (16), (18).

In order to address problem  , we formulate problem  ′ as

( ′) min 

M
∑

i=1

N
∑

j=1
xij

[

�
(

�F 2i �j + rijP
)

+
(1 − �)(Qi[t] + �j)

Fi

]

+ �
M
∑

i=1

N
∑

j=1
yij

[

�
(

�F 2i �j + rijP
)

+
(1 − �)(Qi[t] + �j)

Fi

]

(20)

s.t.
M
∑

i=1
yij = 1,∀j = 1, 2,⋯ , N, (21)

xij = yij ,∀i = 1, 2,⋯ ,M, j = 1, 2,⋯ , N, (22)
yij ∈ {0, 1},∀i = 1, 2,⋯ ,M, j = 1, 2,⋯ , N, (23)
(12), (13), (16), (18).

where 
 and � are positive parameters. We define �(⋅) as the optimal objective function value of problem (⋅). It is observed that
problem  is related to problem  ′ in the following way

�( ′) = (
 + �)�(), (24)
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It is recognized that if 
 + � = 1, then �() = �( ′). By using the Lagrangian multiplier method34 for relaxing the constraint in
(22), the problem  ′ is relaxed as follows:

((")) min  (x, y) = 

M
∑

i=1

N
∑

j=1
xij

[

�
(

�F 2i �j + rijP
)

+
(1 − �)(Qi[t] + �j)

Fi

]

+ �
M
∑

i=1

N
∑

j=1
yij

[

�
(

�F 2i �j + rijP
)

+
(1 − �)(Qi[t] + �j)

Fi

]

+
M
∑

i=1

N
∑

j=1
"ij(yij − xij) (25)

s.t. (12), (13), (16), (18), (21), (23).

where "ij is the Lagrangian multiplier for the constraint xij = yij . The Lagrangian relaxation (") can be separated into two
problems. One problem is related to the x variables, denoted as LX("). Another problem is related to the y variables, defined
as LY ("). The problems LX(") and LY (") are derived as

(LX(")) min
M
∑

i=1

N
∑

j=1
xij

[



(

�
(

�F 2i �j + rijP
)

+
(1 − �)(Qi[t] + �j)

Fi

)

− "ij

]

(26)

s.t.
N
∑

j=1
xijrij ≤ Ci,∀i = 1, 2,⋯ ,M,

M
∑

i=1
xij
Qi[t] + �j

Fi
≤ �j −

uj + dj
vj

,∀j = 1, 2,⋯ , N,

xij ∈ {0, 1},∀i = 1, 2,⋯ ,M,∀j = 1, 2,⋯ , N.

(LY (")) min
M
∑

i=1

N
∑

j=1
yij

[

�
(

�
(

�F 2i �j + rijP
)

+
(1 − �)(Qi[t] + �j)

Fi

)

+ "ij

]

(27)

s.t.
M
∑

i=1
yij = 1,∀j = 1, 2,⋯ , N,

yij ∈ {0, 1},∀i = 1, 2,⋯ ,M, j = 1, 2,⋯ , N.

Accordingly, we obtain �((")) = �(LX("))+�(LY (")). We observe that problemLX(") can be separated intoM 0∕1-knapsack
problems35 withN variables, where each KPi(") is defined as

(KPi(")) min
N
∑

j=1
xij

[



(

�
(

�F 2i �j + rijP
)

+
(1 − �)(Qi[t] + �j)

Fi

)

− "ij

]

(28)

s.t.
N
∑

j=1
xijrij ≤ Ci,

xij
Qi[t] + �j

Fi
≤ �j −

uj + dj
vj

,∀j = 1, 2,⋯ , N,

xij ∈ {0, 1},∀j = 1, 2,⋯ , N.

The knapsack problem KPi(") can be efficiently addressed by using dynamic programming. Then, we can derive �(LX(")) =
∑M
i=1 �(KPi(")). Meanwhile,LY (") is a simple semi-assignment problem. This can be separated intoN trivial generalized upper

bound (GUB) problems. We directly obtain solution by

�(LY (")) =
N
∑

j=1

[

�

(

�
(

�F 2ij�j + rijjP
)

+
(1 − �)(Qi[t] + �j)

Fij

)

+ "ijj

]

(29)

where ij ∈ argmini=1,⋯,M
[

�
(

�
(

�F 2i �j + rijP
)

+ (1−�)(Qi[t]+�j )
Fi

)

+ "ij
]

