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Abstract

In the context of the increasing demand for Internet of Multimedia Things (IoMT) services, rate splitting multiple access (RSMA)
and intelligent reflecting surface (IRS) technologies have been considered potential networking enablers to provide ultra-throughput
wireless access. However, challenges arise due to the heterogeneity of IoMT devices and arbitrary network quality changes,
resulting in unwanted service quality fluctuations and downgradation. This study addresses this problem by jointly optimizing
wireless resource allocation and bitrate adaptation with Deep Reinforcement Learning (DRL)-based QoE management for IRS-
aided RSMA-enabled IoMT streaming systems. We formulated the problem as a Markov decision process (MDP) and apply
Proximal Policy Optimization (PPO) method to flexibly adjust IoMT bitrate, transmission beamforming, IRS phase shift, and
RSMA parameters. As a result, our algorithm mitigates overestimation of client-side bandwidth, leading to smoother playback and
reduced quality fluctuations. Simulations show that our approach outperforms baseline methods in terms of video resolution (up to
2.5 times) and achievable sum-rate (up to 50%), contributing to a superior streaming experience in IoMT systems.

Keywords: Quality of Experience, Internet of Multimedia Things, Bitrate Adaptation, IRS-aided RSMA, Proximal Policy
Optimization

1. Introduction

The Internet of Things (IoT) has become a cornerstone of our
era, connecting billions of intelligent devices across diverse in-
frastructure domains like healthcare, transportation, and smart
homes [1]. This interconnected environment facilitates seam-
less data exchange and paves the way for novel applications.
However, the integration of multimedia capabilities into the
IoT framework, known as the Internet of Multimedia Things
(IoMT), presents unique challenges.

IoMT involves utilizing IoT devices to capture, process,
transmit, and display multimedia content such as audio, video,
and images. This enables a new generation of multimedia ap-
plications and services, but necessitates specific considerations
due to the limitations of constrained IoT networks. Extensive
research has explored the architecture, protocols, and applica-
tions of IoMT, highlighting the critical role of Quality of Expe-
rience (QoE) and Quality of Service (QoS) in multimedia trans-
mission over IoT networks [2].

QoS refers to the measurable and objective characteristics
of a network service, such as bandwidth, delay, and, achiev-
able rate, that influence its performance and reliability. These
parameters significantly impact the user’s QoE, such as video
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quality, smoothness, and buffering. Since QoS metrics are not
inherently and directly correlated with a user’s satisfaction with
a service, recent years have seen the integration of user-centric
QoE metrics. These metrics are now utilized to evaluate the
quality of multimedia services in conjunction with QoS metrics,
which consider the user’s subjective perception of a specific ser-
vice. Gaining insights into users’ expectations and their actual
experiences with a service is paramount for ensuring successful
service delivery [3].

QoE management for multimedia streaming services focuses
on ensuring a satisfactory user experience when consuming
multimedia content over the Internet. It encompasses various
techniques and tools for modeling, monitoring, optimizing, and
controlling the users’ experience of streaming services [3]. In
the IoMT systems, QoE management needs to address the chal-
lenges posed by the surging demand for high-quality stream-
ing content and the dynamic nature of IoT networks. Users
expect smooth, high-resolution video playback, putting enor-
mous strain on resource-constrained IoMT networks. Frequent
changes in network conditions (bandwidth, latency, etc.) due to
device heterogeneity and diverse network environments signif-
icantly impact streaming quality and lead to video rebuffering
or disruptions.

To address these challenges, bitrate adaptation has emerged
as a prominent strategy [3–5]. Adaptive bitrate streaming
(ABS) dynamically adjusts the bitrate of multimedia content
in real-time, tailoring it to the viewer’s network capabilities and
device limitations. This approach involves dividing the content
into small segments encoded at different bitrates. The client de-



vices consistently observe the network conditions, encompass-
ing aspects such as bandwidth, latency, and packet loss, and
subsequently determine the suitable bitrate for playback. This
ensures smooth playback and minimizes interruptions even un-
der varying network conditions. It delivers consistent and high-
quality multimedia content, minimizes interruptions, and ulti-
mately enhances the overall QoE of multimedia services in the
dynamic and resource-constrained environment of the IoMT.
While users can choose their desired video bitrate, the hetero-
geneity of devices and the dynamic nature of network condi-
tions may lead to overestimating the available bandwidth. This
inaccurate estimation presents a challenge for ABS services,
leading to sudden transitions between different video bitrate
levels.

