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FlyReflect: Joint Flying IRS Trajectory and Phase
Shift Design using Deep Reinforcement Learning

Thanh Phung Truong, Van Dat Tuong, Nhu-Ngoc Dao, and Sungrae Cho

Abstract—Aerial access infrastructures have been considered
a compulsory component of the sixth-generation (6G) networks,
where airborne vehicles play the role of mobile access points to
service ground users from the sky. In this scenario, intelligent
reflecting surface (IRS) is one of the promising technologies
associated with airborne vehicles for coverage extensions and
throughput improvements, a.k.a., flying IRS. This study considers
a multi-user multiple-input single-output (MISO) flying IRS sys-
tem, where the flying IRS reflects downlink signals from ground
base stations to users located at underserved areas where direct
communications are unavailable. To achieve the system sum-
rate maximization, we proposed a deep reinforcement learning
(DRL) algorithm named FlyReflect to jointly optimize the
flying trajectory and IRS phase shift matrix. First, end-to-end
communications from a base station to its ground users via the
flying IRS are analyzed to identify environmental and operational
factors that impact achievable system sum-rate. Subsequently,
the system is transformed into a DRL model, which is resolvable
by the deep deterministic policy gradient (DDPG) algorithm. To
improve the action decision accuracy of the DDPG algorithm, we
proposed a mapping function to guarantee that all constraints
are satisfied regardless of noise additions in the exploration
process. Simulation results showed that our proposed algorithm
outperforms state-of-the-art algorithms in multiple scenarios.

Index Terms—Flying reflection, unmanned aerial vehicle, in-
telligent reflecting surface, deep reinforcement learning

I. INTRODUCTION

THE boom of the Internet of things (IoT) era leads to
a significant number of challenges ahead [1] in terms

of data transfer rate, low latency, cost efficiency, broadband
and spectrum efficiency, concurrent device connectivity, and
energy efficiency, which mobile networks must address well to
ensure successful implementation. To this end, the disruptive
technologies in the sixth-generation (6G) networks, such as
the terahertz spectrum, cell-less and aerial architectures, and
massive distributed intelligence, are considered key enablers
to support a unified access framework that harmonizes air-
ground networks, large intelligent surface, and edge artificial
intelligence (AI) [2].

As a foundational technology for such future communica-
tion, intelligent reflecting surface (IRS) [3]–[6], a.k.a. reconfig-
urable intelligent surface (RIS) [7]–[9] or large intelligent sur-
face [10]–[12], which is constituted by multiple passive scat-
tering elements in a two-dimensional (2D) surface, provides
advantages in throughput improvement. In IRS, the features of
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reflecting elements are adjusted by a central software-defined
controller to yield efficient signal reflection. In particular, the
phases of every element are shifted to optimal values to reflect
incoming signals, creating a positive multi-path effect [13].

In the context of 6G aerial radio access networks, IRS may
associate with airborne vehicles to realize an efficient strategy
for serving heterogeneous users from the sky [14], This
association forms a new variance of the IRS class, i.e., flying
IRS (F-IRS). An F-IRS consists of an airborne vehicle acting
as a transporter that carries the IRS, which acts as a reflector.
In such a system model, optimizing the three-dimensional (3D)
flying trajectory and phase shift matrix at the F-IRS to obtain
maximum average system sum-rate retains open challenges
toward the maturation of the technology. In particular, to the
best of our knowledge, although F-IRS systems have been
partially investigated in several recent studies [15]–[26], no
existing work has analyzed F-IRS optimization in a dynamic
environment with a consideration of user mobility.

To tackle the aforementioned problem, we considered a
system model where an F-IRS assists multi-user multiple-
input single-output (MISO) communication to reflect downlink
signals from a multi-antenna base station (BS) to their single-
antenna ground users (GUs) located in underserved areas,
where direct links between them are not available. In par-
ticular, GUs are assumed to have free mobility within the
serving areas. In a nutshell, major contributions in this study
are summarized as follows:
• First, we proposed a novel multi-user MISO F-IRS sys-

tem model that considers user mobility. Here, the F-
IRS reflects downlink signals from a multi-antenna BS
to multiple single-antenna GUs moving around in the
coverage area.

• Second, we formulated end-to-end communication chan-
nels from the BS to the GUs via F-IRS to identify possi-
ble environmental and operational factors that impact the
achievable system sum-rate. Specifically, we developed
mathematical expressions to represent the relationship
between the 3D flying trajectory and the phase shift
matrix of the F-IRS and the system sum-rate. Finally,
an optimization utility of the achievable system sum-
rate maximization is derived along with comprehensive
constraints.

• Third, the optimization problem was transformed into a
DRL model, which is resolvable by the deep deterministic
policy gradient (DDPG) algorithm. To mitigate the effects
of noise additions in the exploration process in the DDPG
algorithm, we proposed a mapping function to guarantee
that all constraints affected by the noise addition are
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satisfied to improve the action decision accuracy. The
whole solution is referred to as FlyReflect.

• Fourth, we conducted Monte-Carlo experiments to an-
alyze the impacts of hyperparameters on the proposed
DRL framework in multiple scenarios with various
environment parameter adjustments. Numerical results
demonstrate that FlyReflect outperforms state-of-the-
art algorithms in terms of system sum-rate achievement
as well as convergence time.

The rest of this study is organized as follows. In Section II,
we review some related works. Subsequently, the multi-user
MISO F-IRS system model is analyzed and the optimization
problem is then formulated in Section III. Next, we present
our transformation of the system adopting the DRL model
in Section IV to tackle the optimization problem. Then,
we describe the performance experiments on the proposed
framework in Section V. In section VI, conclusion of the paper
is presented.

NOTATION: In this paper, for any general matrix A, AH

denotes the conjugate transpose of A. The symbol ⊗ denotes
the Kronecker product operation. For vector a, the Euclidean
norm is denoted as ||a||. The notation |a| denotes the absolute
value of a complex number. The circularly symmetric complex
Gaussian distribution is denoted by CN (χ, σ2

0) with mean χ
and variance σ2

0.

II. RELATED WORKS

Recently, research on IRS has attracted significant attention
from the academia and industry, especially in the context
of beyond 5G and 6G communication networks. Generally,
existing studies can be divided into two categories: fixed IRS
schemes [15]–[22] and mobile IRS schemes [23]–[26].