, and yij = 1,∀j = 1,⋯ , N .
Given a value of ", we can derive the optimal value �((")) for problem  ′ by solving problems LX(") and LY ("). We need

to find the optimal "∗ to obtain the final optimal value �((")). A subgradient algorithm36 is proposed to address problem  ′,
resulting in the optimal solution �() for problem  . Particularly, a subgradient for the function �((")) at the point "k is any
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Algorithm 1 Joint Energy and Latency Optimization Algorithm.
Input: Set of FNs Ω, Γ(t), �, 
 , �
Output: Set of tasks assigned to the i-th FN Γi(t),∀i = 1, 2,⋯ ,M
1: ∙ Initialization
2: xk,yk, and "k are x,y, and " at the k-th step, respectively
3: "0 is the starting point
4: � is the tolerance, ' is the step size
5: ∇(") is the gradient of (") with respect to x and y
6: repeat
7: Given "k, solveM knapsack problems in (28) to derive xk and �(LX("k))
8: Solve the semi-assignment problem in (27) to derive yk and �(LY ("k))
9: �(("k)) = �(LX("k)) + �(LY ("k))
10: "k+1 = "k − '∇("k)
11: k = k + 1
12: until ||∇("k)|| ≤ �
13: x∗ = xk, y∗ = yk, and "∗ = "k
14: From x∗, obtain Γi(t)

vector Θ such that
�((")) ≤ �(("k)) + Θ(" − "k) for all " ∈ Rm×n. (30)

For each k-th step of iteration, we solve �(("k)) and then get the solution (xk, yk). The iteration stops when we can obtain the
approximate optimal value "∗, resulting in the optimal values x∗ and y∗. The proposed algorithm is summarized in Algorithm 1.
Algorithm 1 addresses the Lagrangian relaxation problem (") using the subgradient method, thus obtaining the optimal

solution for the equivalent problem  ′. With the given 
 and �, the optimal objective value for problem  can be easily derived
following (24). In the proposed scheme, we first arbitrarily initialize the starting point value for the Lagrange multiplier "0.
For each k-th step, we solve problem ("), aiming to derive xk and yk by addressing subproblems LX("k) and LY ("k). The
solution of problem LX("k) can be obtained by solving M knapsack problem in (28) using dynamic programming, resulting
in xk. Meanwhile, LY (") is the semi-assignment problem. We can derive the optimal solution following (29). The multiplier
"k+1 for step k + 1 will be updated following the gradient ∇(") by "k+1 = "k − '∇("k), where ' is the step size. According
to the subgradient method, the value of the objective problem will decrease after each iteration. This means that the result will
converge to optimal solution after some number of iterations. Iteration stops when the magnitude of the gradient ||∇(")|| is
less than a very small tolerance �. Then, we obtain the optimal solution x∗ for problem  . In other words, we derive the set of
optimal tasks Γi(t) assigned to the i-th FN at timeslot t.

5 PERFORMANCE EVALUATION

5.1 Simulation Settings and Methodology
In this section, we present a series of simulation studies to evaluate the performance of our proposed JELO scheme. We con-
sider a network model including 20 FNs that are deployed randomly over an area of 500 × 500 square meters. FNs are equipped
with various computing processors with CPU frequencies of {1.5, 3.0, 6.0, 12.0, 24.0} GHz. We suppose that there are 300 IoT
devices served in the network.With the diversity of IoT services such as sensor reading, motion detection, and video surveillance,
each IoT device requires a transmission data rate varying in the range of [512, 2048] kbps with computational complexities of
{10, 50, 100, 500, 1000} computing cycles/bit16. The task execution deadline to satisfy the IoT service requirement is assumed
in the range of [0.1, 1] s. Note that the proposed scheme is performed by the orchestrator with an algorithmic execution threshold
� of 5 ms. For convenience, the threshold � is included into the task execution deadline. In addition, network slicing tech-
niques37 are utilized in order to separate the uploaded IoT services into groups, which are characterized by latency and/or energy
requirements’ levels. The optimization schemes are provided for each group accordingly. The detailed simulation parameters
are summarized in Table 2.
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TABLE 2 Simulation Parameters.

Parameter Value

Network area 500m×500m
Number of FNs 20
CPU frequency of the FN processors {1.5, 3.0, 6.0, 12.0, 24.0} GHz
Number of IoT devices 300
Transmission data rate of the IoT devices 512–2048 kbps
Computational complexity of the tasks {10, 50, 100, 500, 1000} computing cycles/bit
Execution deadline 0.1–1 s
Timeslot duration 0.1 s

