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Orthogonalized RSMA-based Flexible Multiple
Access in Digital Twin Edge Networks

Thanh Phung Truong, Hieu V. Nguyen, Nhu-Ngoc Dao, Wonjong Noh, and Sungrae Cho

Abstract—This paper proposes a flexible and efficient access
control scheme that combines the orthogonal frequency division
multiple access and rate-splitting multiple-access techniques for
enhancing the uplink transmission in a digital twin edge network
system. We formulate a non-convex mixed integer optimization
problem that minimizes the energy consumption of all Internet of
Things devices (IoTDs) and maximizes the number of successful
IoTD tasks. To this end, we propose a deep reinforcement
learning (DRL) framework by normalizing a DRL training
algorithm named deep deterministic policy gradient for efficiently
designing the variables while ensuring the problem constraints.
However, in the inference stage, the proposed DRL method may
encounter different devices and services. Therefore, we design an
exhaustive-improved DRL method that can improve the proposed
DRL effectively using information from a digital-twin module.
We also propose a mathematical approximation-based solution
employing two convexification approach: Dinkelbach’s method
and relaxed Linear Matrix Inequality (LMI). Through extensive
simulations over different parameters and scenarios, we identify
the polynomial complexity, stable convergence, and operating
regime of the proposed solutions. It is also confirmed that the
proposed approaches work well even with digital twin defects and
provide improved performance in terms of energy consumption
and number of successful tasks in comparison with benchmark
schemes.

Index Terms—Rate-splitting multiple access, orthogonal fre-
quency division multiple access, digital twin edge networks

I. INTRODUCTION

THE next era of wireless communication has imposed
numerous demands on networks, such as high spectral

and energy efficiency, low latency, and ultra-dense connec-
tions. To support them, new network architecture, such as
mobile edge computing (MEC), is being actively developed
[1]. Here, mobile users can offload complex tasks to the
MEC server, enabling the execution of intricate applications on
smart devices with limited computational capacity and power.
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Furthermore, the application of digital twin (DT) technologies
to advanced networks has recently been widely considered. By
constructing a digital world that replicates the physical world,
it can provide advanced network systems with robust infras-
tructure control and strong intelligence [2]. The combination of
MEC and DT systems, known as the digital twin edge network
(DITEN) or digital twin-assisted mobile edge network, can
improve system performance regarding reliability and latency,
intelligent decision-making, and technological application [3].

In addition to the DITEN architecture, the rate-splitting
multiple access (RSMA) technique [4] has recently been
developed as a promising multiple-access strategy [5]. It brings
many benefits to networks’ spectral and energy efficiency
by splitting a transmitted message into multiple parts that
one or more receivers can decode flexibly [6], demonstrating
its suitability for the next era of communication. In uplink
systems, RSMA allows users to split their messages into
multiple streams, each with appropriately allocated transmit
power. The base station (BS) employs successive interference
cancellation (SIC) at the receiver to recover and reconstruct the
original messages. This approach dynamically handles inter-
user interference by splitting messages [7]. Interestingly, non-
orthogonal multiple access (NOMA), a critical multiple access
technique for 5G and beyond, is a specific case of RSMA
where user messages are not split. As a result, RSMA offers
significant advantages over NOMA. Firstly, RSMA provides
more decoding order options, making it a more robust and
flexible scheme. Secondly, in RSMA, each user’s rate is the
sum of sub-messages, whereas NOMA depends on decoding a
single message. These features make RSMA a more effective
solution for managing interference and enhancing performance
in uplink communication systems [8], [9].

On the other hand, the evolution of the Internet of Things
(IoT) has led to its widespread applications and a new class of
devices named NR-RedCap (Reduced Capability New Radio)
[10]. These applications and devices have diverse quality
of service (QoS) requirements in environments with high
interference levels or limited bandwidth [11]. However, the
legacy and emerging random access approaches in the DITEN
could be more efficient in dealing with the services and
devices having widely different QoS requirements. Inspired
by this observation, this paper explores a flexible and efficient
multiple-access scheme that combines RSMA and orthogonal
frequency division multiple access (OFDMA) in the DITEN
system. Here, the OFDMA technique is applied to slice the
communication channel into orthogonal sub-channels with
different amounts of resources suitable for various service
demands [12], [13]. Per sub-channel, RSMA is applied to
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enhance the communication efficiency of multiuser access
[8], [9]. We refer to this scheme as orthogonalized RSMA-
based flexible multiple access. In this context, IoTDs that
have similar requirements can be grouped and served by an
appropriate sub-channel. As each group is transmitted via an
orthogonal sub-channel, inter-subchannel interference can be
avoided while exploiting RSMA.

A. Related Works

As a promising multiple-access technique for next-gen
communication networks, RSMA has recently been studied
in broad research [8], [9], [14]. In particular, the authors in
[8] aimed to optimize power allocation for a two-user uplink
transmission system, in which each transmitted message is
split into two sub-streams using the RSMA scheme. In this
work, they also demonstrated the outperformance of RSMA
to NOMA in a minimum rate maximization problem. The
authors in [9] considered decoding order and transmit power as
optimization variables in a sum rate maximization problem for
an uplink RSMA system. Because finding the decoding order
by exhaustive search is highly complex, the authors demon-
strated the optimal decoding order in a two-user scenario and
established a sub-optimal decoding order for a multi-user case.
In this work, the authors also proved the outperformance of
RSMA compared with NOMA, TDMA (time-division multi-
ple access), and FDMA (frequency-division multiple access)
schemes regarding the system sum rate. The author in [14]
investigated a system sum rate maximization problem in
a multiuser uplink RSMA system. They proposed a deep
reinforcement learning (DRL) algorithm to optimize the users’
precoding matrices and a graph-based method to search for
the decoding order. Many recent works have also studied the
DRL-based optimization schemes for RSMA [15]–[17]. Huang
et al. [15] proposed a DRL framework for designing power
control and resource allocation in RSMA-based low-earth orbit
satellite-terrestrial networks, intending to maximize the system
sum rate. In [16], Tran et al. examined the improvement of
RSMA and an intelligent reflecting surface in a streaming
system. They applied a DRL algorithm named proximal pol-
icy optimization to optimize the resource allocation, RSMA
parameters, phase shift, and bitrate adaption to maximize
the quality of experience in the system. The authors in [17]
formulated an energy efficiency maximization problem in a
two-user RSMA network, where they proposed a multi-agent
DRL algorithm to optimize the rate and power allocations at
the BS. Observably, RSMA studies have focused on several
aspects with different objectives. However, reports on combin-
ing RSMA with orthogonal multiple-access techniques such as
OFDMA for further improvement remain limited.

Considering the efficiency of multiple-access techniques
in next-generation communication systems, their application
to MEC systems has been widely explored [18]–[20]. For
example, OFDMA has been applied to a collaborative MEC
network in [18] to resolve the joint problem of task offloading
and resource allocation. Chen et al. [19] proposed an RSMA-
aided MEC system with randomly deployed users, demon-
strating the excellent performance attainable using the RSMA-

MEC scheme and the superiority of RSMA over NOMA
in terms of average throughput and successful computation
probability. Diamanti et al. [20] investigated the effect of
RSMA in a multi-server MEC system, considering a system
delay minimization problem. The outcomes highlighted the
efficiency of RSMA and its superiority over other multiple-
access schemes, such as NOMA and OFDMA, in terms of
users’ maximum experienced delay.

Additionally, research on DITEN systems has been con-
sidered recently [21]–[25]. Liu et al. [21] investigated the
cooperation of MEC servers in a DITEN system, aiming to
minimize the network delay and system power overhead by
optimizing the task portion allocated to MEC servers and
the task offloading ratio by proposing a DRL-based algo-
rithm. Hao et al. [22] focused on minimizing latency and
energy consumption in a DITEN system by jointly optimizing
resource allocation, task offloading, and power management
using a learning-based algorithm. Similar to [21], [22], DRL
algorithms have been widely used in DITEN systems, demon-
strating their effectiveness in solving DITEN problems [23]–
[25]. Moreover, some researchers have explored the effect
of multiple-access techniques in DITEN systems [26], [27],
demonstrating the effectiveness of NOMA and TDMA in
improving the spectral efficiency and energy consumption
of DITEN systems. Given the advantages of RSMA over
other multiple-access techniques, exploring RSMA and its
combination with DITEN systems remains an appealing topic.

Obviously, RSMA has been studied extensively in a variety
of research contexts. As a result, RSMA demonstrated its
efficiency compared to NOMA, TDMA, and FDMA because
of the high diversity order and the flexibility of transmit
power and decoding order. It supports robust interference
management that improves the spectral efficiency and thus
enhances the transmission rate, i.e., improving the system
latency [8], [9], [15]–[17]. Besides, previous research has
demonstrated the efficiency of dividing the communication
bandwidth into multiple sub-channels and applying the NOMA
technique at each sub-channel [26], [28]. Therefore, with the
effectiveness of RSMA, a multiple access scheme that divides
the communication bandwidth into multiple sub-channels and
applies the RSMA technique at each sub-channel is an en-
gaging multiple access scheme worth considering. Also, with
the above advantages, applying the proposed RSMA-based
multiple access scheme to improve MEC systems, especially
DITEN systems, opens an attractive research aspect. To high-
light the novel of this study, we summarize the related works
and our contributions in Table I.