Fixed IRS schemes consider the assistance of the IRS
in a model, where the IRS is installed on fixed objects to
improve system performance. In particular, the authors in
[15] investigated the IRS support in a downlink multi-user
communication system. They designed an iterative algorithm
to optimize RIS configuration and digital beamforming in the
BS for a sum-rate maximization problem. The IRS assists in
a non-orthogonal multiple access (NOMA) network is consid-
ered in paper [16]. The authors examined an IRS-empowered
downlink system to minimize the BS transmit power; for this
purpose, they proposed a novel algorithm, namely a difference-
of-convex programming algorithm, to jointly design the IRS
phase shift matrix and BS transmit beamforming vector. In
[17], the downlink transmission in a MISO NOMA system was
investigated with the aid of the IRS. In this work, the authors
formulated a problem that jointly optimized the passive and
active beamforming vectors for the sum-rate maximization.
They decoupled the problem into two sub-problem, then a
successive convex approximation technique was applied for
solving them.

MISO communication was also considered in many IRS
studies [18]–[20]. Specifically, the authors in [18] examined
the support of the IRS in an MISO network with eavesdrop-
pers and a friendly jammer. They aimed to maximize the
energy efficiency by jointly optimizing the IRS phase shift

matrix, transmit beamforming, and jamming vectors. Then,
they designed a semidefinite programming relaxation-based
algorithm and an alternate optimization algorithm to handle
the optimization problem. In [19], the RIS-based downlink
transmission was considered in a multi-user MISO system.
In this work, two algorithms based on sequential fractional
programming and gradient descent were designed to optimize
the transmit power allocation and the IRS phase shifts for the
energy efficiency maximization problem. The downlink MISO
communication with the help of RIS in [20] was considered in
an unmanned aerial vehicle (UAV)-enabled wireless network
system. The authors jointly designed the dynamic decoding
order, IRS phase shift design, power allocation, and UAV
trajectory to minimize the energy consumption using a decay
deep Q-network is designed to handle this work. The fixed
IRS in a UAV network has also appeared in many works
such as [21], [22]. The authors in [21] proposed a scheme
in which an RIS built on the wall of a building assists the
UAV relaying system to improve the coverage, capacity, and
bit error rate (BER) of the systems. The assistance of the IRS
in UAV-supported terahertz communications was investigated
in [22]. In this, the authors proposed a successive convex
approximation with the rate constraint penalty-based algorithm
to jointly design the allocation of the terahertz sub-bands, IRS
phase shift, power control, and UAV trajectory for a minimum
average achievable rate maximization problem.

On the other hand, the mobile IRS schemes, which were
considered in numerous studies [23]–[26], have flexibility in
deployment. As in [23], an aerial IRS (AIRS) was developed
to aid a terrestrial communication system in order to maximize
the minimum signal-to-noise ratio at a location. A closed-form
optimal solution is presented for the AIRS placement, phase
shift matrix, and transmit beamforming vector optimization.
A UAV-borne reflecting surface system was investigated to
assist the communication from a source to a destination in
[24]. The authors analyzed the system performance according
to ergodic capacity, outage probability, and energy efficiency in
three modes, i.e., integrated UAV-IRS mode, IRS-only mode,
and UAV-only mode. The AIRS in [25] was developed in
a cell-free massive multiple input multiple output (MIMO)
system to maximize the achievable rate of a single user. In
this work, the authors presented a fast optimal search algorithm
to jointly optimize the precoding vector at the access points,
the transmit power allocation vector, the AIRS placement,
and the phase shift matrix. An ARIS-assisted IoT wireless
network was studied in [26]. The authors presented a problem
for the expected sum age-of-information minimization by
optimizing the UAV altitude, RIS phase shift elements, and
communication schedule; then, a DRL approach was used to
tackle the problem.

Although the above-mentioned mobile IRS studies have
achieved some certain achievements in pointing out the ad-
vantages of the mobile IRS over the fixed IRS and the
performance improvement of the system with the assistance
of the IRS, no research has considered the mobile IRS in a
multi-user dynamic environment with user mobility. This is
the motivation for us to conduct this study, which investigates
the effects of the mobile IRS, i.e., F-IRS, on the dynamic
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environments where the users move around in the coverage
area.

III. PROBLEM STATEMENT

This section proposed the achievable system sum-rate op-
timization problem, where the F-IRS system scenario and
communication channel model are thoroughly examined. Table
I lists the notations utilized in this study.

TABLE I: List of notations

Notation Description
M Number of BS antennas

K Number of ground users (GUs)

N Number of IRS elements

HT Channel gain matrix of B2F link

hR,k Channel gain matrix of F2k link

Θ Phase shift matrix

yk Received signal at GU k

wk Transmit beamforming vector

HLoS
T / HNLoS

T LoS / NLoS components of HT

HLoS
R,k / HNLoS

R,k LoS / NLoS components of HR,k

L1 / L2,k Path losses of the B2F / F2k links

ε1/ε2,k Rician factors of the B2F / F2k links

pI / pBS / pk Coordinates of F-IRS / BS antennas / GU k

dB2F / dF2k Distance of the B2F / F2k links

ϕAoD,T / φAoD,T Azimuth / elevation angle of departures
(AoDs) at BS antennas to F-IRS

ϕAoA,T / φAoA,T Azimuth / elevation angle of arrivals (AoAs)
at F-IRS from BS

ϕAoD,Rk / φAoD,Rk Azimuth / elevation angle of departures
(AoDs) at F-IRS to GU k

aM Received array response vector at F-IRS

aN / aR,k Transmitted array response vectors at BS
antennas / F-IRS

aNP , aNQ, aMU , aMV ,
aRk,P , aRk,Q

Temporary vectors for presentation

ρN , ζN , ρM , ζM , ρR,
ζR

Temporary parameters for presentation

du / dv Distance between two array elements of BS
antennas with respect to z-axis / y-axis

dp / dq Distance between two array elements of IRS
with respect to y-axis / x-axis

Rk Achievable rate at GU k

[zmin, zmax] Altitude range of F-IRS

tu(t), ϕu(t), φu(t) Movement variables of F-IRS

A. System Model

Fig. 1 illustrates the multi-user MISO F-IRS system model
in consideration, which consists of an M-antenna BS and K
(K ≥ 2) single-antenna GUs, where direct links between the
BS and GUs are unavailable due to obstacle. The communica-
tions between the BS and the GUs are through an F-IRS, which
has N reflecting elements. To facilitate forthcoming analyses,
a relative coordinate system is assumed at the location of the
BS.

Fig. 1: Multi-user MISO F-IRS systems.