The advancement of wireless networks, exemplified by the
sixth-generation (6G), is instrumental in accommodating the
proliferation of connected devices within IoT networks [6].
This evolution is particularly fueled by the escalating demand
for high data rate applications. The resultant surge in the num-
ber of devices within the IoMT network contributes to an en-
hanced heterogeneity of devices. This, in turn, presents a no-
table challenge for the network controller, necessitating dy-
namic management of user association, spectrum access, trans-
mit power, and the efficient distribution of multimedia content
to a vast array of IoMT devices within large-scale networks.
Addressing this challenge demands the continuous real-time
monitoring of network conditions, facilitating swift adaptation
to changes within the IoMT network.

Orthogonal Frequency Division Multiple Access (OFDMA),
a multiple access technique, dynamically allocates subcarriers
within a channel to multiple devices, optimizing spectrum uti-
lization [7, 8]. Nevertheless, the limited network capacity in
OFDMA networks poses a significant obstacle to enhancing
QoE [9, 10]. Given the data-intensive nature of IoMT net-
works and their susceptibility to latency [2], the inclusion of
device heterogeneity introduces an extra layer of complexity,
particularly in terms of interference management. The limited
network capacity continues to be a primary obstacle to achiev-
ing substantial enhancements in QoE. Overcoming this chal-
lenge necessitates an efficient transmission paradigm capable
of mitigating interference and achieving a higher level of spec-
tral efficiency for the transmission of multimedia content over
the wireless network.

In response to these challenges, we have proposed a server-
side bitrate adaptation approach, where the server, situated at
the Base Station (BS), determines the bitrate. We have con-
structed a QoE management model that continuously monitors,
evaluates and enhances the overall QoE, encompassing real-
time aspects including video quality, quality fluctuations, and
rebuffering. A Deep Reinforcement Learning (DRL) model,
trained at the server, continually monitors network conditions
and user capabilities to optimize and allocate wireless resources
in real-time, delivering suitable video quality to enhance the
system’s QoE. The video content is transmitted over an Intel-
ligent Reflecting Surface (IRS) aided Rate Splitting Multiple
Access (RSMA) downlink network.

The objectives of server-side adaptation are twofold: stabi-

lize player experience by minimizing video quality fluctuations
and mitigate the negative impact of bandwidth variations on
streaming performance [4].

In DRL, Deep Neural Networks (DNNs) approximate the
agent’s optimal strategy. The generalization power of DNNs
facilitates the solution of high-dimensional problems in IoMT
networks [11, 12]. DRL proves instrumental in obtaining so-
lutions for sophisticated network optimizations, enabling the
system to tackle complex challenges related to joint wireless
resource optimization and bitrate adaptation in real-time.

We deploy an RSMA network, emerging as a promising solu-
tion to mitigate interference, achieve a greater level of spectral
efficiency, and provide increased degrees of freedom compared
to Nonorthogonal Multiple Access (NOMA), or OFDMA net-
works [13–15]. RSMA, by allowing users to transmit multi-
ple data streams concurrently, efficiently exploits the wireless
channel, resulting in improved data rates and enhanced QoE. In
scenarios where signal strength weakens due to distance or in-
terference, we implement an IRS. This reconfigurable surface,
with adjustable elements, controls how radio waves reflect, op-
timizing signal distribution and reducing interference [16, 17].
This benefits users near and far from the BS, ensuring a stronger
and more reliable signal for all [18].

Briefly, the principal contributions of this paper are eluci-
dated in the subsequent points:

• Joint optimization of wireless resources and video bi-
trate bitrate: We leverage the unique capabilities of a
potential advanced IRS-aided RSMA network to dynami-
cally adjust both radio resources and video bitrates in real-
time, maximizing overall QoE for IoMT devices.

• DRL-powered QoE management: We formulate the
QoE optimization problem as a Markov Decision Process
(MDP) and employ Proximal Policy Optimization (PPO),
a powerful DRL technique, to learn an optimal policy for
dynamic adaptation. This allows us to overcome the limi-
tations of traditional methods and achieve better QoE per-
formance under diverse network conditions.