B. Contribution and Organization

To the best of our knowledge, the flexible multiple access
scheme based on orthogonalized RSMA proposed in this paper
is still in its early development stages. Motivated by the
above observations, our study delves into the potential of the
proposed orthogonalized RSMA-based flexible multiple access
scheme to enhance task execution performance in DITEN
systems. We summarize the main contributions of this study
as follows.
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TABLE I
COMPARISON OF THE PROPOSED STUDY WITH RELATED WORKS

Research MA Scheme MEC DT Objective Optimization Method
[8] RSMA ✗ ✗ Maximize users’ minimum rate. SCA and GP-based algorithms.a

[9] RSMA ✗ ✗ Maximize system sum-rate. Alternating-based optimization.
[14], [15] RSMA ✗ ✗ Maximize system sum-rate. DRL-based optimization.

[16] RSMA ✗ ✗ Maximize quality of experience. DRL-based optimization.
[17] RSMA ✗ ✗ Maximize system energy effciency. DRL-based optimization.
[18] OFDMA ✓ ✗ Minimize the total energy consumption. Alternating-based and DRL-based algorithms.
[19] RSMA ✓ ✗ Maximize successful computation probability. Closed-form-based solutions.
[20] RSMA ✓ ✗ Minimize users’ maximum delay. Alternating-based algorithm.
[21] ✗ ✓ ✓ Minimize power consumption and system delay. DRL-based algorithm.
[22] ✗ ✓ ✓ Minimize latency and energy consumption. Learning-based algorithm.
[23] ✗ ✓ ✓ Maximize energy efficiency. DRL-based algorithm.
[24] ✗ ✓ ✓ Minimize long-term energy consumption. DRL-based optimization.
[25] ✗ ✓ ✓ Minimize system cost. Federated DRL-based algorithm.
[26] NOMA ✓ ✓ Minimize tasks’ completion delay. Alternating optimization.
[27] TDMA ✓ ✓ Minimize energy consumption. DRL-based optimization.

Proposed Orthogonalized
RSMA

✓ ✓ Maximize the number of completed tasks while
minimizing energy consumption.

Two approaches: LMI-based optimization and
DRL-based optimization.

aSCA: successive convex approximation, GP: geometric programming

• We explore a flexible and efficient access control scheme
that combines RSMA and OFDMA techniques for en-
hancing uplink transmission in a DITEN system. Here,
we formulate a non-convex mixed integer optimization
problem aimed at minimizing the energy consumption of
all IoT devices (IoTDs) and maximizing the number of
successful tasks of IoTDs, considering sub-channel allo-
cation, offloading ratio control, decoding order control,
splitting ratio control, and transmit power allocation of
the MEC server and service users.

• We propose a deep reinforcement learning (DRL) frame-
work by normalizing the deep deterministic policy gradi-
ent (DDPG) algorithm to design variables while adhering
to problem constraints. Here, we present new normaliza-
tion functions to handle discrete variables and develop
a constraint processing stage to satisfy all problem con-
straints. However, in the inference stage, the proposed
DRL method may encounter devices other than those
used in the training stage. Therefore, we suggest an
exhaustive-improved DRL method that can improve the
proposed DRL effectively by using information from the
digital-twin module.

• We develop a mathematical approximation-based optimal
solution to assess the proposed DRL framework. It deals
with non-convex combinatorial variables by leveraging
power allocation in the successive interference cancella-
tion (SIC)-enabled broadcasting system. Also, it employs
the Dinkelbach framework and relaxed linear matrix
inequality (LMI) framework for problem convexification.

• Through extensive simulations over different parameters
and scenarios, we identify the polynomial complexity,
stable convergence, and operating regime of the pro-
posed solutions. It is also confirmed that the proposed
approaches work well even with DT defects and provide
improved performance in terms of energy consumption
and number of successful tasks compared with bench-
mark schemes. In particular, the proposed framework

enhances performance by about 9.7% and 30.7% on
average compared to the competitive RSMA and NOMA
schemes.

The remaining paper is organized as follows : Section II
describes the system model and problem formulation. Sections
III and IV outline the deep reinforcement learning-based
solution and the mathematical approximation-based solution,
respectively. Sections V and VI present the simulation results
and conclusion, respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Fig. 1 shows the considered system model, which consists
of two layers: a physical layer and a digital twin layer. First,
in the physical layer, a BS equipped with an edge server
plays the role of the MEC, assisting users in a specific range.
There exist U IoTDs within the BS range, expressed as U =
{1, 2, . . . , u, . . . , U}, connected with the BS via wireless com-
munication links. With reference to existing studies [29]–[31],
all nodes are assumed to be equipped with a single-antenna.
Each IoTD u is considered to be assigned a computational
task that needs to be executed at each time slot t, expressed
as τu[t] = {zu[t], cu[t], du[t]}, where zu[t], cu[t], and du[t]
represent the size in bits, required computing resource, and
maximum delay of each task, respectively. The duration ∆t
is used to divide time into separate discrete time slots. The
tasks are assumed to be bit-wise independent and can be
arbitrarily segmented into sub-tasks. Therefore, each IoTD can
process its task locally or offload it to the MEC using a partial
offloading scheme with an offloading ratio of ou[t] ∈ [0, 1].
At time slot t, the IoTD u offloads ou[t] percent of task τu[t]
to the MEC for processing, and the remaining (1 − ou[t])
percent of the task is executed locally. Second, a digital twin
layer is established to facilitate the execution of tasks in
the physical space. This entity contains a digital mirror that
virtually replicates the physical space in real-time and digital
twin services that enable monitoring, system simulation, and
feeding of the optimal control back into the physical space to
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TABLE II
NOTATION

Notation Definition
U\U Number\set of IoTDs.
S\S Number\set of sub-channels.
Us\Us Number\set of IoTDs allocated on sub-channel s.
K\K Number\set of splitting sub-messages.

τu = {zu, cu, du} Task of IoTD u.
∆t Time slot duration.
ou Offloading ratio of IoTD u.
αu,s Channel allocation variable.
pu,k Transmit power of sub-message k of IoTD u.
hu,s Channel response coefficient between IoTD u and

BS on sub-channel s.
πs
u,k Decoding order of sub-message k of IoTD u on

sub-channel s.
πs Set of decoding order on sub-channel s.
xu,s Transmit message from IoTD u on sub-channel s.
xu,s,k Sub-message k of transmit message xu,s.
n0, σ2

0 Additive white Gaussian noise and its variance.
ru,s,k Offloading rate of sub-message xu,s,k .
δu Splitting ratio of IoTD u.
zou,k Size in bits of sub-offloaded part k of task τu.

T o
u,k\E

o
u,k Time\energy consumption for offloading part k of

task τu.
f̃ l
u\f̂ l

u Estimated\deviation computing resource of IoTD
u.

T l
u\El

u Time\energy consumption for local execution of
task τu.

f̃e
u\f̂e

u Estimated\deviation computing resource at MEC
allocated for IoTD u.

T oM
u MEC-offloaded time of task τu.
Tu Total latency of task τu.
Eu Total energy consumption of task τu.

Pu−max Maximum transmit power of IoTD u.

improve network performance in real-time. To construct the
digital mirror model, the MEC gathers raw data, such as the
network and user information, from the physical space in real
time and sends it to the DT layer [3], [21]. The notation used
in this work is summarized in Table II.