This study considers the downlink transmission, in which
direct transmissions from the BS to GUs are blocked by
obstructions; thus, there is no signal path of the direct channel.
The communication channel from the BS to GU k is assisted
by the F-IRS, which is constituted by three components: the
transmission channel between the BS and the F-IRS (i.e.,
B2F) link, reflection at the F-IRS, and the F-IRS to the GU
k reflection channel (i.e., F2k). We denote HT ∈ CN×M
as the channel gain matrix of the B2F link, hR,k ∈ C1×N

as the reflection channel gain vector of the F2k link. The
phase shift matrix at the F-IRS is defined by a diagonal
matrix Θ = diag

(
α1e

jθ1 , · · · , αnejθn , · · · , αNejθN
)
, where

each reflecting element n has its reflection coefficient αn in
the range of [0, 1] and the phase shift value θn ∈ [0, 2π],
Θ ∈ CN×N . Here, j denotes the imaginary unit. Hence, the
received signals at GU k are given as

yk = (hR,kΘHT )x+ nk, (1)

where nk ∼ CN (0, σ2
0) denotes the additive white Gaussian

noise (AWGN) received at the GU k, and x ∈ CM×K is the
transmitted signal at the BS, which is defined as

x =

K∑
k=1

wksk, (2)

where sk denotes the transmit data symbol to GU k and wk ∈
CM×1 is the transmit beamforming vector.

B. Channel Model

Channels HT and hR,k are assumed following a well-
known Rician fading [27]–[29]. Accordingly, the channels are
modeled as

HT = L1(

√
ε1

ε1 + 1
HLoS

T +

√
1

ε1 + 1
HNLoS

T ),

hR,k = L2,k(

√
ε2k

ε2k + 1
hLoSR,k +

√
1

ε2k + 1
hNLoSR,k ),

(3)

where the Rician factors of the B2F and F2k links are ε1
and ε2k, respectively, L1 and L2,k are the corresponding path
losses, HLoS

T and hLoSR,k are the respective light of sight (LoS)
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components of the channels, and HNLoS
T and hNLoSR,k are

the respective non-light of sight (NLoS) components of the
channels. In practice, the Rician fading channel is in the
form of an LoS channel when the Rician factors equal ∞.
In contrast, when the factors equal 0, the channel is in the
form of an NLoS channel.

The NLoS components of the channels are given by
CN (0, 1). For the LoS components, we investigate two uni-
form rectangular arrays (URAs): (i) the antennas placed on
the y-z plane at the BS, which has dimensions of U rows ×
V columns, resulting in M = U × V ; and (ii) the reflecting
elements placed on the x-y plane of the F-IRS, which has
dimensions of P rows × Q columns, resulting in N = P ×Q.
In addition, we choose the bottom left element ([u, v] = 0)
as the reference point of the BS’s antennas and the bottom
left element ([p, q] = 0) as the reference point of the F-IRS.
The coordinates of the F-IRS and the antennas are denoted
as pI = [xI , yI , zI ] and pBS = [0, 0, zB ], respectively, where
zB is the fixed altitude of the antenna at the BS. [xI , yI , zI ]
depends on the F-IRS’s movement. We denote pk = [xk, yk, 0]
as the coordinate of the GU k. Then, we denote dB2F and dF2k

as the distances of the B2F and the F2k links, respectively,
which are calculated as

dB2F =
√

(x2
I + y2

I) + (zI − zB)2,

dF2k =
√

(xI − xk)2 + (yI − yk)2 + z2
I .

(4)

In addition, to determine the propagation direction of the
channel, we denote (ϕAoD,T , φAoD,T ) as the azimuth angle
of departures (AoDs) and elevation AoDs at the BS antennas
to the F-IRS, (ϕAoA,T , φAoA,T ) as the azimuth angle of
arrivals (AoAs) and elevation AoAs at the F-IRS from the BS,
and (ϕAoD,Rk, φAoD,Rk) as the azimuth AoDs and elevation
AoDs at the F-IRS to the GU k, respectively. Then, the LOS
components are calculated as

HLoS
T = aH

N (φAoA,T , ϕAoA,T )aM (φAoD,T , ϕAoD,T ),

hLoSR,k = aR,k(φAoD,Rk, ϕAoD,Rk),
(5)

where aM ∈ C1×M denotes the received array response vector
of the F-IRS, and aR,k ∈ CN×1 and aN ∈ C1×N denote
the transmitted array response vector of the F-IRS and the
BS antennas, respectively. The channel propagation model is

Fig. 2: Channel propagation model.

illustrated in Fig. 2, and the response arrays are calculated as
[30], [31]

aN (φAoA,T , ϕAoA,T ) = aNP (ρN )⊗ aNQ(ζN ), (6)

where
aNP (ρN ) = [1, ejρN , ..., ej(P−1)ρN ],

aNQ(ζN ) = [1, ejζN , ..., ej(Q−1)ζN ],

ρN =
2π
λ
dp sinϕAoA,T sinφAoA,T = −2π

λ
dp

yI
dB2F

,

ζN =
2π
λ
dq cosϕAoA,T sinφAoA,T = −2π

λ
dq

xI
dB2F

.

Similarly,

aM (φAoD,T , ϕAoD,T ) = aMU (ρM )⊗ aMV (ζM ), (7)

where
aMU (ρM ) = [1, ejρM , ..., ej(U−1)ρM ],

aMV (ζM ) = [1, ejζM , ..., ej(V−1)ζM ],

ρM =
2π
λ
du cosφAoD,T =

2π
λ
du
zI − zB
dB2F

,

ζM =
2π
λ
dv sinϕAoD,T sinφAoD,T =

2π
λ
dv

yI
dB2F

,

and

aRk(φAoD,Rk, ϕAoD,Rk) = aRk,P (ρR)⊗ aRk,Q(ζR), (8)

where
aRk,P (ρR) = [1, ejρR , ..., ej(P−1)ρR ],

aRk,Q(ζR) = [1, ejζR , ..., ej(Q−1)ζR ],

ρR =
2π
λ
dp sinϕAoD,Rk sinφAoD,Rk =

2π
λ
dp
yk − yI
dF2k

,

ζR =
2π
λ
dq cosϕAoD,Rk sinφAoD,Rk =

2π
λ
dq
xk − xI
dF2k

.

Here, λ is the wavelength, du and dv are the distances between
the two array elements of the BS’s antenna with respect to
the z-axis and y-axis, respectively, and dp and dq are the
distances between the two array elements of the IRS with
respect to the y-axis and x-axis, respectively, aNP , aNQ,
aMU , aMV , aRk,P , aRk,Q and ρN , ζN , ρM , ζM , ρR, ζR are
the temporary vectors and parameters for presentation. As a
result, the communication channel from BS to GU k varies
according to the coordinates of the F-IRS and the GU k, and
the phase shift matrix. Therefore, the received signals at GU
k are represented with the variables as

yk(pI ,Θ, pk) = hR,k(pI , pk)ΘHT (pI)

K∑
k=1

wksk + nk. (9)

Then, the achievable signal-to-interference-plus-noise ratio
(SINR) at the GU k is calculated as

SINRk =
|hR,k(pI , pk)ΘHT (pI)wk|2∑K

i6=k |hR,k(pI , pk)ΘHT (pI)wi|2 + σ2
k

. (10)

Accordingly, the corresponding achievable rate at GU k is
calculated as

Rk = Ωklog2(1 + SINRk), (11)

where Ωk is the corresponding usage bandwidth of GU k.
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Fig. 3: F-IRS moving design.

