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Abstract—This research examines quantized uplink multi-user
MIMO communication systems with low-resolution quantizers at
users and base stations (BS). In such a system, we employ the
non-orthogonal multiple access (NOMA) technique for commu-
nication between users and the BS to enhance communication
performance. To maximize the number of users that satisfy the
quality of service (QoS) requirement while minimizing the user’s
transmit power, we jointly optimize the transmit power and pre-
coding matrices at the users and the digital beamforming matrix
at the BS. Owing to the non-convexity of the objective function,
we transform the problem into a reinforcement learning-based
problem and propose a deep reinforcement learning (DRL)
framework named QNOMA-DRLPA to overcome the challenge.
Because the nature of the action decided by the DRL algorithm
may not satisfy the problem constraints, we propose a post-
actor process to redesign the actions to meet all the problem
constraints. In the simulation, we assess the proposed frame-
work’s performance in training convergence and demonstrate its
superior performance under various environmental parameters
compared with other benchmark schemes.

Index Terms—low-resolution quantizers, multiple-input
multiple-output, non-orthogonal multiple access

I. INTRODUCTION

Wireless communication has evolved significantly, and there
is a growing demand for low-power, high-speed wireless
communication. The Internet of Things (IoT) produces ap-
plications that rely on devices with limited battery life and
computing capabilities but demand a high spectral efficiency.
Therefore, it is crucial to develop efficient and effective
wireless communication technologies [1]. Fortunately, low-
power hardware components, such as low-resolution digital-
to-analog converters (DACs) and analog-to-digital converters
(ADCs), are available for adoption. By reducing the number
of quantization bits, the power consumption of the quantizers
decreases exponentially. This procedure offers a practical
way to alleviate power constraints and improve the system’s
overall energy efficiency without significantly compromising
performance [2].

The need for power-efficient wireless communication has
led to the widespread use of low-resolution DACs and
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ADCs in communication systems, particularly in multiple-
input multiple-output (MIMO) systems. In [3], the use of low-
resolution ADCs has been proposed as a potential solution to
effectively decrease power consumption in MIMO systems.
This study carefully investigates the influence of ADC res-
olution, the Rician factor, and the number of antennas on
the uplink spectral efficiency, using rigorous mathematical
formulations. The findings indicate that using inexpensive and
low-resolution techniques may nonetheless provide satisfac-
tory spectral efficiency in huge MIMO systems. The additive
quantization noise model (AQNM) was used to linearly ap-
proximate the quantized signal in several works as in [4]–[6].
The antenna selection methods were established by the authors
of [4] using AQNM to simulate the signal. The researchers
focused their attention on enhancing the efficiency of transmit
beamforming with the objective of maximizing energy effi-
ciency while minimizing the impact on spectral efficiency.
The investigation performed by [5] focused on examining
the issue of antenna selection for downlink transmission and
uplink reception in a scenario including a multi-antenna base
station (BS) and single-antenna mobile stations equipped with
low-resolution ADCs. The theoretical study is applicable to
the scenario of a wideband Orthogonal Frequency Division
Multiplexing (OFDM) system, where all subcarriers use a
shared subset of antennas. Additionally, a novel antenna se-
lection approach is proposed in order to optimize capacity
while considering the impact of quantization effects. The study
conducted by [6] integrates the impact of low-resolution ADCs
and limited blocklength channel coding into the optimization
of non-orthogonal multiple access (NOMA) in the downlink.
This research focuses on a situation where a multiple-antenna
access point is responsible for serving numerous single-
antenna IoT devices. The attainable rate may be described as a
mathematical function that depends on many factors, including
the amount of quantization bits, the precoding vectors, the
blocklength, and the likelihood of error. The study conducted
by [7] examines the problem of cost-effective design for
enabling widespread connectivity in cellular IoT applications,
specifically focusing on the challenges posed by spatially
linked Rician fading channels. The authors obtained analytical
formulas for the spectral efficiency of uplink and downlink
transmissions, assuming the presence of a large number of IoT
devices and the use of low-complexity successive interference



cancellation (SIC) receivers. In addition, they appropriately
allocate time for channel estimation to mitigate the decline in
performance resulting from the use of low-resolution ADC, as
well as the transmission of uplink and downlink data inside a
data frame.

Although there has been extensive research on quantized
MIMO systems, the application of multiple access techniques
in such systems, particularly in uplink communication, has
been relatively limited. In this study, we investigate a novel
system where the NOMA technique is applied to enhance up-
link transmission in a quantized MIMO system. We summarize
the main contributions of this study as follows:

• We investigate a novel NOMA-enhanced quantized up-
link multi-user MIMO communication system. Here, the
multiple-antenna BS and users are adopted with low-
resolution quantizers. The NOMA technique is applied to
the communication between users and the BS to enhance
communication efficiency. Accordingly, we formulate an
optimization problem to maximize the number of users
meeting the QoS requirement while minimizing the user’s
transmit power by optimizing the transmit power and
precoding matrix at users and digitally received beam-
forming vector at the BS.