A. Communication Model

We divide the bandwidth of the BS into S sub-channels,
each with a set of orthogonal subcarriers, numbered based on
ascending order of the number of subcarriers in the set. The set
of sub-channels is expressed as S = {1, . . . , s, . . . , S}, where
sub-channel S (1) provide the highest (lowest) communication
resources. Without loss of generality, the numbers of sub-
channels and subcarriers in each sub-channel are assumed to
be predefined by the system, considering on the type, require-
ment, and purpose of specific applications. The connectivity
of IoTD u on sub-channel s at time slot t is represented by the
channel allocation variable αu,s[t] ∈ {0, 1}, where αu,s[t] = 1
if IoTD u connects to sub-channel s and αu,s[t] = 0 otherwise.
Each IoTD can utilize at most one sub-channel at each time
slot. We assume that the number of IoTDs is greater than the
number of sub-channels. Hence, we formulate the following
sub-channel allocation constraint:∑

s∈S
αu,s[t] ≤ 1, u ∈ U . (1)

Then, to ensure that all offloaded tasks are successfully of-
floaded to the MEC server, the offloading event of IoTD u

is defined to occur only if this IoTD is accessed through the
communication channel. To this end, the offloading ratios must
satisfy the following channel allocation constraint:

ou[t] ∈

[
0,
∑
s∈S

αu,s[t]

]
, u ∈ U . (2)

Here, we let Us[t] and Us[t] represent the number and set of
IoTDs transmitting signals on sub-channel s in time slot t,
respectively, with Us[t] =

∑
u∈U αu,s[t], s ∈ S and Us[t] ≜

{u ∈ U | αu,s[t] = 1}, s ∈ S.
In uplink RSMA, each transmitted message of IoTD u on

sub-channel s is split into K sub-messages and transmitted to
the BS via the same frequency slot (communication channel).
Without loss of generality, we assume that each IoTD can split
its transmitted message into two sub-messages (K = 2)1 and
define K ≜ {1, · · · ,K}. Then, the transmitted message from
IoTD u on sub-channel s in time slot t is expressed as

xu,s[t] =
2∑

k=1

√
pu,k[t]xu,s,k[t], (3)

where pu,k[t] ≥ 0 is the transmitted power that the IoTD u
spends in transmitting sub-message xu,s,k[t]. At the BS, the
messages received in time slot t contain all messages received
at all sub-channels, expressed as

xt[t] =
∑
s∈S

∑
u∈Us[t]

αu,s[t]hu,s[t]xu,s[t] + n0

=
∑
s∈S

∑
u∈Us[t]

αu,s[t]hu,s[t]

2∑
k=1

√
pu,k[t]xu,s,k[t] + n0,

(4)

where hu,s[t] ∈ C denotes the channel response coefficient
between IoTD u and the BS on sub-channel s in time slot
t, while n0 ∼ C(0, σ2

0) represents additive white Gaussian
noise. Subsequently, in each sub-channel, the BS applies the
SIC technique to decode the sub-messages received within
time slot t, in accordance with a decoding order. We define
πs
u,k[t], (u, k) ∈ Us[t] × K, as the decoding order of sub-

message k of IoTD u connected via channel s and πs[t] ≜
{πs

u,k[t] ∈ Ūs[t] | ∀(u, k) ∈ Us[t]×K} as the set of decoding
orders on channel s, where Ūs[t] ≜ {1, 2, · · · , 2|Us[t]|}. By
setting Csu,k[t] ≜ {(u′, k′) ∈ Us[t] × K | πs

u′,k′ [t] > πs
u,k[t]}

and using the ascending decoding order, the offloading rate of
sub-message xu,s,k in time slot t can be calculated as

ru,s,k[t] = Bs log2

(
1 +

αu,s[t]|hu,s[t]|2pu,k[t]
INu,s,k + σ2

0

)
, (5)

where INu,s,k ≜
∑

(u′,k′)∈Cs
u,k[t]

αu′,s[t]|hu′,s|2[t]pu′,k′ [t],
and Bs is the communication bandwidth of sub-channel s.

B. RSMA Offloading Model

For the RSMA scheme, we define a splitting ratio for each
IoTD u within time slot t, δu[t] ∈ [0, 1], which splits each
offloaded part of a task into two sub-offloaded parts. Then,

1Many previous studies have set K = 2 [9], [32], [33].
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Fig. 1. System model: RSMA-enabled multiple access for DITEN systems.

the size (in bits) of the sub-offloaded parts of task τu[t] in
time slot t, zou,k[t], k ∈ {1, 2}, is calculated as

zou,1[t] = δu[t]ou[t]zu[t],

zou,2[t] = (1− δu[t])ou[t]zu[t].
(6)

To ensure that all sub-offloaded parts are successfully of-
floaded to the BS, the transmitted powers must be greater than
zero during offloading. Therefore, we introduce the following
constraint for the RSMA offloading power:{

pu,k[t] > 0 , if zou,k[t] > 0,
pu,k[t] = 0 , otherwise.

(7)

Before deriving the energy consumption, we introduce the
following proposition.

Proposition 1. When zou,k[t] > 0, there is always one value
of the offloading rate that satisfies

∑
s∈S ru,s,k[t] > 0, s ∈ S.

Proof. According to (6), ou[t] > 0 when zou,k[t] > 0. Then,
from (2),

∑
s∈S αu,s[t] > 0, that is, there exists at least

one value of αu,s[t] greater than zero, i.e., ∃αu,s[t] = 1.
In accordance with (1), there exists only one non-zero value
of αu,s[t], s ∈ S . In addition, based on (7), pu,k > 0
when zou,k[t] > 0. Therefore, only one non-zero value of
αu,s[t]pu,k[t] exists, resulting in

∑
s∈S ru,s,k[t] > 0 (5),

s ∈ S. This proves Proposition 1.

According to Proposition 1, the following statement holds:
If each sub-offloaded part zou,k[t] > 0, during which in-
formation is offloaded from IoTD u to the MEC through
all subcarriers, it is necessary and sufficient to calculate the
corresponding offloading time as

T o
u,k[t] =

zou,k[t]∑
s∈S ru,s,k[t]

, (8)

and thus, the energy consumption of IoTD u for offloading
zou,k[t] can be obtained by

Eo
u,k[t] = pu,k[t]T

o
u,k[t] =

pu,k[t]z
o
u,k[t]∑

s∈S ru,s,k[t]
. (9)

Remark 1. When zou,k[t] = 0, the offloading power pu,k[t]
in (7) and offloading rate ru,s,k[t] in (5) become zero, and
thus, the values in (8) and (9) are 0

0 . To avoid these cases, we
define T o

u,k[t] = Eo
u,k[t] = 0 if zou,k[t] = 0. In other words,

the offloading time and energy consumption for offloading are
set as zero when no offloading occurs.

C. DT Computation Model

In the DT layer, the digital mirror replicates the computation
resource model of the IoTDs and MEC server in the physical
layer by estimating the computing resource for each entity.
However, DT cannot fully reflect the state and can exhibit a
deviation in the computing resource between the physical and
digital layers [34], [35]. First, the computation resource model
of each IoTD u in the DT layer can be expressed as

DT IoTD
u = {f̃ lu, f̂ lu}, (10)

where f̃ lu and f̂ lu are the estimated computing resources of the
u-th IoTD and deviation in the computing resource between
the physical IoTD u and its DT counterpart, respectively.
Assuming that the values of f̃ lu and f̂ lu can be acquired in
advance [21], [34], the estimated local execution time at IoTD
u for task τu[t] can be calculated as

T̃ l
u[t] =

(1− ou[t])zu[t]cu[t]
f̃ lu

, (11)

and the local execution time gap between the real time and
DT estimated time is computed as

∆T l
u[t] = −

(1− ou[t])zu[t]cu[t]f̂ lu
f̃ lu(f̃

l
u + f̂ lu)

. (12)

Then, the actual local execution time can be computed as

T l
u[t] = T̃ l

u[t] + ∆T l
u[t] =

(1− ou[t])zu[t]cu[t]
(f̃ lu + f̂ lu)

. (13)
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Accordingly, the local execution energy consumption of the
m-th IoTD can be computed as

El
u[t] = κu(1− ou[t])zu[t]cu[t](f̃ lu + f̂ lu)

2, (14)

where κu is a hardware architecture-related energy coefficient
of IoTD u. Second, similarly, the computation resource model
of the MEC server in the DT layer can be expressed in terms
of the estimated computing resource allocated to each IoTD
u, f̃eu, and deviation in the computing resource allocated to
IoTD u between the physical MEC and its DT counterpart,
f̂eu, acquired in advance. Therefore, the actual MEC execution
time of task τu[t] for the offloaded part is computed as

TM
u [t] = T̃M

u [t] + ∆TM
u [t] =

ou[t]zu[t]cu[t]

(f̃eu + f̂eu)
, (15)

where T̃M
u [t] and ∆TM

u [t] denote the estimated execution time
at MEC of task τu[t] for the offloaded part and gap between
the real and estimated execution time values, respectively.

Remark 2. The predefined estimated and deviation values (f̃ lu,
f̂ lu, f̃eu, f̂eu) determine the DT system’s performance, with zero
deviation indicating an ideal digital mirror of the DT system.
In general, a well-functioning DT system should exhibit small
deviation values. Therefore, to ensure the effectiveness of the
predefined DT system, the deviation values are considered to
be smaller than the estimated values, that is,

(f̃ lu + f̂ lu) > 0; (f̃eu + f̂eu) > 0. (16)

D. Problem Formulation

This research seeks to reduce the energy consumption of
all IoTDs while increasing the number of successful tasks
completed by IoTDs. A task τu[t] is considered successful
if its execution time meets the maximum delay requirement
du[t], assumed to be completed within time slot ∆t. Based on
the RSMA offloading scheme, the execution time of each task
τu[t] is defined as the larger value between the MEC-offloaded
time and the local execution time. Here, the MEC-offloaded
time of the offloaded part, T oM

u [t], is calculated as the sum of
the offloading time and MEC execution time:

T oM
u [t] = max{T o

u,1[t], T
o
u,2[t]}+ TM

u [t]. (17)

Then, the execution time of task τu[t], Tu[t], is

Tu[t] = max{T l
u[t], T

oM
u [t]}. (18)

The energy consumption of IoTD u required for executing
task τu[t], Eu[t], is computed as the sum of the local exe-
cution energy consumption and total energy consumption for
offloading its sub-offloaded parts:

Eu[t] = El
u[t] +

∑
k∈{1,2}

Eo
u,k[t]. (19)

Accordingly, we establish a utility function for the system,
which is proportional to the number of successful tasks and
inversely proportional to the energy consumption of the IoTDs,
formulated as

V[t] =
∑

u∈U H(du[t]− Tu[t])∑
u∈U Eu[t]

(20)

where H(x) denotes a step function, i.e., H(x) = 1, if x ≥ 0,
otherwise H(x) = 0, implying that the function has a value
of 1 if the task is successful and 0 otherwise.