In order to demonstrate the performance of the proposed JELO scheme, we compare our scheme with three task assignment
schemes including the pattern-identified online task scheduling (PIOTS)16, offline Hungarian task assignment (OHTA)38, and
online greedy task assignment (OGTA)39 algorithms. In the PIOTS scheme, offline task scheduling among the FNs is performed
on the set of all self-organizing maps (i.e., task patterns) using the Hungarian method to obtain the expected optimal task assign-
ments while minimizing the latency. In a real-time context, the arriving tasks are assigned to FNs on the basic of the expected
task assignment. Meanwhile, the OHTA scheme collects all arriving tasks at the local buffer of the FNs during one timeslot. At
the end of each timeslot, the optimal task assignment is determined using a repeated Hungarian method for addressing problem
 . However, it cannot ensure the resource and execution latency constraints in  . The OGTA scheme aims to minimize the
energy and latency for each task. This means that each arrived task is assigned to the FNs that provide the joint energy and
latency optimization. For the evaluation metrics, the performance of our proposed scheme is analyzed in terms of the latency,
energy consumption, objective function, and task execution rate.

5.2 Numerical Result Analysis
The balance coefficient � represents the priorities of the latency and energy in the network. In other words, the balance coeffi-
cient � harmonizes the task assignment to achieve joint latency and energy optimization. Fig. 2 shows the total network latency
and energy consumption of the proposed JELO scheme according to the balance coefficient �. In general, the latency and energy
consumption gradually increase when the arrival workload � (i.e., arriving tasks) increases and � < 8 gigacycles. This is rea-
sonable because the enormous number of tasks arriving at the networks lead to an increase in transmission as well as a buffering
latency for the IoT tasks at the FNs since the FNs may not be able to provide prompt execution owing to resource constraints.
Meanwhile, the numerous tasks also consume a large of amount of energy for the transmission and execution processes. By
controlling the factor �, we can orchestrate the energy and latency. It is observed that a higher � leads to a higher network
latency and lower network energy consumption since the higher � means that the energy aspect is mainly prioritized. When the
arrival workload � increases to more than 8 gigacycles, the energy and latency irregularly change. Particularly, with � = 0.1, the
latency decreases rapidly while the energy increases when the workload reaches 10 gigacycles. The reason is because the JELO
scheme jointly balances the energy and latency by addressing problem  . When the latency reaches the allowable threshold,
the incoming tasks are preferably assigned to FNs that have a large number of computational resources in the processor and/or
a lower occupied buffer to process aiming at guaranteeing the task execution deadlines, resulting in an increase in the energy
consumption. As a result, it is recognized that we can obtain the best performance in terms of the latency with � = 0.1 and the
energy with � = 0.7. In this paper, we configure � = 0.1 as the simulation parameter to target real-time IoT services that require
a very low latency.
Fig. 3 depicts the optimal value of the objective function  of the proposed JELO scheme compared to other task assignment

schemes. The simulation results reveal that the objective function values of the JELO and OGTA schemes slightly increase as
following the arrival workload increases. It is observed that our proposed JELO scheme obtains the best optimal value for the
objective function  . This is because the JELO scheme thoroughly addresses the task assignment problem for joint energy and
latency minimization by relaxing the original problem  into two subproblems to achieve global optimality. On the other hand,
the OGTA scheme assigns the incoming tasks to the FNs which provide a minimization of the energy and latency to them.
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FIGURE 2 Total network latency and energy consumption of the JELO scheme depending on the balance coefficient �.
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FIGURE 3 Optimal value of the objective function  in a comparison of four task assignment schemes.

Hence, this algorithm only derives a local optimal value, resulting in an approximate value compared to the JELO algorithm.
Meanwhile, the objective function values of the OHTA and PIOTS schemes increase rapidly when the arrival workload increases.
The OHTA scheme assigns tasks to the FNs at the end of each timeslot by using the repeated Hungarian algorithm to solve
problem . Although this algorithmmight better adapt to the varying task arrivals, it cannot obtain the exact optimal assignment
since the Hungarian algorithm is not a completely exact algorithm for problem  . This method tries to assign equal numbers of
tasks to the FNs without considering the computation volume � of each task. This causes unfair workloads among the FNs, and
some FNs reach overcapacity, resulting in a higher buffering latency and energy consumption. Similarly, the PIOTS scheme uses
the Hungarian method for determining the expected optimal task assignment. However, it focuses on minimizing the network
latency while the energy is not considered. Thus, it has the worst performance with regards to the objective function value.
The network latency of the proposed JELO scheme in a comparison of three assignment schemes is illustrated in Fig. 4.