• We transform the problem into a reinforcement learning
(RL)-based problem due to the non-convexity in the ob-
jective function. Then, we propose a deep reinforcement
learning framework, which employs a DRL algorithm
to solve the problem. Because the action determined
from the DRL algorithm cannot satisfy the problem
constraints, we propose a post-actor process that modifies
the decided action to meet all the requirements. We name
the proposed framework as QNOMA-DRLPA.

• We demonstrate the effectiveness of our proposed frame-
work through numerical simulations. We evaluate the
convergence of the training algorithm by presenting the
training reward and policy loss outcomes. In addition, we
prove the effectiveness of QNOMA-DRLPA by showing its
outperformance compared with other benchmark schemes
under different environmental parameters. Besides, we
analyze the system performance regarding the change in
the number of quantization bits to assess the effect of the
device’s resolution on communication performance.

We organize the rest of this study as follows. Section II
introduces the proposed NOMA-enhanced quantized uplink
multi-user MIMO communication system, where we present
the problem formulation. In section III, we describe the
proposed solution with the detail of QNOMA-DRLPA frame-
work. Accordingly, we demonstrate our proposed framework’s
performance in Section IV. Finally, we conclude the work in
Section V.

Notation: Some major specific symbols are utilized to
present this article as follows: CN (µ, σ2) denotes the circu-
larly symmetric complex Gaussian distribution with variance
σ2 and mean µ; 0r×c and 1r×c denote the matrix with
r rows and c columns with all elements values are 0 and

TABLE I: Signal-to-quantized-noise ratio
b(T,k,n)/(R,m) 1 2 3 4 5
ρ(T,k,n)/(R,m) 0.3634 0.1175 0.03454 0.009497 0.002499

1, respectively; diag(A) denotes the diagonal matrix of A;
Tr(.) and E[.] denote the trace and expectation operation of
matrix, respectively; (.)−1, (.)H , and (.)T denote the inverse,
Hermitian, and transpose of matrix, respectively.

II. PROBLEM STATEMENT

A. Quantized Uplink Multi-user MIMO Communications

We examine a single-cell uplink multiuser MIMO system,
where a set of K users, K ≜ {1, 2, . . . ,K}, each equipped
with N antennas, transmit their signal to the BS equipped
with M antennas. The digital baseband signal at user k, xk ∈
CN×1, is expressed as

xk =
√
pkfksk, (1)

where pk, fk ≜ [f1, . . . , fN ]T ∈ CN×1, and sk denote
the transmit power, precoding matrix, and transmit signal,
respectively.

At each transmitter, pairs of DACs are employed, each
pair with b(T,k,n)−bit resolution includes DACs for real and
imaginary parts, where b(T,k,n) is the number of DAC’s
quantization bits at the antenna n of user k. Accordingly,
we utilize the AQNM method [8], which approximates the
quantization process using a linear representation, the uplink
quantized signal from user k, xq

k ∈ CN×1, is expressed as [9]

xq
k = Q(xk) ≈ Θ(α,T,k)xk + nq

(T,k)

=
√
pkΘ(α,T,k)fksk + nq

(T,k),
(2)

where Q(.) denotes the quantizer function, Θ(α,T,k) ≜
diag(α(T,k,1), α(T,k,2), . . . , α(T,k,N)) ∈ CN×N is the quan-
tization loss matrix, and nq

(T,k) is the additive Gaussian
quantization noise vector at user k. The quantization loss
element α(T,k,n) is calculated founded on the inverse of the
signal-to-quantized-noise ratio (SQNT), ρ(T,k,n), expressed as

α(T,k,n) = 1− ρ(T,k,n), (3)

where ρ(T,k,n) is determined based on b(T,k,n) [10], which
is specified in Table I if b(T,k,n) ≤ 5 and ρ(T,k,n) =
π
√
3

2 2−2b(T,k,n) otherwise. According to [9], the quantization
noise follows nq

(T,k) ∼ CN (0N×1,R(T,k)), where R(T,k) ≜
Θ(α,T,k)Θ(ρ,T,k)diag

(
E
[
xkx

H
k

])
is the covariance matrix,

with Θ(ρ,T,k) ≜ diag(ρ(T,k,1), ρ(T,k,2), . . . , ρ(T,k,N)) ∈
CN×N . Let P(k,max) denote the maximum transmit power of
user k, the uplink quantized signal at each user should follow
the constraint

Tr
(
E
[
xq
k(x

q
k)

H
])
≤ P(k,max). (4)

Accordingly, the received signal vector at the BS, y ∈ CM×1,
is expressed as

y =

K∑
k=1

Hkx
q
k + n, (5)



where Hk ∈ CM×N , and n ∼ CN (0M×1, σ
21M×1) denote

the uplink channel matrix between k−th user and BS, and the
additive white Gaussian noise vector, respectively.