Proposition 2. The energy consumption of the u-th IoTD is
always greater than zero when it processes a valuable task
τu[t], i.e., Eu[t] > 0,∀t, if zu[t], cu[t], du[t] > 0.

Proof. We analyze the value of Eu[t] for three cases of
offloading ratios, ou[t] ∈ [0, 1]:

• ou[t] = 0: Based on (6), zou,k[t] = 0, ∀k ∈ {1, 2}. Then,
the energy consumption is determined through (19) as

Eu[t] = El
u[t] = κu(1− ou[t])zu[t]cu[t](f̃ lu + f̂ lu)

2

= κuzu[t]cu[t](f̃ lu + f̂ lu)
2.

(21)

Given that
(
f̃ lu − f̂ lu

)2

> 0 (from Remark 2), Eu[t] > 0.
• ou[t] = 1: In this case, the energy consumption can be

determined through (19) as

Eu[t] =
∑

k∈{1,2}

Eo
u,k[t] =

∑
k∈{1,2}

pu,k[t]
zou,k[t]

ru,s,k[t]
. (22)

According to (6), there exists at least one sub-offloaded
part that satisfies zou,k[t] > 0. Then, according to (7) and
Proposition 1, there exists at least one value of pu,k[t] >
0 and ru,s,k[t] > 0, i.e., Eu[t] > 0.

• 0 < ou[t] < 1, i.e., (1− ou[t]) > 0: Based on Remark 2,
the local execution energy consumption is computed as

El
u[t] = κu (1− ou[t]) zu[t]cu[t]

(
f̃ lu + f̂ lu

)2

> 0. (23)

According to (6), (7), and Proposition 1, there exists at
least one set of values that satisfies zou,k[t] > 0, pu,k[t] >
0, and ru,s,k[t] > 0. Then, the total energy consumption
for offloading is computed as∑

k∈{1,2}

Eo
u,k[t] =

∑
k∈{1,2}

pu,k[t]
zou,k[t]

ru,s,k[t]
> 0. (24)

Therefore, the energy consumption in (19) can be ex-
pressed as

Eu[t] = El
u[t] +

∑
k∈{1,2}

Eo
u,k[t] > 0. (25)

Consequently, the value of Eu[t] is always greater than zero,
which proves Proposition 2.

It follows from Proposition 2 that the positive denominator,
i.e.,

∑
u∈U Eu[t] > 0,∀t, in (20) numerically validates the

utility rational function within all time slots.
To attain the multiple objective of minimizing the energy

consumption of all IoTDs and maximizing the number of
successful tasks, we formulate a utility maximization problem
subject to constraints of the offloading operation, splitting
ratios, channel allocation, IoTD transmit powers, and decoding
orders. Defining o[t] = {ou[t], u ∈ U}, δ[t] = {δu[t], u ∈ U},
α[t] = {αu,s[t], u ∈ U , s ∈ S}, p[t] = {pu,o,1[t], pu,o,2[t]},
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and π[t] = {πs[t], s ∈ S}, the target problem can be
formulated as

(P1): max
F [t]

V[t] (26a)

s.t. ou[t] ∈

[
0,
∑
s∈S

αu,s[t]

]
, u ∈ U , (26b)

δu[t] ∈ [0, 1], u ∈ U , (26c)
αu,s[t] ∈ {0, 1}, u ∈ U , s ∈ S, (26d)∑
s∈S

αu,s[t] ≤ 1, u ∈ U , (26e){
pu,k[t] > 0 , if zou,k[t] > 0,
pu,k[t] = 0 , otherwise.

,∀k, ∀u, (26f)∑
k∈{1,2}

pu,k[t] ≤ Pu−max, u ∈ U , (26g)

where F [t] ≜ {o[t], δ[t], α[t],p[t], π[t]}. Constraints (26b),
(26c), and (26d) define the value ranges of the variables.
Constraint (26e) ensures that each IoTD can access up to
one subcarrier in a certain time slot. Constraint (26f) is to
guarantee that all sub-offloaded parts of tasks are successfully
offloaded. Notably, zou,k[t] represents a product function as-
sociated with two variables (δu[t] and ou[t]), as indicated in
(6). Finally, the power constraint is specified by (26g), with
Pu−max being the maximum transmit power of IoTD u.

In (P1), the objective function is non-convex. In addition,
the decoding order and channel allocation variables render
the considered problem a mixed-integer problem. Therefore,
problem (P1) is a mixed-integer non-convex problem, for
which it is challenging to determine an optimization solution.
A realistic strategy to solve this problem is to develop an
approximation approach to identify the optimal solution. To
this end, we propose two approaches based on DRL and
mathematical approximation.

III. PROPOSED DRL FRAMEWORK

A. Reinforcement learning-based Problem

We formulate (P1) as a reinforcement learning problem,
leveraging concepts from the Markov decision process (MDP),
a stochastic control mechanism that models decision-making
problems in which the decision-maker learns from interactions
to achieve a goal. The decision-maker (the agent) decides ac-
tions and interacts with the environment, including everything
outside of the agent, by observing the environmental state. The
environment then presents the agent with a new state and a
reward defined according to the goal [36]. We define the state
space, action space, and reward function as follows:

Definition 1. State space: The state space contains the IoTD
task information and channel gain between the IoTDs and
communication channels, expressed as

s[t] = {zu[t], cu[t], du[t], hu,s[t], u ∈ U , s ∈ S} (27)

Definition 2. Action space: The action space contains opti-
mization variables, given as

a[t] = F [t] ≜ {o[t], δ[t], α[t],p[t], π[t]}. (28)

Fig. 2. Proposed deep reinforcement learning framework.

Algorithm 1 Decoding order determination.
1: Input:
2: Channel allocation variables: α[t].
3: Decoding priority variables: πd[t].
4: for s ∈ S do
5: Set of IoTDs in channel s: Us = {u ∈ U|αu,s = 1}.
6: Sort Us by πd

u,k[t] in descending order.
7: for (u, k) ∈ Us[t]×K do
8: πs

u,k[t]← index of πd
u,k in Us[t].

9: end for
10: end for
11: return Decoding order π[t].

Definition 3. Reward function: Because the objective is to
maximize the value functions of all IoTDs, the reward function
within each time slot is calculated by the sum of the IoTDs’
utility functions:

r[t] =
∑
u∈U
Vu[t]. (29)

According to Proposition 2, the value function Vu[t] exists in
each time slot, rendering the reward function always valuable.

B. Proposed Normalized DDPG Algorithm

To train the agent, we incorporate an actor-critic algorithm
named DDPG into the proposed DRL framework. The algo-
rithm is composed of actor and critic networks (ANs and CNs),
each with its own set of primary and target networks. The
primary AN, presented by a parameterized policy function
µ(s|θµ), acts as a decision-maker, deciding an action based
on the observed state. The primary CN, presented by a
parameterized action-value function Q(s, a|θQ), evaluates the
chosen action a at each state s by estimating the expected
cumulative return. The target networks help enhance the
training performance [37]. Furthermore, the algorithm explores
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samples for training the networks by adding noise to generate
actions, expressed as:

a = µ (s|θµ) +N , (30)

where N denotes noise generated by the Ornstein–Uhlenbeck
process [38]. Accordingly, the AN’s parameter is updated by
the policy gradient of the expected return based on the action,
expressed as

∇θµJ =
1

D

D∑
i=1

(
∇aQ(s, a|θQ)|s=si,a=µ(si)∇θµµ(si|θµ)

)
,

(31)
where D is the training samples batch size. The CN’s param-
eter is updated by minimizing the loss function expressed as

L =
1

D

D∑
i=1

(
Q(si, ai|θQ)− yi

)2
, (32)

where yi denotes the estimated return value. Denoting the tar-
get CN ans AN as Q′

(
s, a|θQ′

)
and µ′

(
s|θµ′

)
, respectively,

the estimated return value can be calculated as

yi = ri + γQ′
(
s′i, µ

′(s′i|θµ
′
)|θQ

′
)
, (33)

where s′i is the next state of the current sample state si. Subse-
quently, the parameters of the target networks are updated from
the primary networks through a soft update with coefficient τ :

θµ
′
← τθµ + (1− τ)θµ

′
,

θQ
′
← τθQ + (1− τ)θQ

′
.