C. Problem Formulation

Achievable system sum-rate (ASSR) maximization problem
is formulated as follows. Because the positions of GUs are
assumed stochastic, the phase shift matrix and the flying
trajectory of the F-IRS are considered for the optimization.
The F-IRS is assumed to move with a constant velocity vc or
hover in the air with a range of altitude at [zmin, zmax], the
positions of the F-IRS at time slot t and (t+ 1) are pI(t) and
pI(t + 1), respectively. At each time slot period ∆t, it can
move with the maximum distance as Dmax , vc∆t. The IRS
phase shift elements are designed for maximizing the reflection
signal in practice; therefore, we set αn = 1,∀n [32]. Then,
the ASSR optimization problem in this paper is formulated
with the constraints as

(P1) : max
pI(t+1),Θ

K∑
k=1

Rk, (12a)

s.t. 0 ≤ θn ≤ 2π, ∀n, (12b)
zmin ≤ zI(t+ 1) ≤ zmax, ∀t, (12c)

||pI(t+ 1)− pI(t)||2 ≤ D2
max, ∀t, (12d)

where constraint (12b) is the phase shift value requirement,
constraint (12c) indicates the limited range of the F-IRS’s
height, and constraint (12d) ensures the maximum movement
distance in a time slot of the F-IRS.

As shown in Fig. 3, we map the 3D movement of
the F-IRS mu(t) into a vector with three variables as
(tu(t), ϕu(t), φu(t)), where tu(t) is the time that the F-IRS
moving in the time slot t, ϕu(t) and φu(t) are the azimuth
and elevation angles that represent the movement direction of
the F-IRS at time slot t, respectively, with 0 ≤ tu(t) ≤ ∆t,
0 ≤ ϕu(t) ≤ 2π, and 0 ≤ φu(t) ≤ π. After each time slot, the
position of the F-IRS will be changed based on the movement,
and the moving distance is calculated as

xmove(t) = vctu(t) sin(φu(t)) cos(ϕu(t)),
ymove(t) = vctu(t) sin(φu(t)) sin(ϕu(t)),
zmove(t) = vctu(t) cos(φu(t)).

(13)

Then, the coordinate entries of pI(t+ 1) are calculated as

xI(t+ 1) = xI(t) + xmove(t),
yI(t+ 1) = yI(t) + ymove(t),
zI(t+ 1) = zI(t) + zmove(t),

(14)

and the constraints (12d) and (12c) is expressed as

0 ≤ tu(t) ≤ ∆t, ∀t, (15)

zmin − zI(t)
vc

≤ tu(t) cos(φu(t)) ≤ zmax − zI(t)
vc

, ∀t. (16)

Accordingly, the problem (P1) is formulated as

(P2) : max
tu(t), ϕu(t), φu(t),
θn(t), n ∈ N

K∑
k=1

Rk(t), (17a)

s.t. 0 ≤ θn(t) ≤ 2π, ∀n, (17b)
0 ≤ ϕu(t) ≤ 2π, 0 ≤ φu(t) ≤ π, ∀t, (17c)
(15), (16) (17d)

D. Markov Decision Process Transformation

It is observed that (P2) is a non-convex optimization prob-
lem, where finding an optimization solution using traditional
optimization approaches is difficult and complicated. In par-
ticular, existing traditional algorithms that solved IRS phase
shift optimization problems demand a high level of computer
complexity [33]. Therefore, constructing an approximation
method to discover the sub-optimal solution can be considered
a viable alternative. Fortunately, reinforcement learning has
recently emerged as an effective option adopting this strategy
[34]–[38]. Inspired by this observation, we transform (P2) into
a Markov decision process (MDP)-based problem and apply
a reinforcement learning algorithm to resolve it.

The MDP is a stochastic control process that models
decision-making by learning from interactions in order to
achieve the desired outcome. The interactions are conducted
by an agent with the role of the decision-maker and an
environment the agent interacts [39]. The MDP is represented
by a tuple of 4 elements including state, action, distribution
probability, and reward. At each time slot, the state s(t)
contains the current position of the F-IRS and all the GUs,
which is given as

s(t) = {pI(t), p1(t), p2(t), . . . , pK(t)}. (18)

For each state s(t), the agent decides a feasible action a(t)
that contains optimization variables, which is given as

a(t) = {tu(t), φu(t), ϕu(t), θ1(t), θ2(t), . . . , θN (t)}. (19)

The decided actions are obtained from policy π(t) : s(t) →
a(t), which is trained by reinforcement learning algorithms.
By executing the action, the state s(t) transfers to the next
state s(t+ 1) following the probability P (s(t+ 1)|s(t), a(t)).
Then, the immediate reward received from the environment is
calculated as the ASSR at time slot t

r(t|s(t), a(t)) =

K∑
k=1

Rk(t). (20)
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Consequently, the MDP-based problem of the system is for-
mulated as

(P3) : max
a(t)

T−1∑
t=0

γtr(t|s(t), a(t)), (21a)

s.t. (17b), (17c), (17d), (21b)

where γ is the discount factor, T is the number of considered
time slots. The problem (P3) aims to maximize the long-term
return of the system by optimizing the MDP action a(t) at each
observation state s(t) while satisfying environment constraints.

IV. FLYREFLECT FRAMEWORK

Due to the limited computation and energy resources in
the F-IRS, the learning process is implemented in the BS.
Therefore, the agent in this study is the BS, and the environ-
ment is the whole system. After receiving the states of the
environment, the BS decides the action according to policy
and sends it to the F-IRS through a wireless control link, the
F-IRS then acts to the environment according to the control
signals from the BS, the environment later sends the reward
back to the agent to update the policy. Owing to the dynamic
environment, the state and action have continuous values,
which becomes the challenge of this reinforcement learning
model. To tackle this issue, we develop a continuous DRL
framework based on an actor-critic algorithm, namely DDPG.

A. Deep Deterministic Policy Gradient Algorithm

At first, we briefly introduce the DDPG algorithm, which is
a combination of using the deep Q network (DQN) structure
and the policy gradient (PG) algorithm [40]. The DDPG
includes an actor network µ(s|θµ) that maps a state s to
an action a in each time slot according to the policy, and a
critic network Q(s, a|θQ) that measures the performance of the
chosen action, in which θµ and θQ are the weight parameters
of the actor and critic networks, respectively.