Similarly, the received signal at the BS is quantized by the
ADCs with bR,m−bit resolution. Consequently, the received
baseband signal, yq ∈ CM×1, is expressed as

yq = Q(y) ≈ Θ(α,R)y + nq
R

= Θ(α,R)

K∑
k=1

Hk

(√
pkΘ(α,T,k)fksk + nq

(T,k)

)
+Θ(α,R)n+ nq

R

= Θ(α,R)

K∑
k=1

Hk
√
pkΘ(α,T,k)fksk

+Θ(α,R)

K∑
k=1

Hkn
q
(T,k) +Θ(α,R)n+ nq

R,

(6)

where Θ(α,R) ≜ diag(α(R,1), α(R,2), . . . , α(R,M)) ∈ CM×M

is the quantization loss matrix, and nq
R is the additive

Gaussian quantization noise vector at the BS. The quanti-
zation loss element α(R,m) is calculated as α(R,m) = 1 −
ρ(R,m), where ρ(R,m) is specified in Table I if b(R,m) ≤
5 and ρ(R,m) = π

√
3

2 2−2b(R,m) otherwise. The quanti-
zation noise nq

R follows CN (0M×1,RR), where RR ≜
Θ(α,R)Θ(ρ,R)diag

(
E
[
yyH

])
denotes the covariance matrix,

with Θ(ρ,R) ≜ diag(ρ(R,1), ρ(R,2), . . . , ρ(R,M)) ∈ CM×M .
In baseband processing, a received digital beamforming ma-

trix, W ≜ [w1, . . . ,wK ]
T ∈ CK×M , is applied to detect the

uplink signal [11]–[13], where wk ∈ C1×M is a normalized
beamforming vector to detect the signal of k−th user, which
satisfies ||wk||2 = 1. The detected signal is then represented
as

ŷ = Wyq

= WΘ(α,R)

K∑
k=1

Hk
√
pkΘ(α,T,k)fksk

+WΘ(α,R)

K∑
k=1

Hkn
q
(T,k) +WΘ(α,R)n+Wnq

R.

(7)

Here, ŷ ≜ [ŷ1, ŷ2, . . . , ŷK ] ∈ CK×1, where ŷk is the detected
signal of user k.

B. Problem Formulation

The system uses the NOMA technique to facilitate commu-
nication between the users and the BS. Then, the BS applies
the SIC technique to decode the individual signals from the
detected signal, where the decoding order is ranked based on
the effective channels between the users and the BS. Here, the
signal from the user having the strongest effective channel is
decoded first [14]. Accordingly, the achievable rate of each
user k can be calculated as

rk = B log
(
1 + SUk (IUk + QEk + NUk)

−1
)
, (8)

Algorithm 1 Achievable rate calculation
1: Input:
2: Calculate Rsu

k , k ∈ K.
3: for k ∈ K do
4: Set IUk = 0.
5: for j ∈ K\k do
6: if Rsu

j < Rsu
k then

7: Calculate SUj as (9a).
8: Update interference: IUk += SUj .
9: end if

10: end for
11: Calculate rk as (8).
12: end for
13: return The achievable rate rk, k ∈ K.

where B is the communication bandwidth, and

SUk = pk
∣∣wkΘ(α,R)HkΘ(α,T,k)fk

∣∣2 , (9a)

IUk =
∑

j∈IUk

pj
∣∣wkΘ(α,R)HjΘ(α,T,j)fj

∣∣2 , (9b)

QEk =

K∑
i=1

wkΘ(α,R)HiH
H
i ΘH

(α,R)w
H
k 11×NR(T,i), (9c)

NUk = σ2wkΘ(α,R)Θ
H
(α,R)w

H
k +wkw

H
k 11×MRR, (9d)

where IUk is the set of users having weaker effective channels
than the user k. Without loss of generality, we assume the
effective channels of users are determined according to their
achievable rate in a single-user system [15]. Therefore, let Rsu

k

denote the achievable rate of user k in the system without any
interference from other users, the users are ranked as Rsu

1 >
Rsu

2 > · · · > Rsu
K . Rsu

k is calculated as

Rsu
k = B log

(
1 + pkSUk

(
QE(i=k)

k + NU
)−1

)
, (10)

where SUk, and NU are defined in (9a), and (9d), respec-
tively, QE(i=k)

k = wkΘ(α,R)HkH
H
k ΘH

(α,R)w
H
k 11×NR(T,k).