(34)

The networks are trained off-policy, with the training samples
randomly selected from an experience replay buffer, which
stores the interaction experiences.

By using the AN, the action value range can be designed
by selecting the activation function. Considering the con-
straints in (26), we scale actions to the range between 0 and
1. Accordingly, we define odu[t], δ

d
u[t], α

d
u,s[t], p

d
u,k[t], π

d
u,k ∈

[0, 1], u ∈ U , k ∈ {1, 2}, s ∈ S as the variables that the DDPG
decides, i.e., the offloading ratios, splitting ratios, channel
allocation, transmit power, and decoding orders, respectively.
Consequently, the constraint of splitting ratio variables in (26c)
is satisfied. Therefore, the splitting ratio of IoTD u can be
directly obtained from the AN, i.e., δu[t] = δdu[t], u ∈ U .
However, the AN produces continuous variables that do not
correspond to the discrete form of the channel allocation
and decoding order. Therefore, we propose the following
normalization functions to handle the variable form.

1) Channel Allocation Normalization: By letting αd
u,s[t] be

the probability that IoTD u connects to the BS on channel s
in time slot t, the u-th IoTD only connects to the channel
with the highest probability, otherwise it does not establish
any connections. Denoting αd

u [t] = {αd
u,s[t], s ∈ S} as the

set of probabilities that IoTD u connects to the channels, the
channel allocation variables of IoTD u can be expressed as

αu,s[t] =

{
1 , if s = argmax{αd

u [t]}
0 , otherwise.

(35)

Thus, by applying the channel allocation probability variables,
the constraints (26d) and (26e) are satisfied.

Algorithm 2 Proposed DRL-based training algorithm

1: Initialize µ(s|θµ), Q(s, a|θQ), µ′(s|θµ
′
), and Q′(s, a|θQ

′
).

2: for e = 1, 2, . . . , E do
3: Obtain initial state s[1].
4: for t = 1, 2, . . . , T do
5: Actor network decides action ad[t] by (30).
6: Calculate channel allocation variables, α[t], using (35).
7: Determine the decoding order, π[t], as in Algorithm 1.
8: Apply the constraint processing stage: equations (36)–(39)

→ obtain o[t],p[t].
9: Apply a[t] to the environment → obtain r[t], s[t+ 1].

10: Store {s[t], a[t], r[t], s[t+ 1]} into buffer.
11: Update state: s[t]← s[t+ 1].
12: Randomly sample a batch (size D) from the replay buffer.
13: Update neural network parameters using (31), (32), (34).
14: end for
15: end for
16: return Trained actor network.

2) Decoding Order Normalization: By letting πd
u,k[t] rep-

resent the decoding priority of sub-message k of IoTD u, the
decoding order of the sub-messages in each sub-channel is
designed based on the decoding priority in descending order,
determined using Algorithm 1, where πd[t] ≜ {πd

u,k[t], u ∈
U , k ∈ {1, 2}}. In each sub-channel, the sub-message with
the highest decoding priority is first decoded, and the same
principle is followed for the remaining sub-messages. After
considering all sub-channels, the decoding order of all sub-
messages can be identified.

3) Constraint Processing Stage: By using the normalization
functions, three constraints remain in problem P1: (26b),
(26f), and (26g). To manage the constraints, we introduce a
constraint processing stage as follows. First, let omu [t] denote
the offloading ratio that satisfies constraint (26b), it can be
calculated as

omu [t] = odu[t]
∑
s∈S

αu,s[t]. (36)

By applying this calculation, the offloading ratio is set as zero
when no communication channel exists, i.e.,

∑
s∈S αu,s[t] =

0, thereby satisfying constraint (26b).
Furthermore, to adhere to the constraint in (26f), we denote

pmu,k[t] as the mapped transmit power variable of sub-message
k of IoTD u in time slot t, calculated as

pmu,1[t] = pdu,1[t]⌈δu,1[t]⌉,
pmu,2[t] = pdu,2[t]⌈δu,2[t]⌉,

(37)

where δu,1[t] ≜ δu[t]o
m
u [t], δu,2[t] ≜ (1− δu[t]) omu [t], and

⌈.⌉ is the ceiling function, which returns the smallest integer
greater or equal to the input number. Accordingly, ⌈δu,1[t]⌉
and ⌈δu,2[t]⌉, indicating the corresponding offloading events of
sub-messages 1 and 2, have two possible values (0 or 1). If the
offloading event is flagged as zero, i.e., zou,k[t] = 0 (according
to (6)), the corresponding transmit power is also zero, i.e.,
pmu,k[t] = 0; otherwise, it is pmu,k[t] = pdu,k[t]. Through this
mapping function, the second condition in (26f) is satisfied. To
avoid violating the first condition in (26f), i.e., zou,k[t] > 0 and
pu,k[t] = 0, we force the offloading ratio to zero, preventing
the IoTDs from offloading tasks with insufficient transmit
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power. Hence, the offloading ratio of IoTD u at time slot t
that satisfies all its constraints is

ou[t] =

{
0, if ∃k∈K⌈pmu,k[t]⌉ < ⌈δu,k[t]⌉,
omu [t], otherwise.

(38)

With the mapped transmit power and valid offloading ratio,
the only remaining constraint is (26g). Therefore, we propose
the following proposition to adjust the transmit power vari-
ables to appropriate values.

Proposition 3. To satisfy constraint (26g), pu,1[t] and pu,2[t]
can be calculated using the following function:

pu,1[t] = pmu,1[t]Pu−max[t], (39a)

pu,2[t] = pmu,2[t] (Pu−max[t]− pu,1[t]) . (39b)

Proof. By substituting δu[t], p
d
u,k[t] ∈ [0, 1] into (37), we

obtain pmu,k[t] ∈ [0, 1]:
• According to (39a), the value range of pu,1[t] is pu,1[t] ∈

[0, Pu−max], i.e., pu,1[t] ≥ 0, and pu,1[t] ≤ Pu−max.
• According to (39b), we have pu,2[t] ≥ 0 and pu,2[t] ≤

(Pu−max − pu,1[t]) ⇒ pu,1[t] + pu,2[t] ≤ Pu−max, i.e.,∑
k∈K pu,k[t] ≤ Pu−max.

Consequently, constraint (26g) is satisfied, which proves
Proposition 3

Consequently, the constraint processing stage ensures that
all constraints in the proposed problem are satisfied.

Fig. 2 illustrates the proposed DRL framework, and the
pseudocode of the algorithm is presented in Algorithm 2.
The agent is trained in E episodes, each with T time steps.
In each time step t, the training process is divided into
interaction and network update processes. In the interaction
process, the actor network chooses action according to the
observed state s[t] by exploration, as indicated in (30), where
ad[t] ≜ {odu[t], δdu[t], αd

u,s[t], p
d
u,k[t], π

d
u,k ∈ [0, 1], u ∈ U , k ∈

{1, 2}, s ∈ S}. Accordingly, the channel allocation and
decoding order variables are calculated. Then, we execute
the constraint processing stage to the action, redesigning the
offloading ratio and transmit power variables that satisfy the
problem constraints. Subsequently, action a[t] is performed
onto the environment, reward r[t] is obtained based on (29),
and the environment updates the next state as s[t+1]. Subse-
quently, the experience sample (including s[t], a[t], r[t], and
s[t+1]) is stored in the replay buffer for training the networks.
In the network update process, a batch of samples (D samples)
is randomly selected from the replay buffer: sD, aD, rD, s′D

to update the neural network parameters as described in (31),
(32), and (34). Finally, the trained actor network is obtained
for interacting with the environment.

C. Exhaustive-improved DRL

According to (39), the designed transmit powers are frac-
tions of their maximum transmit power. However, during
training, the DRL model considers a fixed transmit power,
Pu−max, based on the setting environment parameters. How-
ever, unlike during model training, during the inference pro-
cess in real operating situations, various devices may have

Algorithm 3 Exhaustive-improved DRL phase
1: Input: Trained DRL model.
2: while interaction do
3: Observe environment state s[t].
4: Set the best reward: rbest = 0.
5: Design δ[t], π[t], α[t] according to line 5− 7 in algorithm 2.
6: for pes ← Pmin to Pu−max, pes : pes +∆p do
7: Apply the constraint processing stage (equations (36)–(39))

with Pu−max = pes → obtain o[t],p[t].
8: Estimate reward r[t].
9: if r[t] ≥ rbest then

10: a∗[t]← a[t], rbest ← r[t].
11: end if
12: end for
13: return Optimal action a∗[t].
14: end while

different maximum transmit powers. That is, in the inference
process, ignoring the change of Pu−max may degrade the
system performance due to the lack of optimal power values.
Therefore, by leveraging DT features, the device status can
be obtained, enabling us to establish an exhaustive-improved
DRL phase based on the exhaustive search strategy to de-
termine suitable transmit powers in each state, described in
Algorithm 3. In each interaction step, actions δ[t], π[t], α[t] are
designed by the trained DRL model as indicated in lines 5−7
in Algorithm 2. Next, we search for the suitable value of the
transmit power from Pmin to Pu−max with a step of ∆p, and
implement the constraint processing stage. Here, the maximum
transmit power value is replaced by the searched power value
pes, i.e., the transmit powers in (39) are recalculated as:
pu,1[t] = pmu,1[t]pes[t]; pu,2[t] = pmu,2[t] (pes[t]− pu,1[t]) .
Subsequently, the DITEN system estimates the reward r[t]
with the decided action. After searching for all transmit power
values, the optimal action a∗[t], which yields the best reward,
is obtained to interact with the physical environment.
Remark 3. This exhaustive-improved DRL phase is applied to
only the inference process and thus does not affect training
performance.