The critic network parameter is updated by minimizing the
critic loss function as

L(θQ) = [(Q(s(t), a(t)|θQ)− y(t))2], (22)

where Q(s(t), a(t)|θQ) is the value of the action a(t) obtained
at the state s(t), and y(t) is the update target value. The value
of y(t) is expressed by

y(t) = r(t) + γQ(s(t+ 1), µ(s(t+ 1))|θQ), (23)

where the discount factor γ ∈ [0, 1].
The actor network parameter is updated based on the critic

network, using the policy’s updating gradient as

OθµJ = OθµQ(s(t), µ(s(t)|θµ)|θQ). (24)

To improve stability in learning, the DDPG algorithm uses
two target networks, the target actor and critic networks, which
are denoted as µ′(s|θµ′) and Q′(s, a|θQ′), respectively. Then,
the target value (23) is represented as

y(t) = r(t) + γQ′(s(t+ 1), µ′(s(t+ 1)|θµ
′
)|θQ

′
). (25)

The target networks are updated via ”soft updates” with a
small constant k (k� 1) as

θQ
′
← (1− k)θQ

′
+ kθQ,

θµ
′
← (1− k)θµ

′
+ kθµ.

(26)

To ensure the exploration of the training samples, the action
received from the actor network is added with the noise before
acting on the environment. Then, at state s(t), the obtained
action is represented as

a(t) = µ(s(t)|θµ) +OU(t), (27)

where OU(t) is chosen from the Ornstein-Uhlenbeck process.
As used in many off-policy reinforcement learning algo-

rithms, DDPG also has a replay buffer for sampling experi-
ences to update neural network parameters. After each transi-
tion, experiences including state, action, next state, and reward
are combined as a tuple (s(t), a(t), r(t), s(t + 1)), which is
taken into the buffer. When training, the agent samples random
mini-batches of experiences from the replay buffer to calculate
and update the parameter of the main networks.

B. Proposed FlyReflect Framework

According to the above introduction, the FlyReflect
framework is illustrated in Fig. 4, which is detailed as follows.

1) Framework Formulation: As the DDPG algorithm, the
proposed framework consists of the environment, which is the
whole system, the replay buffer with limited storage capacity,
and four neural networks. We divide the framework into 2
parts: the interactive part (indicated with the red lines in Fig.
4) and learning part (the remaining part).

In the interactive part, from the environment, the state s(t)
is observed and the agent determines the action a(t) based on
the policy from the actor network acting on the environment, a
mapping function is then used to adjudge the final action a′(t)
and act to the environment. Subsequently, the environment
feeds back the next state s(t + 1) and the reward r(t), and
the tuple of experience is stored to the buffer for the training
process.

In the learning part, a batch of experiences are randomly
sampled from the buffer and the training process is performed
based on the DDPG algorithm to update the networks.

The framework formulation is clearly defined as follows:
a) State space: As defined earlier, the position of

the F-IRS at time slot t is represented as pI(t) =
[xI(t), yI(t), zI(t)], and the position of each GU can be
denoted as pk(t) = [xk(t), yk(t), zk = 0]. Then, we rewrite
the state (18) as

s(t) = {xI(t), yI(t), zI(t),
x1(t), y1(t), x2(t), y2(t), . . . , xK(t), yK(t)}.

(28)

The number of entries from the position of the F-IRS is 3,
and that from the position of all GUs is 2K. In summary, the
state space has a dimension of (3 + 2K), which is also the
number of input nodes of the actor network.
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Fig. 4: Proposed FlyReflect framework.

b) Action space: As introduced in section III-D, the
action at time slot t is defined as (19), in which the constraints
in (17) need to be satisfied. Then, we normalize the action as
follows

tu(t) = δt(t)∆t, ϕu(t) = δϕ(t)2π, φu(t) = δφ(t)π, (29)

θn(t) = δθn(t)2π, ∀n ∈ N , (30)

where δt, δϕ, δφ, δθn ∈ [0, 1]. With the range from 0 to 1,
the constraints in (17b), (17c), and (15) are satisfied. To meet
the constraint (16), we normalize the elevation angle of the
moving direction as

φu(t) =

{
π/2 , if δφπ /∈

[
zmin−zI(t)
vctu(t)

, zmax−zI(t)vctu(t)

]
,

δφ(t)π , otherwise,
(31)

where the F-IRS will fly horizontally (φu(t) = π/2) if the
action is out of the range in constraint (16). With the above
normalization, all the constraints in (17) are satisfied. Then,
the action space of the proposed framework is

a(t) = {δt(t), δφ(t), δϕ(t), δθ1(t), δθ2(t), . . . , δθN (t)}. (32)

Accordingly, the action space has a dimension of (3 + N),
which is also the number of output nodes of the actor network.

c) Mapping Function: Even though the actions are nor-
malized in (29) and (30) to satisfy the constraints (17b), (17c),
and (15), the values of the actions may be over the range [0, 1]
and violate the constraints due to the addition of noise for
exploration in (27), in which the Ornstein-Uhlenbeck process
is given by a differential equation as

dOU(t) = f(χo −OU(t))dt+$dW (t), (33)

where f is the rate of mean reversion, χo is the long-term
mean of the process, $ is the average magnitude of the Wiener
process dW (t). The noise was considered in the entire 5e6

steps with f = 0.2, χo = 0, $ = 0.15, and the Wiener
process with mean = 0 and variance = 1. Probability density
function (PDF) of the action values after adding the noise are
illustrated in Fig. 5 as an example. In these examples, action
values may go out of the range [0, 1] to reach extension of
(−1, 2). Then, according to (29) and (30), the ranges of values
of tu(t), ϕu(t), φu(t), and θn are given by

−1 < tu(t) < 2∆t,
−π < φu(t) < 2π,

−2π < ϕu(t), θn < 4π,
(34)

Fig. 5: Action after adding noise.
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which violates the constraints (17b), (17c), and (15). As a
result, these unrealistic action values lead to low accuracy and
slow convergence during the training process.

To tackle the violation problem for the training process, we
propose a mapping function to satisfy the range value of the
actions in [0, 1]. The mapping function is defined as follows.
For the action δt(t), which represents the moving time of the
F-IRS in each time slot, we map it to the nearest suitable value
when it is out of the range. The mapping function for δt(t) is
written as

δ′t(t) =


0 , if δt(t) < 0,
1 , if δt(t) > 1,
δt(t) , otherwise.

(35)

where δ′tu(t) is the action after mapping.
Next, the value of φu(t) needs to be in the range [0,π]. This

value represents how high the F-IRS moves in the time slot t;
hence, we use a mapping function so that after mapping, the
height of the movement does not change. We denote φ′u(t) as
the value after mapping, as illustrated in Fig. 6a with mt is the
vertical moving direction of the F-IRS, Ot is the altitude of
the F-IRS, and the angle is measured clockwise starting from
the z-axis. The value of φ′u(t) is calculated as

φ′u(t) =

{
−φu(t) , if φu(t) < 0,
2π − φu(t) , if φu(t) > π.