Accordingly, the achievable rate of users can be calculated
as Algorithm 1. First, the achievable rate of each user in
the single-user system is estimated using (10). Then, for the
considered user k, the lower-rate users are counted as the
interference users (lines 7-12). Consequently, the achievable
rate rk is calculated using (8).

Besides, each user’s achievable rate must satisfy the min-
imum QoS requirement, which is determined according to
an achievable rate threshold, rth. Accordingly, we formulate
an optimization problem that maximizes the number of users
meeting the QoS requirement, i.e., satisfied users, while min-
imizing the users’ transmit power. To do so, we establish a
value function as follows:

C =
K∑

k=1

ϵλ(rk − rth)− pk, (11)

where ϵ is an auxiliary variable determining the priority of the
number of satisfied users over the transmit power, and λ(x)



denotes a satisfaction function, expressed as

λ(x) =

{
1, if x ≥ 0,

η, otherwise,
(12)

where η is a negative harm value to penalize users breaking
the QoS requirement.

Consequently, to maximize the number of satisfied users
while minimizing the users’ transmit power, we formulate
an optimization problem of maximizing the value function
by optimizing the transmit power, precoding matrix, and
the received digital beamforming matrix. By denoting p ≜
{p1, p2, . . . , pK}, F ≜ {f1, f2, . . . , fK}, the problem is for-
mulated as

(P1 ) : max
p,F,W

C (13a)

s.t. Tr
(
E
[
xq
k(x

q
k)

H
])
≤ P(k,max), k ∈ K (13b)

||wk||2 = 1, k ∈ K, (13c)

where (13b) is the constraint of transmit power, and (13c) is
the receive beamforming matrix constraint.

The objective function exhibits non-convexity because of
the satisfaction function, which poses challenges in finding the
global optimum solution and formulating efficient optimization
algorithms to solve the problem. In light of the non-convex na-
ture of the problem, developing an approximation approach to
find an approximate solution is a practical and feasible choice.
Fortunately, RL has gained recognition as a valuable tool for
implementing such an approach. By leveraging RL algorithms,
it is possible to effectively navigate the complexities of the
problem and discover satisfactory solutions. Considering this
observation, we address the issue by transforming the problem
(P1) into a problem based on the RL model and proposing a
DRL framework to tackle the transformed problem.

III. PROPOSED DEEP REINFORCEMENT LEARNING
FRAMEWORK

In this section, we first transform (P1) into an RL-based
problem. Then, we propose a DRL framework that leverages
a DRL algorithm and a proposed post-actor process to solve
it. We illustrate the proposed framework in Fig. 1, which is
detailed as follows.

A. RL-based Problem

We formulate the problem (P1) as an RL model [16],
where the BS assumes the role of the RL agent, while the
entire system functions as the environment in which the agent
operates. At each time slot t, the state space, action space, and
reward function are defined as follows:

Definition 1: The state space contains environment observa-
tions, which includes channel matrices from users to the BS.
Accordingly, the state space at time slot t is expressed as

s[t] = {H1[t],H2[t], . . . ,HK [t]}. (14)

Definition 2: The action space specifies the actions that
the agent needs to decide, including the transmit powers,

precoding matrices, and the received digital beamforming
matrices. Then, the action space at time slot t is expressed
as

a[t] = {p[t],F[t],W[t], k ∈ K}. (15)

Definition 3: The reward function is calculated according
to the objective function, with a focus on maximizing value
function C. To achieve this, we formulate it founded on the
value function, which is calculated as

r[t] =

K∑
k=1

ϵλ(rk − rth)− pk (16)

Accordingly, the RL-based problem is formulated to opti-
mize long-term return by determining the best action at each
state in the RL model while considering the constraints in (13).
Then, we formulate the RL-based problem as

(P2 ) : max
a[t]

T∑
l=t

r[t]γl−t (17a)

s.t. (13b), (13c), (17b)

where T is the number of examined time slots and γ is the
discount factor.