• Real-time QoE monitoring and evaluation: Our ap-
proach continuously monitors and evaluates QoE met-
rics through the feedback of Channel State Information
(CSI). This enables the DRL agent to continuously re-
fine its adaptation policy and ensures smooth, high-quality
streaming experiences for users.

• Performance Assessment: A public video streaming
dataset [19] is used for the evaluation. Through metic-
ulous simulations, the effectiveness of the proposed PPO-
based algorithm is thoroughly assessed. The approach out-
performs various baseline methods in terms of quality and
latency, ultimately enhancing the overall streaming expe-
rience for users.

The subsequent sections of this paper are structured as fol-
lows to comprehensively address the outlined research objec-
tives. Section 2 introduces relevant prior work. Section 3 de-
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tails the explanation of the system model, providing a compre-
hensive understanding of the conceptual framework. Next, Sec-
tion 4 describes the careful formulation of the problem, elab-
orating on the intricacies of IRS-aided RSMA IoMT stream-
ing systems. The PPO algorithm development is explained in
Section 5, clarifying the technicalities involved in its creation.
Section 6 presents the empirical evaluation of the proposed ap-
proach. Finally, Section 7 culminates with conclusive insight
from the research, elucidating the critical findings and implica-
tions of the study.

2. Related Work

In the contemporary multimedia environment, ensuring high-
quality video streaming experiences and efficient resource uti-
lization stands as a significant challenge. Achieving this objec-
tive requires optimal video service management and proactive
system resource management. This section conducts a com-
prehensive review of the current research works within these
domains, shedding light on key themes and solutions proposed
by previous studies. Furthermore, we highlight limitations that
motivate the development of our novel approach, presented in
subsequent sections.

2.1. Video Service Management

Mao et al. [20] introduced a client-based ABS model, en-
hancing QoE through historical network throughput data. This
algorithm utilizes past and upcoming video segment details to
inform future decisions. Despite notable QoE improvements,
their approach relies on linear functions for video segment qual-
ity assessment, potentially lacking precision in representing
user visual experience. In [21], the authors designed an al-
gorithm for joint bitrate adaptation and video quality enhance-
ment at the client-side to maximize QoE in dynamic wireless
networks with limited computation capacity. However, the use
of Peak Signal-to-Noise Ratio (PSNR) for video assessment
proved less effective than Video Multimethod Assessment Fu-
sion (VMAF).

Ma et al. [22] proposed a QoE-aware ABS solution using
DRL to dynamically adjust video stream bitrates based on client
states and network conditions. Additionally, a study by Ma et
al. [23] addressed bandwidth competition challenges in video
streaming services with a server-based ABS model, consider-
ing historical data on network dynamics and client behaviors.
Liu et al. [24] presented an ABS system with Edge-Client col-
laborative Super-resolution to enhance users’ QoE, considering
limited network bandwidth and computing resources. The com-
mon use of VMAF for video quality evaluation in these three
works indicates its effectiveness in assessing system QoE.

However, it’s crucial to note that the studies did not spec-
ify the multiple access technologies used in simulations, rely-
ing solely on available public network tracing datasets. Ad-
ditionally, they utilized historical network information, such
as throughput and bandwidth, which may offer limited value
in rapidly changing network conditions requiring frequent up-
dates.

2.2. System Resource Management
In the context of wireless video streaming systems, the pri-

mary focus of research centers on the adaptation of wireless
radio resources, encompassing aspects like transmission power
[10, 25–27, 29] or traffic consumption [30] between the BS and
users. The overarching aim is to optimize both the wireless ra-
dio resources and the QoE of streaming services.

Researchers have delved into solutions for enhancing wire-
less video streaming by capitalizing on frequent updates of
Channel State Information (CSI) to augment QoE for multi-
media services and optimize wireless resources. With the CSI
being updated at a faster timescale in milliseconds, it offers
a more immediate and responsive insight into network condi-
tions, making it highly effective for real-time streaming ser-
vices. In [25], a method involving joint optimization of stream-
ing rate control and power transmission is proposed, with the
primary goal of minimizing power consumption and address-
ing challenges like playback overflow and rebuffering. On
the other hand, Li et al. [26] addressed sustainable playback
buffer stability through the optimization of power and sub-
carrier allocation. Similarly, Ye et al. [27] introduce a network-
assisted ABS model based on CSI to minimize power transmis-
sion while ensuring uninterrupted video playback. However,
these approaches are specifically designed for OFDMA net-
works, known to have lower performance compared to NOMA
or RSMA networks. Moreover, these studies solely focus on
events like buffer underflow or overflow, overlooking the sig-
nificance of video bitrate or quality in evaluating the QoE.