IV. PROPOSED MATHEMATICAL APPROXIMATION BASED
SOLUTION: RELAXED LMI FRAMEWORK

Owing to the non-linear objective function and mixed-
integer constraints, problem (26) belongs to a class of mixed-
integer nonlinear programming (MINLP). Moreover, (26) rep-
resents a combinatorial problem owing to the presence of
variable π[t]. To overcome the challenges associated with
these problem types, we first develop an optimization method
involving two steps. The first step is to tackle the combina-
torial variables, exploiting the power allocation in the SIC-
enabled broadcasting system. The second step is to introduce
the LMI framework with relaxation for integer variables
{o[t], δ[t],α[t]}.

A. Solution for combinatorial variables π[t]

As mentioned earlier, the sub-message is decoded using the
SIC technique, which requires a predefined decoding order.
As the strongest signal must be prioritized in decoding, the
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optimal solution for the decoding order is one in which the
sub-messages transmitted through higher-gain channels are
decoded and removed from the received signal before the
other sub-messages are decoded through weaker-gain channels
[39]–[41]. The optimal value is obtained considering the power
allocation to be real-number variables.

Let π∗[t] ≜ {π̄s[t]}s∈S be the solution of problem (26).
Based on [39], we can determine element π̄s[t] of π∗[t] as

π̄s[t] =
{
πs
u,k[t] ∈ {1, · · · , |Us[t]| ×K}|

πs
u,k[t] < πs

u′,k′ [t] ∧ |hu,s[t]|2 ≥ |hu′,s[t]|2,

∀(u, k), (u′, k′) ∈ Us[t]×K
}
. (40)

Recall that the optimal decoding order can be obtained by
sorting the channel gains in the broadcast system. Then,
with the given decoding order, the resource allocation can be
flexibly optimized by solving the following problem:

(P2): max
F̂ [t]

V̂[t] ≜ V[t]|π[t]=π∗[t] (41a)

s.t. ou[t] ∈

[
0,
∑
s∈S

αu,s[t]

]
, u ∈ U , (41b)

δu[t] ∈ [0, 1], u ∈ U , (41c)
αu,s[t] ∈ [0, 1], u ∈ U , s ∈ S, (41d)∑
s∈S

αu,s[t] ≤ 1, u ∈ U , (41e){
pu,k[t] > 0 , if zou,k[t] > 0,
pu,k[t] = 0 , otherwise.

,∀k, ∀u, (41f)∑
k∈{1,2}

pu,k[t] ≤ Pu−max, u ∈ U , (41g)

where F̂ [t] ≜
{
F [t] | π[t] = π∗[t]

}
. Here, variable α[t] in

constraint (41d) is relaxed from binary values {0, 1} to the
continuous interval [0, 1]. Clearly, problem (41) is still non-
convex owing to the non-convexity of the objective function
and non-linear boundary condition of constraint (41f). There-
fore, the analysis described in the remaining section is focused
on addressing the difficulty in solving problem (41).

B. Solution for resource allocation variables
{o[t], δ[t],α[t],p[t]}

1) Treating the objective function: First, we apply the
Dinkelbach framework to transform (41) into a non-fractional
form, such that the optimal value is obtained as

V̂∗[t] = max
F̂ [t]

{∑
u∈U
H(du[t]− Tu[t])− µ∗[t]

∑
u∈U

Eu[t]
}
= 0,

(42)
if and only if the following condition is satisfied:

µ∗[t] =

∑
u∈U H(du[t]− T ∗

u [t])∑
u∈U E

∗
u[t]

= max
F̂ [t]

V̂[t]. (43)

To numerically determine µ∗[t], a finite number of iterations
is executed, equivalent to solving the following problem:

µ(n+1)[t] =max
F̂ [t]

{∑
u∈U
H(du[t]− Tu[t])

− µ(n)[t]
∑
u∈U

Eu[t]
}
, (44)

a) Addressing Tu[t]: First, Tu[t] is rewritten as

Tu[t] = max{T l
u[t], T

o
u,1[t] + TM

u [t], T o
u,2[t] + TM

u [t]}. (45)

Because T l
u[t] and TM

u [t] are linear, it is necessary to consider
only the offloading term T o

u,k[t], k ∈ K. Clearly, ou[t], δu[t],
and 1 − δu[t] are positive. Therefore, the variable can be
modified as

ρ2u,1[t] = δu[t]ou[t]zu[t], (46)

ρ2u,2[t] = (1− δu[t])ou[t]zu[t]. (47)

Then, T o
u,k[t] in (8) can be represented as linear variable βu,k[t]

with coupled constraints:

ρ2u,k[t]

r̄u,k[t]
≤ βu,k[t], (48a)

r̄u,k[t] ≤
∑
s∈S

ru,s,k[t]. (48b)

By applying the Schur complement, constraint (48) can be
expressed as [

r̄u,k[t] ρu,k[t]
ρu,k[t] βu,k[t]

]
⪰ 0 (49a)∑

s∈S
ru,s,k[t] ≥ r̄u,k[t]. (49b)

Evidently, this constraint is convex, and Tu[t] is completely
addressed.

b) Addressing Eu[t]: Consider Eu[t] in (19). The energy
required for local computation (first term) is linear, whereas
the energy required for offloading operation (second term)
is non-convex. To convexify Eu[t], the expression under the
summation can be rewritten as

pu,k[t]
zou,k[t]∑

s∈S ru,s,k[t]
= pu,k[t]

ρ2u,k[t]

r̄u,k[t]

(i)

≤ φu,k[t]. (50)

Then, the inequality (i) in (50) can be treated as

pu,k[t]

β̄u,k[t]
≤ φu,k[t], (51)

where the smooth variable β̄u,k[t] =
r̄u,k[t]

ρ2
u,k[t]

. Subsequently,
Eu[t] can be transformed into the linear form, proportional to
variable φu,k[t] under additional convex constraints:[

β̄u,k[t] p̄u,k[t]
p̄u,k[t] φu,k[t]

]
⪰ 0, (52)

with the power allocation being reconstructed as pu,k[t] =
p̄2u,k[t].
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c) Convex objective function: By substituting (49) and
(52) into (44), we can obtain the convex form of the objective
function using the Dinkelbach algorithm, i.e.,

µ(n+1)[t] =max
D[t]

{∑
u∈U
H(du[t]− ωu[t])

− µ(n)[t]
∑
u∈U

∑
k∈K

φu,k[t]
}
, (53)

where the feasible region D[t] is determined as

D[t] ≜

{
F̂ [t] ∪ F̃ [t]

∣∣∣∣Constraints (C) are satisfied.

}
, (54)

with C = C1 ∩ C2, C1 = {(41b)− (41g)}, and

C2 =


T l
u[t] ≤ ωu[t]
T o
u,1[t] + TM

u [t] ≤ ωu[t]
T o
u,2[t] + TM

u [t] ≤ ωu[t]
(49), (52)

 . (55)

The auxiliary-variable set for convexifying the objective func-
tion is

F̃ [t] ≜
{
{ωu[t]}, {φu,k[t]}, {ρu,k}, {r̄u,k},

{βu,k}, {β̄u,k[t]}, {p̄u,k}
}
,∀u ∈ U , ∀k ∈ K.

Although the objective function is now linear, the feasible set
(C) is non-convex owing to the non-convexity constraint (41f)
in (C1). Hence, the final part of the analysis is to address this
constraint.