B. DRL Training Algorithm

To decide the suitable RL action, we employ a widely-used
DRL algorithm named Deep Deterministic Policy Gradient
(DDPG) in our framework. DDPG utilizes critic and actor
networks, each comprising both main and target networks,
to facilitate the decision-making process [17]. Each network
in the DRL framework is implemented using a neural net-
work. The main actor network, µ(s|θµ), where θµ is the
network’s parameter, plays the decision-maker role, trained
to map observation state s[t] to corresponding action a[t].
To measure the chosen action, DDPG uses the main critic
network, Q(s, a|θQ), where θQ is the network’s parameter,
to estimate action-value function for the chosen action a[t] at
state s[t]. Accordingly, the main actor network’s parameter is
updated based on the policy gradient ascent function as

∇θµJ =
1

B

B∑
b=1

(
∇aQ(s, a|θQ)|s=sb,a=µ(sb)∇θµµ(sb|θµ)

)
,

(18)
where B is the mini-batch size of training samples. The
parameter of the main critic network is then updated by using
gradient descent on the loss function as

L =
1

B

B∑
b=1

(
Q(sb, ab|θQ)− yb

)2
, (19)

where yb = rb + γQ′
(
s′b, µ

′(s′b|θµ
′
)|θQ′

)
with s′b is the next

state of b−th sample, µ′(s|θµ′
) and Q′(s, a|θQ′

) are the target
actor and critic networks, respectively. The corresponding



Fig. 1: Proposed DRL framework.

parameters θµ
′

and θQ
′

are updated by a soft-update with a
parameter τ ∈ [0, 1], given as

θµ
′
← τθµ + (1− τ)θµ

′
,

θQ
′
← τθQ + (1− τ)θQ

′
.

(20)

The exploration in the training process is ensured by adding
noise to the action. In DDPG, the noise is generated founded
on the Ornstein-Uhlenbeck process [18]. Let ON [t] denote the
noise at time slot t, the action decided by the DDPG algorithm
in training is expressed as

a[t] = µ(s[t]|θµ) +ON [t]. (21)

C. Post-actor Process

By employing the DDPG algorithm, the actor network can
decide the appropriate actions p, F, and W. However, these
actions may not comply with the constraints stated in (17b),
which violates the environmental requirements. To address this
issue, we propose a post-actor process to guarantee that all
constraints are maintained throughout the system.

The action value range in the DRL algorithm can be decided
by selecting the activation function in the actor network. To
determine a suitable range of values for actions, we first
reconsider the problem constraints by proposing the following
proposition:

Proposition 1: With the quantization loss matrix Θ(α,T,k) ≜
diag(α(T,k,1), α(T,k,2), . . . , α(T,k,N)), where α(T,k,n) = 1 −
ρ(T,k,n), n ∈ {1, . . . , N} are real numbers, constraint of
transmit power in (13b) can be reformulated as

pk ≤ P(k,max), k ∈ K, (22a)

Tr
(
Θ(α,T,k)fkf

H
k

)
= 1, k ∈ K. (22b)

Proof: Please see Appendix A.
Accordingly, we normalize the action value to the range of
[0, 1] and introduce a scaled value of pk as the new transmit
power of user k that satisfies constraint (22a), denoted as p′k,
which is calculated as

p′k = pkP(k,max), (23)

where pk ∈ [0, 1], i.e., p′k ∈ [0, P(k,max)]. Let p′ ≜
{p′1, . . . , p′K} represent the new transmit power set. By ap-
plying this set, the constraint (22a) is satisfied. Then, the
remaining constraints are (22b) and (13c). To ensure constraint
(22b) is satisfied, we propose a new precoding matrix f ′k for
each user k, which is calculated according to fk. In particular,
we introduce the following proposition:

Proposition 2: Let f ′k ≜ [f ′
1, . . . , f

′
N ]T ∈ CN×1 represent

the precoding matrix of user k that satisfies constraint (22b),
i.e., Tr

(
Θ(α,T,k)f

′
k(f

′
k)

H
)

= 1. Its n−th element, f ′
n, is

calculated as

f ′
n =

fn√∑N
n=1 α(T,k,n)|fn|2

(24)

Proof: Please see Appendix B.
By applying Proposition 2, the new precoding matrix, F′ ≜
{f ′1, . . . , f ′K}, is obtained that meets the constraint (22b). Then,
the only remaining constraint is (13c). To achieve this require-
ment, we introduce the following proposition, which defines
the function for recalculating the received digital beamforming
matrix to the appropriate values:

Proposition 3: Let w′
k ≜ [w′

k,1, . . . , w
′
k,M ] ∈ CM denote

the normalized beamforming vector that satisfies constraint
(13c), i.e., ||w′

k||2 = 1. The m−th element of w′
k is calculated

as
w′

k,m,=
wk,m√∑M

m=1 |wk,m|2
. (25)

Proof: The square norm of w′
k is expressed as

||w′
k||2 =

√√√√ M∑
m=1

|w′
k,m|2 (26)

Replacing w′
k,m by (25), we obtain

||w′
k||2 =

√√√√√ M∑
m=1

∣∣∣∣∣∣ wk,m√∑M
m=1 |wk,m|2

∣∣∣∣∣∣
2

=

√√√√ M∑
m=1

|wk,m|2∑M
m=1 |wk,m|2

= 1.