In [10], a network-assisted ABS model is proposed for a
NOMA network, entailing joint optimization of power alloca-
tion and bitrate adaptation. Additionally, Dao et al. [28] put
forth ABS services within multi-user downlink NOMA edge
caching systems, incorporating imperfect successive interfer-
ence cancellation (SIC). The primary objective is to optimize
the video bitrate for online streams with a focus on maximiz-
ing bitrate while ensuring uninterrupted playback smoothness.
Nevertheless, these two works rely on the NOMA mechanism,
known for its lower spectral efficiency and inferior interference
management compared to RSMA. Furthermore, their evalua-
tion is based solely on video bitrate, lacking the use of metrics
such as PSNR or VMAF, which are essential for accurately re-
flecting the visual experience on the client side.

It is noteworthy that the previously mentioned studies ne-
glect the crucial role of video quality in evaluating user QoE.
These works fall short of comprehensively considering the three
main aspects of QoE in streaming services, namely video qual-
ity, quality switching, and rebuffering, as they predominantly
focus on one or two of these dimensions. Furthermore, there
is a predominant emphasis on optimizing network power, ne-
glecting the significance of optimizing other wireless resources,
such as beamforming vectors. The optimization of beamform-
ing vectors is instrumental in enhancing the Signal-to-Noise
Ratio (SNR) at receivers, resulting in elevated data rates, im-
proved interference management, and overall enhanced trans-
mission efficiency. This optimization directly influences mul-
timedia content quality and transmission latency—both critical
factors in augmenting QoE [31–33].
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Table 1. Related works

Network factors QoE metrics Multiple
Access

Video
Assessment

Reference

Channel state information Video bitrate, Bitrate Switching NOMA No consideration [10]
Network throughput Video quality, Quality Switching, Rebuffering Not specified Linear function [20]
Network throughput Video quality, Quality Switching, Rebuffering Not specified PSNR [21]
Network throughput Video quality, Quality Switching, Rebuffering Not specified VMAF [22]
Probed bottleneck delay Video quality, Quality Switching, Rebuffering Not specified VMAF [23]
Network bandwidth Video quality, Quality Switching, Rebuffering Not specified VMAF [24]
Channel state information Rebuffering, Playback overflow Not specified No consideration [25]
Channel state information Rebuffering OFDMA No consideration [26]
Channel state information Rebuffering, Playback overflow OFDMA No consideration [27]
Channel state information Video bitrate, Rebuffering NOMA No consideration [28]
Channel state information Video quality, Quality Switching, Rebuffering RSMA VMAF Our work

In table 1, we have identified crucial research gaps observed
in previous studies, with a specific focus on limitations in net-
work factors, QoE metrics, multiple access technology, and
video assessment methods. Our research objectives are de-
signed to effectively bridge these identified gaps. To overcome
the limitations identified in prior research, we leverage real-
time CSI feedback to achieve accuracy and responsiveness in
QoE monitoring and adaptation. This allows us to dynami-
cally adjust bitrates and resource allocation based on the ac-
tual network conditions, unlike traditional methods that rely on
estimations or outdated information, leading to significantly re-
duced rebuffering and smoother playback. Our approach takes
into account the three key dimensions of QoE assessment in
multimedia services, namely video quality, quality switching,
and rebuffering. This provides a more nuanced understanding
of user experience and enables our DRL agent to optimize for
overall QoE satisfaction. We also employ VMAF as a video
assessment method for more accuracy. We utilize the unique
capabilities of an IRS-aided RSMA network to overcome the
limitations of traditional OFDMA and NOMA systems. By dy-
namically controlling IRS phase shifts, we achieve efficiency in
resource allocation, ensuring consistent QoE for all users even
in resource-constrained IoMT environments.