(36)

Then, the action after mapping is

δ′φ(t) =


−δφ(t) , if δt(t) < 0,
2− δφ(t) , if δt(t) > 1,
δφ(t) , otherwise.

(37)

(a) φu(t) mapping.

(b) ϕu(t), θn(t) mapping.

Fig. 6: Action mapping function.

Algorithm 1: FlyReflect training algorithm
1 Set up the environment.
2 Initialize the main networks θµ, θQ by random.
3 Initialize the target networks θQ

′ ← θQ and θµ
′ ← θµ.

4 Initialize the model parameters and the experience replay buffer B
with capacity C.

5 Set number of episodes E, number of steps T, batch size B
6 for e = 1,...,E do
7 Get initial state s(t) of the episode as (28).
8 while t < T do
9 Interacting:

10 Take action a(t) using (27).
11 Mapping the action as (41): a′(t) =M(a(t)).
12 Normalize action as in IV-B1b
13 Perform a′(t) → get r(t), s(t+ 1).
14 Accumulate episode reward.
15 Store the tuple < s(t), a′(t), r(t), s(t + 1) >.
16 Update state s(t)← s(t+ 1).
17 Training:
18 Sample the experiences from replay buffer.
19 Update neural network parameters θQ, θµ
20 Target networks soft update as (26).

21 Calculate the average reward.
22 if best average reward then
23 Save the current main actor network: θµ

∗ ← θµ

24 return the optimal networks θµ
∗

.

For the remaining angle ϕu(t) and phase shifts θn(t) with
the range [0, 2π], we denote an angle η(t) ∈ [0, 2π] as the
common value. Additionally, with the current position Ot, the
action direction mt and η(t) is measured counter-clockwise
starting from the x-axis, as illustrated in Fig. 6b, the value
after mapping η′(t) is defined such that the value on the x-y
plane is not changed, as

η′(t) =

{
η(t) + 2π , if η(t) < 0,
η(t)− 2π , if η(t) > 2π.

(38)

Accordingly, the common action δη(t) for δϕ(t) and δθn(t)
after mapping is computed as

δ′η(t) =


δη(t) + 1 , if δη(t) < 0,
δη(t)− 1 , if δη(t) > 1,
δη(t) , otherwise.

(39)

In other words, the actions after mapping δ′ϕ(t) and δ′θn(t) are
calculated as

δ′ϕ(t) =

{
| |δϕ(t)| − 1 | , if δϕ(t) /∈ [0, 1],
δϕ(t) , otherwise.

δ′θn(t) =

{
| |δθn(t)| − 1 | , if δθn(t) /∈ [0, 1],
δθn(t) , otherwise.

(40)

In summary, after mapping, the obtained action of the DRL
framework is

a′(t) =M(a(t)) = {δ′t(t), δ′φ(t), δ′ϕ(t), δ′θ1(t), · · · , , δ′θN (t)},
(41)

where M(·) is the mapping function as defined above.
2) Working Procedure: The process can be described as fol-

lows. At the initialization stage, the main network parameters,
θµ and θQ, are randomly initialized and the target network
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Fig. 7: Simulation scenario.

parameters, θµ
′

and θQ
′
, are directly copied form the main

networks. Additionally, the experience replay buffer B with
capacity C is built.

When interacting with the environment, at the first step of
each episode, an initial state s(t) is observed from the envi-
ronment. At each step, it executes the action a(t) using (27),
the mapping function is then used to adjudge the action a(t)
to action a′(t) as per (41). After that, the action is normalized
as defined in IV-B1b and performs to the environment. Next,
the reward r(t) is received and the environment updates to the
next state s(t + 1). Accordingly, the tuple of experiences is
taken into the replay buffer, and the state s(t) is updated by
s(t+ 1).

In the training process, the networks are trained according to
the sampled experiences from the replay buffer. The main critic
network parameter θQ is updated by minimizing the critic
loss function calculated using (22). Then, the policy gradient
as per (24) is executed to update the main actor network
parameter θµ. The target networks (θµ

′
, θQ

′
) are then updated

according to (26). Finally, the optimal actor network is selected
by comparing the average reward after each episode, and the
network with the best average reward is returned after training
for testing. The detailed algorithm is shown in Algorithm 1.

V. PERFORMANCE EVALUATION

A. Simulation Settings

We generate an environment to simulate and train the agent
using Pytorch with Python programming for the evaluation.
The hidden layers in this simulation use the rectified linear
unit (ReLU) function as the activation function. The output of
the critic network is obtained linearly, and the output layer of
the actor network uses the Sigmoid activation function.

We consider a scenario including a BS with a height of 60 m
that serves the GUs in an underserved area with a fixed range
assisted by an F-IRS, the simulation environment is illustrated
as Fig. 7. The initialized position of the F-IRS is fixed at
(100,100,150) (m), and it moves at a velocity of vc = 15 (m/s).
The initialized positions of the GUs are uniformly distributed
in the serving area, and each GU can move over the time with
a moving probability from 0.05 to 0.15 per time step, which
means the GU can move approximately 5 to 15 milliseconds in
a period of 100 milliseconds. The directions of the movement
are randomly sampled from four values of 0, π/2, π, 3π/2.

TABLE II: Simulation parameters

Parameter Value
Critic
network

Hidden layer 1 512 nodes
Hidden layer 2 1024 nodes

Actor
network

Hidden layer 1 512 nodes
Hidden layer 2 256 nodes

Target network update rate, k 1e−3

Number of training steps 500 steps
Time step, ∆t 0.1 (s)
Height of the BS 60 (m)
Initialized position of the F-IRS (100,100,150) (m)
Velocity of the UAV, vc 15 (m/s)
Movement
of the users

Probability 5-15 %
Direction {0, π/2, π, 3π/2}

Path loss exponents, β1, β2k 2.8
Reference path loss, C0 -30dB
Rician factors, ε1, ε2k ∞
Transmit power, PT 10dBm
Noise power, σ2 -170dBm/Hz

Fig. 8: CDF of the movement ratio of the GUs.