(27)



Algorithm 2 Proposed DRL-based algorithm
1: Set up algorithm parameters.
2: while e < E do
3: for t from 1 to T do
4: Observe environment state s[t].
5: Select a[t] as in (21).
6: Normalize action into the range of [0, 1].
7: for k ∈ K do
8: Scale transmit power pk[t]← p′k[t] as (23).
9: Calculate new precoding matrix f ′k[t] as Proposition 2.

10: Calculate new received beamforming vector w′
k[t] as

Proposition 3.
11: end for
12: Perform p′[t], F′[t], W′[t], get state-next s[t+ 1], reward

r[t].
13: Store (s[t], a[t], r[t], s[t+ 1]) in buffer.
14: Update new state s[t+ 1]→ s[t].
15: Randomly choose a batch of samples from buffer,

(sB , aB , rB , s′B)
16: Training neural networks as sub-section III-B.
17: end for
18: end while
19: return the trained main actor network, µ∗(s|θµ

∗
).

This completes the proof.
By applying Proposition 3, a new received beamforming
matrix W′ ≜ {w′

1, . . . ,w
′
M} is obtained, which satisfies

constraint (13c). Consequently, all constraints in the problem
(P2 ) are satisfied.

D. Framework Formulation

Our proposed framework utilizes the DDPG algorithm in
conjunction with the proposed post-actor process, referred
to as QNOMA-DRLPA, to address the optimization problem.
The entire proposed algorithm is shown in Algorithm 2. The
algorithm takes place in E episodes, each with T time steps.
In each time step t, the agent decides action a[t] according to
the observed state s[t]. Then, the proposed post-actor process
is applied (lines 6-11) to deal with the problem constraints.
Accordingly, the new actions, including p′[t], F′[t], and W′[t],
are performed to the environment. Here, the users’ achievable
rates are calculated according to Algorithm 1, the reward r[t]
is then calculated as (16), and the environment state is updated
to the next state s[t+1]. Consequently, an experienced sample
combined from s[t], a[t], r[t], and s[t+ 1] is pushed into the
buffer for training. To train the neural networks, a batch of
samples is randomly taken out from the replay buffer, and the
training process is executed based on the DDPG algorithm as
introduced in sub-section III-B.

IV. SIMULATION RESULTS

A. Simulation Setting

To assess the proposed framework’s performance, we con-
duct simulations in an environment where the BS serves 10
users randomly distributed within a range of 10 to 200 meters
from the BS. The channel matrices between the BS and users,
Hk, k ∈ K, are generated as [19]

Hk = Ĥk

√
10−Lk/10, (28)

where Lk = 103.8 + 20.9 log10(dk) denote the path loss in
dB between the BS and user k at the distance dk (Kilometer);
the matrix Ĥk represents the small-scale fading, where each
element is independently distributed as CN (0, 1). The users
are equipped with 4 antennas, while the number of antennas
in BS is 8. We set the communication bandwidth B = 10
MHz, σ2 = −174 dBm/Hz, ϵ = 10, and η = 2. The time step
duration is 0.1 (s). The neural networks in the DRL algorithm
are deployed with two hidden layers, each has 512 nodes. The
batch size, buffer size, and discount factor in the algorithm are
set to 16, 105, and 0.999, respectively. The training is executed
in 3000 episodes, each with 300 time steps. In this simulation,
we consider a homogeneous quantization resolution system,
where the antennas in each node have the same DAC/ADC.
The maximum transmit power, P(k,max), is from 0 to 10
(dBm). The achievable rate threshold, rth, is from 2 to 10
(Mbits/s). And the number of quantization bits in each node
varies from 2 to 10 bits. To assess performance, we rely on
two primary measures. The performance value represents the
reward received during each time step, and the percentage of
satisfied users reflects the proportion of users meeting the QoS
constraint about the total number of users being evaluated.

Besides, we evaluate the following schemes to compare with
the proposed QNOMA-DRLPA framework’s performance:

• Quantization with OMA (QOMA): We compare the per-
formance of the NOMA and orthogonal multiple ac-
cess (OMA) schemes in the quantized uplink multi-
user MIMO system. Based on [20], we simulate an
OMA system using the FDMA technique, where each
user is allocated a dedicated part of the bandwidth, and
interference is set to zero.

• Quantization without multiple access technique (QWoMA):
In this scheme, multiple access techniques are not em-
ployed in the communications. Consequently, signals
from other users are fully treated as interference when
considering the transmission of user k. According to [13]
(sub-section 4.1), the value of IUk in (9b) is calculated
as:

IUk =
∑

j∈K\k

pj
∣∣wkΘ(α,R)HjΘ(α,T,j)fj

∣∣2 . (29)

• Discrete searching algorithm (DSA): We transform con-
tinuous actions into discrete spaces and select the optimal
action at each time step. However, when there are numer-
ous options, it is unfeasible to explore all potential ac-
tions. Therefore, we implement a low-complexity search
strategy based on a greedy algorithm to overcome this
challenge and determine the action yielding the highest
reward. This approach can be considered a local-optimal
method.