3. System Model

Figure 1 illustrates the overarching QoE Management
paradigm for the IoMT streaming system. In our architecture,
the BS incorporates both the Adaptive Bitrate Controller (ABC)
module and the QoE Management module. At the heart of our
system lies the server-side ABC module, powered by DRL. The
BS receives live video streams and transmits them to IoMT de-
vices through a wireless link. The QoE management contin-
uously monitors the network conditions (CSI) user buffer lev-
els, and video bitrate information through the QoE Monitoring
module. This information is then fed into the QoE Evaluation
module, which utilizes a multi-faceted QoE model to estimate
the overall QoE for each user.

Based on the QoE evaluation, the DRL model within the
ABC module dynamically adjusts the video bitrate for each user

Figure 1. Overview of QoE Management for IoMT streaming systems.

and optimizes parameters such as beamforming vectors, IRS
phase shifts, and RSMA parameters. This optimization aims to
maximize network efficiency, therefore improving video qual-
ity, and reducing transmission latency, ultimately leading to a
superior QoE for all users. The DRL model continuously learns
and refines its policy through a feedback loop from the QoE
Evaluation module, ensuring adaptation to changing network
conditions and user preferences.

In subsequent sections, we delve deeper into the details of
the network model, multimedia model, and QoE model, pro-
viding a comprehensive analysis of the system’s functionality
and performance.

3.1. Channel Model

In this work, we consider an IRS-assisted multiple-input
single-output downlink channel, as illustrated in Fig. 2. This
configuration involves several key components: one BS, a setK
of K users, and an IRS. Each user has a single antenna, whereas
the BS has M transmit antennae. The IRS has a collection of
passive reflecting elements, each indexed by N = {1, 2, . . . ,N}.
For each user k, we let sk represent the transmitted signal, and
wk denotes the corresponding beamforming vector. Addition-
ally, in the context of RSMA, the BS transmits a common mes-
sage signal s0 with the corresponding beamforming vector w0.
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Figure 2. IoMT streaming system over IRS-aided RSMA network.

Each signal sk is assumed to have a zero mean and unit variance,
represented by the expression E[sk sH

k ] = 1, ∀k ∈ K ∪ 0. The
signal transmitted from the BS is mathematically represented
as follows:

x =
K∑

k=0

wk sk. (1)

The signal captured by user k is expressed as follows:

yk =
(
gH

k + hH
k ΘG

) K∑
i=0

wixi + nk, (2)

where gk ∈ CM , G ∈ CN×M , and hk ∈ CN represent the chan-
nel responses from the BS to user k, BS to the IRS, and from
the IRS to user k, respectively, and nk ∼ CN(0;σ2) signifies
additive white Gaussian noise. The phase-shift matrix Θ for
the IRS is a diagonal matrix diag(e jθ1 , e jθ1 , . . . , e jθN ) ∈ CN×N ,
where θn ∈ [0, 2π] represents the phase shift introduced by the
nth element of the IRS to the incoming signal. Consequently,
the achievable rate for the common message s0 at the user k, is
formulated as follows:

ck = log2

1 + |(gH
k + hH

k ΘG)w0|
2∑K

i=1 |(g
H
k + hH

k ΘG)wi|
2 + σ2

 , (3)

All users must decode the common message before decipher-
ing their private messages as a prerequisite for subsequent ac-
tions [34]. This two-step process ensures all users understand
the shared information and remove it from the received signals
to further decode the respective private messages. The appro-
priate rate for transmitting the common message must be se-
lected as the minimum among the rate for all users, denoted
as mink∈K ck, to guarantee the effective decoding of the com-
mon message across all users. The total data rates for all users
receiving the common message should not surpass the rate as-
signed to the common message considering the chosen common
message rate mink∈K ck and individual rate allocation ak for user
k, which is determined as follows:

K∑
k=1

ak ≤ min{ck,∀k ∈ K}, (4)

Figure 3. Video segment model.