We calculate the path losses for the channels according to
the distance-dependent path loss model [32], it is calculated
as

PL(d) = C0 × (
d

D0
)β , (42)

where β, d, and C0 are the path loss exponent, channel
distance, and reference path loss at the reference distance D0,
respectively. Accordingly, the corresponding path losses of the
B2F link and the F2k link are calculated as

L1 = C0 × (
dB2F

D0
)β1 ,

L2k = C0 × (
dF2k

D0
)β2k ,

(43)

where β1 and β2k are the corresponding path loss exponents.
In this simulation, we set β1 = β2k =2.8, and C0 = −30 dB.
The antenna array at the BS in this simulation has 6 elements
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Fig. 9: Monte-Carlo experiments for training hyperparameters.

with 2 on the vertical and 3 on the horizontal. The spacing
between the array elements of the BS’s antenna and the IRS
elements are chosen with the same value as du = dv = dp =
dq = λ

2 . The transmit beamforming vectors wk in this study
are randomly generated for each simulation case, which satisfy
power constraint as

K∑
w=1

||wk||2 = PT , (44)

where PT is the transmit power at the BS. We summarize the
parameters of this simulation in Table II.

Before evaluating the performance, we estimate the dynamic
of the simulation environment using movement ratio. The
movement ratio is the ratio that the GU moves during the entire
considered period time. At the beginning of the simulation, we
set the probability values for the movement of the GUs, which
are randomly chosen in the range of 5–15%. Then, we test the
environment with 4 GUs in 500 episodes, each episode has 500
time steps. The obtained movement ratios in each episode of

the GUs are expressed by the cumulative distribution function
(CDF) as illustrated in Fig. 8. The GU 2 moves the most when
the movement ratio is from 10.8% to 19.15%, whereas the GU
3 is the least with the ratio of 2.4–8.2%. Besides, we calculate
the mean of the movement ratios over 500 episodes and the
mean ratios of the GU 1 to GU 4 are 12.46%, 15.08%, 5.03%,
and 10.04%, respectively. This implies that the dynamics of
the GUs in the simulation environment under testing match
the expectation when the movement probabilities are set from
5% to 15%.

B. Convergence Analysis

Finding appropriate hyperparameters for the model is a
hurdle in deep reinforcement algorithms. To do so, we con-
duct a Monte-Carlo experiment to reveal the model’s best-fit
hyperparameters. We simulate a scenario with four GUs and
a 16-element F-IRS (size 4x4) in this sub-section to see how
the hyperparameters affect convergence in training the DRL
model.
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(a) Training rewards. (b) Policy loss.

Fig. 10: Convergence comparison between proposed FlyReflect framework and DDPG scheme.

At first, we turn the learning rate of the model by selecting
three cases of actor learning rate (lra) and critic learning
rate (lrc) to experiment and get the results as in Fig. 9a.
The results show that the rewards converge to specific ranges
in two cases of (lra, lrc) = {

(
1e−4, 1e−4

)
,
(
2e−4, 2e−4

)
},

while it still varies a lot after 2000 episodes in the remaining
case. Because the too small learning rates result in too small
update gradient steps, which is hard to meet the optimal point.
Furthermore, with a high learning rate, the model may oscillate
around but cannot move into the optimal. Therefore, case
(lra, lrc) =

(
1e−4, 1e−4

)
gives the best performance, where

the average reward is approximate 10.04% and 23.98% higher
than the case of

(
2e−4, 2e−4

)
and

(
1e−5, 1e−5

)
, respectively.

Next, we experiment to see how the batch size B affects
the results. It describes the number of samples utilized in each
gradient update step, which affects the model’s learning speed
and stability. Using fewer samples leads to a less accurate
estimate of the error gradient due to the heavy reliance on
the specific training samples. In a dynamic environment, on
the other hand, a high batch size can produce noise due to
the changing state of the environment and may cause poor
convergence, it also requires more resources for computation.
For evaluating the impact of batch size in the considered
model, we try training the model with three different batch
sizes ranging from 8 to 32, and the results are in Fig. 9b. The
results show that when the batch size has the value of 16,
the model shows the best performance. In the other cases, the
convergence is worse due to the noise when the batch size is
large (32) and cannot converge due to the bias when the batch
size is small (8).

Besides, we experiment with the impact of the replay buffer
size on convergence. In this experiment, we choose three
values of the buffer size C as {1e5, 1e6, 2e6} to observe
the performance, and the results are illustrated in Fig. 9c.
If the number of experiences exceeds the capacity of the
replay buffer, the oldest experiences will be replaced by
incoming experiences. As a result, due to the small size of

the buffer, some experiences may not be used to train the
model, and convergence may suffer the effects of inadequate
exploration samples. As a consequence, due to a lack of
exploration sample, the reward with the buffer size 1e5 does
not improve after 800 episodes. Furthermore, the reward in the
case C = 2e6 begins to decline after 1700 episodes. Because
of the large buffer size, the experience data contains a lot of
old data, which increases the risk of sampling old data, then
detrimentally affect the learning process. Therefore, C = 1e6

is suitable for this model, which gives the best training result.
Finally, we experiment to observe the impact of the discount

factor γ. The discount factor decides the attention of the agent
to the future. If γ =0, the agent only learns based on an
immediate reward, and when γ =1, the agent cares about the
sum of all future rewards. In this experiment, we choose threes
values of the discount factor {0.1, 0.9, 0.999} to perform the
training. The rewards in Fig. 9d show that if the agent only
considers the immediate and very near future rewards in a
dynamic environment, the reward cannot effectively reflect
the quality of the action to the entire environment for a long
time with the changes, the model was difficult to convert
with a small discount factor (0.1). Similarly, due to the big
difference from the essence of the environment, a significant
big discount factor (0.999) makes convergence impossible. In
this environment, γ = 0.9 is a good fit and provides the best
result.

C. Performance of the Proposed Framework
To demonstrate the efficiency of the proposed framework,

we compare the performance of the proposed framework with
some benchmark schemes, which are defined as follows.
• Original DDPG (DDPG): This is the scheme that trains

the action using the DDPG algorithm as in [33], in which
the action after adding noise is used to interact with the
environment without the mapping function. To deal with
the action violation as analyzed in IV-B1c, we directly
trim the action to the range of [0, 1].
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Fig. 11: Achievable system sum-rate concerning the number of ground users with different sizes of IRS.
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Fig. 12: Achievable system sum-rate concerning the number of BS antennas with different sizes of IRS.

• Greedy using local searching (GLS): In this approach,
we quantize continuous actions into discrete space and
find the optimum action at each time step. In a vast
action space, however, examining all conceivable actions
in discrete space is unfeasible. Then, we applied a local
search with low complexity as presented in [41] to pick
the action that delivers the best reward at each time step.

• IRS only (IRSO): This scheme is used to make a com-
parison to evaluate the improvement of the F-IRS model.
As in the traditional IRS that is built on a fixed physical
structure, we fixed the position of the airborne vehicle,
and only optimize the IRS phase shift matrix. This is also
the F-IRS model but at a lower flexible level, it is nearly
the fixed IRS scheme.

• Airborne vehicle only (UAVO): In contrast with IRSO,
this scheme assumes a communication network inde-
pendent of the IRS assistance network. In this scheme,

the airborne vehicle movement is optimized according to
changes in the environment, while the phase shift matrix
is set to one element with a value of zero.