B. Performance Evaluation

First, we estimate the convergence of the proposed
QNOMA-DRLPA framework by training it with different learn-
ing rate values. The actor learning rate (lra) and critic learning
rate (lrc) are chosen from three values of 0.001, 0.002, and
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Fig. 2: Training results with different learning rate.
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Fig. 3: Performance with different value of maximum transmit powers.

TABLE II: Percentage of satisfied users with different resolutions.

(a) DAC resolution

Number of DAC’s quantization bits 2 3 4 5 6 7 8 9 10
Percentage of satisfied users (%) 56.34 85.59 95.43 98.04 98.72 98.84 98.99 98.92 99.05

(b) ADC resolution

Number of ADC’s quantization bits 2 3 4 5 6 7 8 9 10
Percentage of satisfied users (%) 36.86 74.89 91.02 96.17 97.74 97.91 98.07 98.07 98.05

0.003. As shown in Fig. 2a, the case when lra = lrc = 0.002
gives the best reward, where its value increases in accordance
with the increase in the number of satisfied users in Fig.
2b. Besides, we examine a policy loss to see how the actor
network’s parameter is updated. According to the gradient
ascent in (18), the policy loss at each training step, denoted
as GLµ, is measured by

GLµ = − 1

B

B∑
b=1

(Q(sb, µ(sb|θµ))) . (30)

As illustrated in Fig. 2c, the policy loss fades during the
training process, where it finally reaches convergence after
approximately 2000 training episodes. Consequently, we select
the trained model in the case of lra = lrc = 0.002 after train-
ing in 3000 episodes to evaluate the framework’s performance.

Second, we evaluate the framework’s performance with
different environmental parameters by compared with other
benchmark schemes. In Fig. 3, we assess the system’s per-
formance by varying the maximum transmit power of users
from 0 to 10 (dBm), the numbers of quantization bits are
set to 4 and 10 at the DACs and ADC, respectively, and
the achievable rate threshold is 10 (Mbits/s). As a result,
our proposed QNOMA-DRLPA framework outperforms QOMA,
DSA, and QWoMA, where the percentage of satisfied users
is always higher than 85 %. Besides, the QWoMA scheme
yields the worst result because, in the absence of multiple
access techniques, the interference experienced by other users
becomes high in a multi-user system. Combined with the
quantization loss, it reduces transmission quality, adversely
affecting overall system’s performance. In Fig. 4, we evaluate
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Fig. 4: Performance with different value of achievable rate thresholds.
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Fig. 5: Performance with different resolutions.

our proposed framework under different application require-
ments by varying the achievable rate threshold value from 2 to
10 (Mbits/s). The result shows that our proposed framework
performs exceptionally well in all cases, achieving a high
percentage of satisfied users, up to 99 % in the case of rth = 2
(Mbits/s). In addition, increasing the threshold requirement
poses a significant challenge for systems employing the OMA
or no multiple access techniques. As the threshold expands,
the system’s performance gradually declines, with reductions
of approximately 7.7 %, 9.1 %, 10.6 %, and 11.3 % when the
threshold increases from 2 to 4, 4 to 6, 6 to 8, and 8 to 10
(Mbits/s), respectively, in QOMA. Also, a local-optimal method
like DSA faces the same issue as QOMA, while QNOMA-DRLPA
only reduces about 5-6 % after each increase of rth. Conse-
quently, our proposed scheme consistently outperforms other
benchmark schemes in all simulation cases, demonstrating its
superiority and effectiveness in handling varying threshold
requirements and achieving high system’s performance.

Next, we analyze the framework’s performance in different
numbers of quantization bits. In Fig. 5b, we evaluate the
framework when modifying the number of DAC’s quantization

bits from 2 to 10 bits, where the number of ADC’s quantization
bits is 10, the maximum powers of users are 10 (dBm), and
rth = 10 (Mbits/s). In the worst case (2 bits), the performance
value varies a lot, and its percentage of satisfied users is only
56.34 %, shown in Table IIa, due to the high value of quanti-
zation loss. When increasing the resolution, the performance
gets better, and the framework performs excellently when the
number of DAC’s quantization bits is greater than 4, where its
percentage of satisfied users is approximately 99 %. Then, we
fixed the resolution of DACs to 5 bits and changed the number
of ADC’s quantization bits from 2 to 10 to observe results in
Fig. 5a and Table IIb. Similarly, the lowest resolution gives
the worst performance, where the performance value ranges
from -220 to 20, and the percentage of satisfied users is about
36.86 %. The framework performs well and is stable when
the resolution is greater than 5 bits, where its percentage of
satisfied users is about 98 %. As a result, the resolution of
communication devices significantly impacts communication
performance. While developing efficient and effective wireless
communication technologies is crucial, it is equally important
to consider the trade-off between network requirements and



device cost during the design and manufacturing of telecom-
munications equipment.