Once each user has successfully decoded the common message
s0, the subsequent step involves decoding their respective pri-
vate messages. The achievable rate for user k to decode its pri-
vate message sk can be determined as follows:

rk = log2

1 + |(gH
k + hH

k ΘG)wk |
2∑K

i=1,i,k |(g
H
k + hH

k ΘG)wi|
2 + σ2

 . (5)

The overall transmission rate for user k can be expressed as fol-
lows, considering the common message rate ak and the achiev-
able rate for the private message rk:

rsum
k = ak + rk. (6)

3.2. Multimedia
We established a set S containing elements {1, 2, 3, . . . , S } to

represent the individual segments constituting a video stream,
as illustrated in Fig. 3. Each segment spans τ s and is encoded
at various bitrate levels. The size in bytes of the sth segment for
user k is denoted as dk(s). As illustrated, the video stream is di-
vided into segments with varying bitrates, allowing for dynamic
adaptation based on network conditions and user buffer levels.
The QoE monitoring module continuously gathers information
about these factors, feeding it to the ABC module. This infor-
mation is used by the DRL component within the ABC to de-
termine the optimal bitrate for each segment, ensuring smooth
playback and high QoE for users even in dynamic IoMT envi-
ronments.

This study focuses on a synchronous IoMT streaming frame-
work. Initially, all users attempt to download segments at the
lowest bitrate level. Once this stage concludes, ABS is initi-
ated. Users download the sth segment when the (s − 1)th seg-
ment begins playback. The buffer undergoes depletion during
video playback, and upon a successful download, the buffer ex-
periences a τ-s increase.

3.3. Quality of Experience Model
3.3.1. Perceptual Quality

The bitrate has a significant influence on the QoE in mul-
timedia applications. Higher bitrates generally result in better
video and audio quality. When the bit rate increases, more data

5



are allocated to each frame or sample, improving the resolu-
tion, detail, clarity, and fidelity. This outcome results in a more
immersive and enjoyable viewing or listening experience for
users.

Video multimethod assessment fusion (VMAF) [35] is a met-
ric for video quality that combines multiple objective quality
assessment methods to provide a comprehensive and percep-
tually accurate evaluation of video quality. It is designed to
mimic human perception and is widely used to assess the visual
quality of videos. The fusion of multiple quality assessment
methods in VMAF captures various aspects of video quality,
making it a more reliable and versatile metric than individual
assessment methods. It has gained popularity and is widely
used in video encoding, streaming, and other multimedia ap-
plications to evaluate and optimize the quality of video content.
This work employs VMAF to determine the users’ perceptual
quality. We define q(·) mapping between VMAF and bitrates of
the segments. The perceived quality of segment s at user k can
be described as follows:

Qk(s) = q(bk[s]), (7)

where bk[s] is the video bitrate of the sth segment at user k.

3.3.2. Temporal Quality Oscillations
Video quality switching adversely affects the QoE in mul-

timedia services, causing frustration and interrupting the user
experience. When a video quality switch suddenly occurs, a
visible change often exists in the perceived video quality. If the
switch leads to a significant drop in quality, such as lower reso-
lution or increased compression artifacts, it can create a jarring
experience and break immersion. Users may perceive the video
as less enjoyable or even unacceptable, leading to a negative
effect on the QoE. Therefore, smooth transitions during quality
switches of successive segments, such as fading or intensify-
ing between quality levels, can minimize the visual effects and
reduce the perceived quality degradation. This type of tempo-
ral quality fluctuation of successive segments at user k can be
calculated as follows:

∆Qk(s) =
1
s

s∑
i=1

|q(bk[i]) − q(bk[i − 1])|. (8)

3.3.3. Re-buffering
Rebuffering, stalling, or starvation in multimedia services

refers to the interruption or pause in the playback due to load-
ing problems. Stalling disrupts the immersive experience and
engagement with the content. Users expect a seamless and
uninterrupted streaming experience. When playback stalls, it
breaks the narrative or visual experience flow, creating a dis-
jointed viewing process. Therefore, mitigating the effects of
stalling on the QoE is crucial.

We assume the latency associated with other tasks, such as
data storage orf message division for RSMA, is insignificant.
Given this assumption, we can calculate the transmission la-
tency of the sth segment for user k using the following equa-
tion:

lk(s) =
dk(s)

B × rsum
k
, (9)

where dk(s) signifies the size in bytes of the video segment in-
dexed as s transmitted to user k, and B represents the available
bandwidth.