• Random: The actions in this scheme are picked at random
from the constraints range for each time slot.

Firstly, the exploration of the proposed framework is com-
pared with the original DDPG algorithm. We train the model
with the same parameters for both the proposed and the DDPG
algorithm and get the results after 2000 episodes in Fig. 10.
We illustrate the training rewards in Fig.10a with the fuzzy
part is the episode reward and the other part is the average
reward. As a result, the proposed framework outperforms the
DDPG scheme in terms of exploration, where the maximum
rewards are 1018.78 and 963.4, respectively. Because trimming
the action value directly to the range [0,1] in DDPG restricts
exploring new samples while using the mapping function as
the proposed framework ensures the exploration for training.
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Fig. 13: Performance of FlyReflect framework in fading
environment

In addition, we evaluate the policy loss of two schemes in
Fig.10b. The policy loss is used to estimate the quality of the
actor network, which is calculated as

L = − 1

B

B∑
b=1

Q
(
sb, µ(sb|θµ)|θQ

)
, (45)

where Q
(
sb, µ(sb|θµ)|θQ

)
is the action-value function of the

policy, which implies that the higher the value of Q, the
smaller the value of the loss function, which means the better
the agent network. The results show that the policy loss of
the proposed FlyReflect framework converges after about
1250 episodes while it is about 1750 episodes in DDPG.
In addition, FlyReflect gives approximately 20.3% better
than the DDPG.

Next, we experiment to observe the effects of the number of
GUs (K) on system performance with different sizes of IRS.
We simulate a scenario with 6-antenna BS in two cases of
F-IRS size, which are 4 elements (size 2x2) and 16 elements
(size 4x4). The obtained results in Fig.11 show that the ASSR
decreases when K increases. Because the number of GUs in-
creases, the interference signals from other GUs grow, causing
a decrease in SINR and hence a reduction in the achievable
rate. Besides, FlyReflect gives the best performance in
all cases, where it is approximately 4.12%, 6.06%, 35.42%,
54.76%, and over 100% better than DDPG, GLS, IRSO,
UAVO, and Random, respectively. In addition, with a large
size of F-IRS, the system can improve the achieved result,
where the 16-element F-IRS gives around 7.4% better than
the 4-element F-IRS performance. Furthermore, a large size
of F-IRS also discrete the ASSR reduction when increasing
the GUs. Specifically, when expanding from 4 to 8 GUs, the
ASSR reduces 18.8% and 20.8% in 16-element and 4-element
F-IRS, respectively. Therefore, in practice, a trade-off between
the scale of the environment and the size of IRS needs to be
considered.

Then, for observing the system performance when changing
the number of BS antennas, we model a scenario with 4 GUs
and two sizes of F-IRS and get results in Fig. 12. The ASSR

are increased when increasing the value of M , because with
the higher diversity of communication spatial, the easier it is
for an agent to choose the action to increase the performance.
The result also shows that our FlyReflect performs better
than the others in all the cases of M , where it is about 5.36%,
11.34%, 20.64%, 37.15%, and 138.3% better than DDPG,
GLS, IRSO, UAVO, and Random, respectively. Besides, the
case of 16-element F-IRS gives approximately 10.79% higher
ASSR than the 4-element F-IRS case. Again, this demonstrates
that the large size of F-IRS enhances the system performance
better than the small size of F-IRS. Furthermore, in the case
of the 16-element IRS, IRSO has higher results than GLS
owing to two reasons. Firstly, the discrete actions with local
search may get stuck at a poor optimum point in vast action
space. And second, large size IRS can significantly improve
performance in a diverse spatial environment.

Finally, we evaluate the proposed framework performance
in fading channels with different transmit powers. The fading
channels are applicable models for simulating real-world phe-
nomena such as multi-path scattering, temporal dispersion, and
Doppler shifts caused by relative motion between the trans-
mitter and receiver in wireless communications. We observe
the ASSR in an environment with K = 4, M = 6, and the
variation of the Rician factors. The results are illustrated in
Fig.13 with five values of the Rician factors as ε1 = ε2k =
{10−1, 100, 101, 102,∞} and two values of transmit power
PT = {5, 10} (dBm). As a result, increasing the transmit
power improves the achieved ASSR, where PT = 10 (dBm)
gains 8.52% and 24.48% compared with PT = 5 (dBm) in
the cases of 16-element and 4-element F-IRS, respectively.
Furthermore, the ASSR increases in tandem with the value
of the Rician factor and otherwise. Because the smaller the
Rician factor value, the higher the NLoS component in the
communication channel (3), which leads to a chaotic signal for
the communication channel and hence reduces the system per-
formance. Specifically, the Rician factors are∞ demonstrating
for the LoS channel, where there is no chaotic signal, and it
gives the best performance with approximate 1.18%, 5.36%,
23.08%, and 33.08% higher than 102, 101, 100, and 10−1,
respectively. We can observe that the proposed framework can
perform well in a slight fading environment, with the result in
case 102 being close to the ideal scenario (∞). Consequently,
a fading environment with a high chaotic signal might harm
system performance. To deal with this problem, the agent can
monitor and predict the chaotic components by expanding the
state space with the NLoS components, allowing it to decide
a suitable action at each time slot.

VI. CONCLUSION

In this paper, we have considered a downlink multi-user
MISO F-IRS system model. The communication channel mod-
els have been analyzed, wherein the changes of the channel
gains depend on the position of the F-IRS and the phase
shift matrix. Accordingly, we formulated an optimization
problem that maximizes the ASSR by joint optimizing the
flying trajectory and the phase shift matrix of the IRS. To
solve the problem, we have transformed it into an MDP-
based problem and proposed a DRL framework based on the
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DDPG algorithm with the addition of a mapping function to
improve the effectiveness of the DDPG algorithm, referred
to as FlyReflect. The experiment results show that our
proposed framework significantly improves the convergence
where it improved the policy loss approximately 20.3% better
than the DDPG algorithm. In addition, the simulation results
exposed the outperformance of the F-IRS model compared
with benchmark approaches. In particular, FlyReflect im-
proves the ASSR approximately 34.52% and 54.76% greater
than the IRSO and UAVO approach, respective. On the other
hand, the simulation illustrates the considerable effects of the
number of GUs and the number of BS antennas on the system,
in which, an increase of the number of GUs results in a
decrease in the ASSR owing to the interference. To tackle
this issue, the NOMA technology could be considered in
future work for a dense multi-user environment. In addition,
optimization of the transmit beamforming matrix from BS to
F-IRS is also one of the interesting research direction as well
as cell-free MIMO system, uplink transmission, and multiple
F-IRS cooperation.
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