Generally, the network latency increases when the workload arriving at the network increases. It seems that there is no difference
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FIGURE 4 Network latency of four task assignment schemes.

in the total transmission latency since the desired data transmission rates of the IoT devices are satisfied. The difference in
the latencies of the schemes is almost due to the task computation latency, resulting in a different total network latency. It is
recognized that the JELO scheme obtains lower performance in terms of the latency compared to that of the PIOTS and OGTA
schemes when the arrival workload is low (less than 4 gigacyles). This is understandable because the PIOTS and OGTA schemes
are online task assignment algorithms. This means that the arriving tasks are assigned immediately to the FNs for execution.
Meanwhile, the JELO and OHTA schemes need to gather the arriving tasks and wait until the end of each timeslot to determine
the optimal assignment. This increases the buffering latency. It is observed that when the volume arriving tasks is larger than
5 gigacycles, the JELO scheme demonstrates its effectiveness. The JELO scheme provides a better total latency compared to
the PIOTS and OGTA algorithms. The Hungarian method aims to assign equal numbers of tasks to the FNs. In other words,
the Hungarian method ensures that each FN has an equal number of tasks with the aim of minimizing the joint energy and
latency. The non-exact optimal solution from the repeated Hungarian method leads to incomplete optimal task assignment.
Hence, some FNs might be burdened with a large workload when the number of arriving tasks increases, resulting in increases
in the computation and buffering latencies at these FNs. Although the JELO scheme cannot obtain the latency optimization as
in the OGTA scheme, it can derive energy and latency balancing. The greedy behavior of the OGTA scheme allows it to achieve
the better latency. However, this consumes a larger energy for computation.
Fig. 5 shows the performance of the JELO scheme in terms of the energy consumption compared to that of the PIOTS, OHTA,

and OGTA schemes. According to the simulation results, the PIOTS scheme has the largest transmission energy consumption.
The PIOTS scheme assigns tasks based on the predetermined pattern-identified tasks. This is not a real incoming task set. Thus,
the arriving tasks might be assigned to worse FNs that have to allocate a large number of RBs for transmission. This results
in a large transmission energy. Although the energy performance of the JELO scheme is less that that of the OHTA scheme,
it provides a lower energy consumption compared to the OGTA scheme. This demonstrates the harmonization between the
energy and latency of the JELO scheme. It is worthwhile to note that the aggregate transmission energy is much smaller than the
computation energy. This means that the aggregate energy for the entire network is mainly consumed during task processing. It
is found that the OGTA scheme has the worst energy performance since it consumes a large computation energy for targeting the
latency optimization. Meanwhile, the PIOTS and OHTA schemes cannot derive the exact-optimal task assignment. A number
of incoming tasks might be assigned to FNs that have a low processing power. As a consequence, these tasks are not to executed
immediately and are then located in the buffer. This does not consumemuch computation energy but effects the buffering latency.
The JELO scheme adjusts the energy and latency. It does not consume too much energy but still ensures optimization of the
latency.
The execution error rate is utilized to evaluate the serviceability of the network. It is defined by the percentage of deadline-

violated tasks of the IoT devices per the total number of tasks arriving at the networks at each timeslot. Fig. 6 presents the task
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FIGURE 5 Network energy consumption of four task assignment schemes.
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FIGURE 6 Task execution error rate.

execution error rate of the four assignment algorithms. The simulation results reveal that the JELO scheme achieves the best
performance when it has no error tasks during the execution period. This is because the JELO scheme addresses the optimal
task assignment while considering the execution deadline constraints of each task. In other words, the JELO scheme ensures
that each task is executed within the required time. Meanwhile, the OGTA scheme assigns the incoming tasks to the FNs with
the aim of minimizing the latency and energy of each task. It can optimize the local latency and provide better performance
compared to that of the PIOTS and OHTA algorithms. However, the execution deadline of each task is not guaranteed, resulting
in a number of deadline-violated tasks. Similarly, the OHTA and PIOTS schemes use the Hungarian method for optimal task
assignment without considering the deadline constraints of the tasks. This leads to a large number of overdue tasks. However, the
PIOTS scheme achieves better performance compared to the OHTA scheme since it can assign a task promptly, thus reducing
the buffering latency.
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6 CONCLUDING REMARKS

In this paper, we propose the joint energy and latency optimization (JELO) algorithm for offloading upstream time-sensitive IoT
services in FRANs. In JELO, the optimal task assignment problem for balancing the energy consumption and offload latency,
which are generated by task transmission and execution, is developed as the objective function. The systematic resources and spe-
cific characteristics of individual tasks are strictly considered as main constraints to design the final solution. In order to reduce
the complexity, we relax the optimization problem into two subproblems, which areM 0/1 knapsack and semi-assignment prob-
lems. By addressing these sub-problems, we can derive the final optimal solution using a subgradient method with reasonable
costs. The experimental results reveal that our proposed JELO scheme overcomes existing approaches in terms of the energy
consumption, latency, and load balancing. For our future researches, the joint energy and latency optimization for the upstream
IoT offloading services with different requirements (i.e., both low latency and low energy) will be considered.
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