V. CONCLUSION

Our research focused on improving the performance of a
quantized uplink multi-user MIMO communication system
by applying the NOMA technique. Specifically, we aimed
to optimize the transmit power and precoding matrix at
users and the received beamforming matrix at the BS. The
objective was to maximize the number of users meeting
the QoS requirement while minimizing the user’s transmit
power. We faced a challenge with the objective function not
being convex. To tackle this, we transformed the problem
into an RL-based problem and proposed a DRL framework
named QNOMA-DRLPA, which employs a well-known DRL
algorithm named DDPG, to resolve it. However, the DDPG
cannot handle constraints in the problem, so we proposed
a post-actor process that recalculates the value of actions
decided by the DDPG to meet all the problem constraints.
In the simulation, we demonstrated the convergence of the
DRL training algorithm by examining the training reward and
the policy loss values. In addition, we proved the superior
performance of the QNOMA-DRLPA framework compared to
benchmark schemes in different environmental parameters. In
addition, we evaluated the performance under different reso-
lutions, where we concluded the impact of resolution on the
communication system. Besides, the suggested system holds
appeal for numerous research endeavors, such as exploring the
system’s energy efficiency, integrating it with other next-gen
communication techniques like mobile edge computing and
reconfigurable intelligent surfaces, and considering alternative
multiple access schemes like rate splitting multiple access.

APPENDIX A
PROOF OF PROPOSITION 1

The left side of constraint (13b) can be reformulated as

Tr
(
E
[
xq
k(x

q
k)

H
])

= Tr
(
pkΘ(α,T,k)fkf

H
k ΘH

(α,T,k)

)
+ ||R(T,k)||1,

(31)

where R(T,k) is calculated as

R(T,k) = Θ(α,T,k)Θ(ρ,T,k)diag
(
E
[
xkx

H
k

])
= Θ(α,T,k)Θ(ρ,T,k)diag

(
pkfkf

H
k

)
.

(32)

Besides, from (3), we can obtain:

Θ(ρ,T,k) = IN −Θ(α,T,k). (33)

Therefore, the left side of constraint (13b) becomes:

Tr
(
E
[
xq
k(x

q
k)

H
])

= Tr
(
pkΘ(α,T,k)fkf

H
k ΘH

(α,T,k)

+ pkΘ(α,T,k)(IN −Θ(α,T,k))fkf
H
k

)
= pkTr

(
Θ(α,T,k)fkf

H
k ΘH

(α,T,k)) + pkTr
(
Θ(α,T,k)fkf

H
k

)
− pkTr

(
Θ(α,T,k)Θ(α,T,k)fkf

H
k

)
(34)

Due to the diagonal matrix Θ(α,T,k) ≜
diag(α(T,k,1), α(T,k,2), . . . , α(T,k,N)), with α(T,k,n),
n ∈ {1, . . . , N} are real numbers, we can perform:

Tr
(
Θ(α,T,k)Θ(α,T,k)fkf

H
k

)
= Tr

(
Θ(α,T,k)fkf

H
k Θ(α,T,k)

)
= Tr

(
Θ(α,T,k)fkf

H
k ΘH

(α,T,k)

)
.

(35)

Accordingly. the equation (34) is simplified as

Tr
(
E
[
xq
k(x

q
k)

H
])

= pkTr
(
Θ(α,T,k)fkf

H
k

)
. (36)

Consequently, constraint (13b) is rewritten as

pkTr
(
Θ(α,T,k)fkf

H
k

)
≤ P(k,max), (37)

where we can split it into two sub-constraints as{
pk ≤ P(k,max),

Tr
(
Θ(α,T,k)fkf

H
k

)
= 1.

(38)

This completes the proof.

APPENDIX B
PROOF OF PROPOSITION 2

To prove Tr
(
Θ(α,T,k)f

′
k(f

′
k)

H
)
= 1, we first perform the

matrix multiplication in the trace operator of the left side,
which is represented as

Θ(α,T,k)f
′
k(f
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(39)

Then, the trace operator is calculated as

Tr
(
Θ(α,T,k)f

′
k(f

′
k)

H
)
=

N∑
n=1

α(T,k,n)|f ′
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=
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(40)

This completes the proof.
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