2) Convexifying the feasible set (C1): We outline the steps
for transforming (C1) into the LMI form. To this end, the
following vector variable is defined:

θ[t] ≜
[
(o[t])T (δ[t])T vec(α[t])T

]T ∈ [0, 1](S+2)U×1. (56)

Next, the constraints of MEC-resource and channel allocation
(41b)– (41e) in (C1) are expressed as

ou[t] ≥ 0, u ∈ U , (57a)
δu[t] ≥ 0, u ∈ U , (57b)

αu,s[t] ≥ 0, u ∈ U , s ∈ S, (57c)

ou[t]−
∑
s∈S

αu,s[t] ≤ 0, u ∈ U , (57d)

δu[t] ≤ 1, u ∈ U , (57e)
αu,s[t] ≤ 1, u ∈ U , s ∈ S, (57f)∑

s∈S
αu,s[t] ≤ 1, u ∈ U . (57g)

In a straightforward manner, we can rewrite (57) in the LMI
form as follows:

A1.θ[t] ⪯ b1, (58)

where matrix A1 and vector b1 are constructed as

A1 =



−IU 0U×U 0U×S.U

0U×U −IU 0U×S.U

0S.U×U 0S.U×U −IS.U
IU 0U×U −11×S ⊗ IU
0U×U IU 0U×S.U

0S.U×U 0S.U×U IS.U
0U×U 0U×U 11×S ⊗ IU


, (59)

b1 =
[
01×(S+3)U 11×(S+2)U

]T
. (60)

The remaining challenge is to address constraint (41f). In this
context, the limit of power coefficient variables depends on
the value of zou,k[t], specified as the compound of two other
variables δ[t] and o[t]. To overcome this issue, we transform
constraints for power allocation (41f)–(41g) (for K = 2) as
follows:

pu,s,1[t] ≤ δu[t]Pu−max, ∀u ∈ U , ∀s ∈ S, (61a)
pu,s,2[t] ≤ (1− δu[t])Pu−max, ∀u ∈ U , ∀s ∈ S,

(61b)∑
k

pu,s,k[t] ≤ αu,s[t]Pu−max, ∀u ∈ U , ∀s ∈ S, (61c)∑
s∈S

∑
k∈K

pu,s,k ≤ ou[t]Pu−max, ∀u ∈ U , (61d)

which is equivalent to the following LMI expression:[
A2 C

]
.

[
θ[t]
ϱ[t]

]
⪯ b2, (62)

with ϱ[t] ≜ vec(p[t]), and

A2 = Pu−max


0S.U×U −

(
1S×1 ⊗ IU

)
0S.U×S.U

0S.U×U

(
1S×1 ⊗ IU

)
0S.U×S.U

0S.U×U 0S.U×U −
(
IS ⊗ IU

)
−IU 0U×U 0U×S.U


(63)

C =


IS ⊗

(
[1 0]⊗ IU

)
IS ⊗

(
[0 1]⊗ IU

)
IS ⊗

(
[1 1]⊗ IU

)
11×S.K ⊗ IU

 ∈ {0, 1}(3S+1)U×S.K.U , (64)

b2 = Pu−max

[
01×S.U 11×S.U 01×(S+1).U

]T
. (65)

From (58) and (62), the constraints in (C1) are equivalent to
the following LMI form (denoted by Ĉ1 ⊆ C1):[

A1 0(S+5)U×S.K.U

A2 C

]
.

[
θ[t]
ϱ[t]

]
⪯ b, (66)

where b = [bT
1 bT

2 ]
T .

Finally, the equivalent convex optimization problem for
solving (41) is formulated as

µ(n+1)[t] =max
D̂[t]

{∑
u∈U
H(du[t]− ωu[t])

− µ(n)[t]
∑
u∈U

∑
k∈K

φu,k[t]|
}
, (67)
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where

D̂[t] ≜

{
F̂ [t] ∪ F̃ [t]

∣∣∣∣Ĉ1 ∩ C2 is satisfied.

}
. (68)

Problem (67) can be conveniently solved using convex opti-
mization tools. Notably, Ĉ1 is a convex subset of C1, and then,
the convex subset (Ĉ1 ∩ C2) ⊆ (C1 ∩ C2). It follows that every
feasible point in D̂[t] for problem (67) is feasible in D[t] for
the Dinkelbach-form problem (53). Moreover, (Ĉ1 ∩ C2) ⊆
(C1 ∩ C2) ⊆ C1, and according to the iterative Dinkelbach
algorithm for the combinatorial problem, the optimal solution
for problem (53) is a sub-optimal solution for the original
problem (26).
Remark 4. Building upon the reported results [39]–[41], the
proposed solution for solving problem (26) within the scope of
this work may be more efficient than state-of-the-art methods,
i.e., SCA or block successive upper minimization (BSUM).
This can be attributed to two reasons: (a) The LMI-based
solution has a convex form, where the sub-problems follow-
ing Dinkelbach’s framework can be linearly handled by the
available convex packages; and (b) SCA methods require con-
tinuous convex feasible subsets. Thus, smooth variables and
approximation constraints are frequently introduced, resulting
in high complexity, especially for combinatorial problems.

TABLE III
ENVIRONMENTAL PARAMETERS

Parameter Value
U 20
zu 100− 500 Kbits
cu 700− 1000 cycles/bit
du 0.35 s
S 3
Bs (B1, B2, B3) = (10, 30, 60) MHz
NF 5 dB
σ2 −174 + NF + 10 log10(Bs) dBm
f̃ l
u 109 cycles/s

f̃e
u 5.109 cycle/s

f̂ l
u, f̂

e
u 10 % of estimated values

κu 10−28

V. PERFORMANCE EVALUATION

We simulate scenarios in which the BS serves IoTDs
randomly distributed within a 10-to-200-m radius of the BS.
The channel response coefficients between the IoTDs and BS
are generated as [42]

hu,s = ĥu,s

√
hLu,s, (69)

where ĥu,s is the small-scale fading, with the distribution
CN (0, 1); and hLu,s represents the large-scale fading between
the BS and IoTD u, specified as

hLu,s = 10
L(d)+nshσsh

10 , (70)

where σsh = 8 (dB), nsh ∼ N (0, 1), and L(d) is the path
loss (in dB) between BS and IoTD u, calculated as [42]

L(d) =− 140.7− 35 log10(d)

+ 20c0 log10

(
d

d0

)
+ 15c1 log10

(
d

d1

)
.

(71)

Other environmental simulation parameters are summarized
in Table III, where the parameters are chosen from [43]–[45].
The neural networks in the DRL algorithm have two hidden
layers, each has 512 nodes. The replay buffer has size of 105,
other parameters are set as γ = 0.99, τ = 0.01, and batch
size D = 16. The following schemes are considered in this
comparative analysis:

• Proposed-DRL: Proposed approach using the DRL frame-
work, as outlined in Section III. This approach does not
contain the exhaustive-improved DRL phase.

• Proposed-EID: Proposed DRL scheme with the
exhaustive-improved DRL phase. We set Pmin = −30
(dBm) and ∆p = 1 (dBm) for searching the suitable
transmit power in each step.

• Proposed-LMI: Proposed approach using the sup-optimal
solution, defined in Section IV.

• RSMA: Only the RSMA technique is used for uplink com-
munication between IoTDs and the BS. This multiple-
access technique has been considered in numerous exist-
ing studies [9], [32].

• NOMA: According to [26], this scheme applies NOMA
as the multiple access technique at each sub-channel.

• FDMA: The FDMA technique is applied to communi-
cation between IoTDs and BS, with the communication
channel divided into ten sub-channels with the same
resources, each serving two IoTDs at a time.

• FMA-GS (Proposed orthogonalized RSMA-based flexible
multiple access scheme with greedy searching): Proposed
multiple-access scheme. To solve the optimization prob-
lem, we discretize the variables and use a greedy-based
local search algorithm, described in [46].

A. Complexity

1) Complexity of the proposed DRL approach: We evaluate
the computational complexity of the proposed DRL algorithm,
factoring in the neural networks and supplementary processing
functions. Given that training occurs at DITEN, we equate the
complexity of the neural networks with that of the primary ac-
tor network utilized during inference. According to [47], [48],
the computational complexity of the primary actor network is
calculated as Oµ = O

(∑L
l=1 ψl−1ψl

)
, where ψl denotes the

number of nodes in layer l of the neural network, with l = 0
and l = L being the input and output layers, respectively.
According to (27) and (28), the number of nodes in the input
and output layers are calculated as

ψ0 = U ∗ (3 + 2S); ψL = U ∗ (6 + S). (72)

According to (35), we normalize the channel allocation vari-
ables by calculating argmax over S entries for U ∗S variables.
Then, its computational complexity is Oα = O(U ∗ S2).
For determining the decoding order indicated in Algorithm 1,
the sorting operation has a complexity of O(Us logUs) [49].
Accordingly, the computational complexity for determining
the decoding order is Oπ = O(

∑
s∈S(Us logUs + Us ∗K)).

Additionally, the computational complexity for the constraint
processing stage can be calculated as Oc = O(U ∗ S), where
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Fig. 3. Complexity of the algorithms according to environment scale.
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Fig. 4. Training results with different learning rates.

the operations in (37), (38), and (39) have constant complex-
ity. Thus, the proposed DRL algorithm has a computational
complexity of ODRL = Oµ +Oα +Oπ +Oc.

2) Complexity of the proposed mathematical approxima-
tion approach: The complexity of the algorithm for solving
problem (26) is determined by the number of variables and
constraints in D̂[t]. The number of variables is F̂ [t] ∪ F̃ [t],
with the following specifications:

• Variable set F̂ : This set includes U × (S + 4) variables,
related to the variable set o[t], δ[t],α[t], and p[t].

• Variable set F̃ [t]: This set requires U × (6K + 1) new
variables.

In total, the number of variables is V = U × (S + 6K + 5).
The number of constraints is determined by Ĉ1 ∩C2, which

is equivalent to the summation of the number of constraints in
(55) and total number of rows of matrices A1 and A2. From
(55) and (66), the total number of constraints is calculated to
be C = U × (5S+5K+9). According to [50], the LMI-based
algorithm has a computational complexity of O(V3C).

3) Complexity comparison: The complexity values of
the Proposed-DRL and the Proposed-LMI with environment
growth, i.e., the number of IoTDs, are U logU and U4,
respectively. As shown in Fig. 3, the increase in the complexity
of the Proposed-DRL scheme is minor with the rise in the scale
of the environment, i.e., the number of IoTDs, sub-channels,
and splittings. In contrast, the complexity of the Proposed-LMI
scheme rapidly increases. That is, we can say that the proposed
DRL approach can be applied more practically in realistic

TABLE IV
COMPLEXITY COMPARISON

Number of
IoTDs

Number of
sub-channels

Number of
splitting

Proposed-DRL O(U logU) O(S2) O(K)
Proposed-LMI O(U4) O(S4) O(K4)
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Fig. 5. Statistics on traffic usage of sub-channels.

environments, whereas applying the mathematical approach
requires the use of a hyper-powerful computer. However, all
the proposed algorithms have polynomial complexity, i.e.,
scalable algorithms. In Table IV, we summarize the complexity
of the algorithms according to environment parameters.
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B. Numerical Experiments

First, we evaluate the convergence of the DRL training
algorithm by training the model using different learning
rates. As mentioned in Remark 3, the exhaustive-improved
DRL does not affect the training process. Thus, we skip
this phase in this analysis. Experiments are conducted with
three actor learning rates (lra) and critic learning rates (lrc):
lra = lrc = {5e−4, 2e−4, 1e−4}. As illustrated in Fig. 4, case
lra = lrc = 2e−4 yields the best result, where the model
converges after approximately 8000 episodes, and the reward
is approximately 18.75 % and 140 % superior than those
when the rates are 5e−4 and 1e−4, respectively. Additionally,
the reward increases with the number of successful tasks and
energy consumption to complete the tasks reduces, as shown
in Figs. 4b and 4c, respectively.

Second, we estimate the user allocation on the sub-channels,
as illustrated in Fig. 5a. In this scenario, we model three sub-
channels indexed 1, 2, and 3, with the communication resource
increased from 1 to 3 and evaluate the number of users access
to each channel. The results indicate that channel 3 serves
the highest number of users in each step, approximately 2.6
times and 1.4 times higher than the values for channels 1
and 2, respectively. This suits the system property where the
higher-capacity channel can serve more users. Furthermore, we
evaluate the distribution of users’ resource demand on each
channel by calculating the cumulative distribution function
(CDF) in 3000 testing steps. As shown in Fig. 5b, channels
with higher communication bandwidth serve users with higher
demand. Specifically, the mean resource demands of users on
channels 1, 2, and 3 are approximately 0.92e9, 1.68e9, and
2.49e9 cycles per step, respectively. The results show that our
goal of dividing the communication bandwidth is reasonable,
as users with high service demand use the channel with more
communication resources.

The performance of the proposed framework is assessed
in different DT systems, in terms of the task success rate
corresponding to three values of DT deviations: −20 %, 0 %,
and 20 % with different MEC capacities. As illustrated in
Fig. 6, the deviation of 20 % yields the best result, with the
most inferior result obtained when −20 %. The deviation of
20 % indicates that the computing resources in the physical
devices are 20 % higher than the estimated values in the DT
layer. Therefore, with positive deviations, the physical layer

performs better than expected from the DT layer, owing to the
higher computing resources. In the case of negative deviations,
it performs worse than expected from the DT layer. In addition,
the system performs well in all three cases of deviation when
the computing resource at the MEC are adequate (higher
than 1.6e9 cycles/s), demonstrating the stability of the system.
Therefore, in the considered scenario, with f̃eu = 5e9 cycles/s
(from the Table 1), the system appears to be effective across
different DT systems, demonstrating the excellent system
performance.

Furthermore, we assess the system performance by the
utility value. As illustrated in Fig. 7, we measure the utility
value over different IoTD transmit powers, varying from −30
to 10 dBm. The utility value has a quasi-concave function
of Pu−max, where the peak lies in the interval [−20,−15]
(dBm). The proposed approaches outperform other benchmark
schemes in all cases, with the value for Proposed-DRL being
approximately 9.7% and 30.7% higher than those for RSMA
and NOMA, respectively, and it significantly outperforms
FDMA. The FMA-GS scheme exhibits inferior performance
because the high complexity of the problem causes the greedy-
based search algorithm to become stuck in an inferior state.
Among the proposed algorithms, notably, the Proposed-EID
scheme outperforms the Proposed-DRL scheme. That is, the
proposed exhaustive-improved DRL phase significantly im-
proves the performance of the Proposed-DRL algorithm. Its
utility value is stable when the maximum transmit power
value is greater than −10 dBm. This is because Proposed-
EID uses the appropriate power values for offloading the
messages by searching the transmit power values even as the
maximum transmit power increases. In contrast, the Proposed-
DRL scheme uses a fraction of the maximum transmit power
for offloading, resulting in increased energy consumption as
the maximum transmit power increases, reducing the utility
value. The Proposed-LMI approach exhibits a stable per-
formance, retaining the highest output compared with other
schemes when the maximum transmit power is higher than 0
dBm. As a result, the proposed orthogonalized RSMA scheme
shows its effectiveness. Here, dividing the communication
bandwidth can reduce inter-user interference by using different
orthogonal sub-channels. Besides, the RSMA-based schemes
demonstrated outperformance in transmission compared to
the NOMA-based scheme, which is similar to the results in
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previous studies [8], [9].
Next, we evaluate the system performance according to the

change in distance between BS and IoTDs, with Pu−max = 0
(dBm). The maximum distance increases from 200 m to 1000
m. As shown in Fig. 8, the utility value decreases with the
rise in distance, as increasing the distance reduces the large-
scale fading, as indicated in (70), thereby decreasing the gain
of the communication channel. The Proposed-LMI approach
outperforms the Proposed-DRL approach in the first case,
i.e., 200 m, and significantly decreases with higher distance
because it has to keep a convex feasible set during iteration.
As a result, the Proposed-LMI approach performs excellently
in permissive environments, such as allowing high transmit
power and channel gain. On the other hand, the Proposed-
DRL approach performs better in strict environments. Sig-
nificantly, the Proposed-EID demonstrates its outperformance
when performing best in all cases, indicating the effectiveness
of the proposed exhaustive-improved DRL phase. Notably,
increasing the maximum distance between the BS and IoTDs
briskly reduces the utility value. The increase in path loss
according to the distance leads to a stricter environment, which
reduces the number of successful tasks. Therefore, deploying
the BS or access points’ position in practical environments
should be carefully considered.
Remark 5. Although the numerical results proved our pro-
posed approach’s effectiveness, this study opens up some
points for further discussion in future research. First, the
proposed RSMA-based scheme splits the transmitted message
into two sub-messages. However, splitting more sub-messages
may improve the spectral efficiency due to the higher decoding
order diversity [51], [52]. Thus, splitting more sub-messages
in the proposed scheme is worth considering. Second, fixing
bandwidth may reduce the flexibility of the proposed orthog-
onalized RSMA scheme. Therefore, more flexible commu-
nication sub-channels can be studied to further improve the
system’s performance.

VI. CONCLUSION

This study proposed a flexible and efficient access con-
trol scheme combining RSMA and OFDMA techniques in a
DITEN system. We formulated a mixed-integer non-convex
optimization problem that jointly maximizes the number of
successful tasks and minimizes the energy consumption of
IoTDs under the constraints of the offloading operation, split-
ting ratios, channel allocation, IoTD transmit powers, and
decoding orders. To solve this problem, we first proposed
a DRL framework by developing a normalized DDPG algo-
rithm. Further, we improved it by introducing an exhaustive-
improved DRL phase. We also proposed an established math-
ematical optimization-based solution by applying the relaxed
LMI framework. We evaluated the proposed algorithms under
different environments and parameters and confirmed that the
proposed controls converge stably and provide much more
enhanced performance than the benchmark schemes.

In future work, more advanced flexible multiple access
schemes with flexible sub-message and sub-channel config-

urations and new components, such as intelligent reflecting
surfaces in DITEN, can be studied further.
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