We let T bu f
k (s) (in seconds) be the amount of buffered video

for user k when the BS starts broadcasting the sth segment.
Hence, the starvation time of segment s at client k can be ex-
pressed as follows:

T L
k (s) = max{lk(s) − T bu f

k (s), 0}. (10)

The starvation time over the displaying time is a critical fac-
tor influencing the QoE in IoMT streaming. The starvation time
over the displaying time of segment s at client k can be ex-
pressed as follows:

Lk(s) =
T L

k (s)

T L
k (s) + τ

. (11)

4. Problem Formulation

The QoE within multimedia services can be assessed through
a comprehensive perspective encompassing several factors.
This assessment involves evaluating the quality of individual
video segments, accounting for the temporal variation in qual-
ity across consecutive segments, and addressing the adverse ef-
fects of the rebuffering time. A higher value of Qk typically
corresponds to a more favorable user experience, reflecting bet-
ter video quality. Conversely, a higher ∆Qk often indicates an
unsatisfactory user experience, as it signifies significant fluctu-
ations in quality over time. The concept of rebuffering, char-
acterized by interruptions or delays in video playback due to
buffering or network problems, can substantially influence the
QoE. The rebuffering time denotes the duration during which
users await the resumption of video playback, causing frustra-
tion and interrupting the seamless viewing experience. There-
fore, in evaluating the multimedia service QoE, the inherent
quality of the content must be considered while accounting for
the detrimental influences of quality fluctuations and rebuffer-
ing instances.

QoEk(s) = Qk(s) − α∆Qk(s) − βLk(s), (12)

where α and β are non negative weighting parameters corre-
sponding to the variation in quality and rebuffering of content.

The optimization of the QoE for the sth segment is formu-
lated as follows:

max
θ[s],w[s],a[s],b[s]

K∑
k=1

QoEk (13)
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subject to
K∑

k=1

ak ≤ min{ck,∀k ∈ K} (14a)

ak ≥ 0,∀k ∈ K (14b)
B × rsum

k ≥ Rmin,∀k ∈ K (14c)

||w[s]||22 ≤ Pmax (14d)
θn ∈ [0; 2π],∀n ∈ N (14e)
bmin ≤ bk[s] ≤ bmax (14f)
α, β > 0, (14g)

where θ[s] = [θ1, . . . , θN]T , w[s] = [w0, . . . ,wK]T and a[s] =
[a1, . . . , aK]T , b[s] = [b1[s], . . . , bK[s]], bmin, bmax are the min-
imum and maximum bitrates of the video segments, respec-
tively. In addition, Rmin denotes the minimum data rate to en-
sure the QoS. Constraints (14a) to (14b) ensure the decodability
of the common message across all users. Constraint (14c) re-
flects the QoS constraint. Constraint (14d) limits the BS trans-
mit power. Constraint (14e) addresses the IRS phase-shift lim-
its. Last, Constraint (14f) defines the range of admissible bi-
trates for the video segment.

5. Proposed Solution

The initial strategy to swiftly enhance the QoE within the
IoMT streaming system entails converting the system into an
MDP. Subsequently, we employed the PPO-based approach to
effectively resolve this transformed scenario. In this context,
the BS is positioned as the principal agent. As each time step,
denoted as t, advances, the involvement of the agent evolves by
observing the state st, executing the action at, and subsequently
receiving the reward rt. The resolution of the optimal approach
for addressing the problem (13) manifests through the accumu-
lation of multiple time steps.

5.1. Markov Decision Process Formulation

A MDP formally represents a sequential decision-making
problem under uncertainty. It consists of a set of states, rep-
resenting possible situations, and a set of actions available in
each state. Taking an action in a state leads to a new state with
a certain probability, and each transition comes with a reward,
quantifying the desirability of the outcome. The objective of
an MDP is to choose a policy, mapping states to actions, that
maximizes the expected cumulative reward over time. MDPs
offer a powerful framework for modeling and solving problems
in various domains, such as reinforcement learning, resource
management, and economic analysis.

• State space During each discrete time step, the BS must
acquire pertinent details concerning the transmission con-
ditions and the specifics of the video segment. These in-
puts are vital for facilitating informed decision-making
processes. We define ds as the file size and qs as the

VMAF score of segment s at different bitrates. The state
is expressed as follows:

S =
[
G, g,h,b[s − 1],Tbu f (s), ds, qs

]
, (15)

where g = {gk,∀k}, h = {hk,∀k}, b[s− 1] = {bk[s− 1],∀k},
and Tbu f (s) = {T bu f

k (s),∀k}.

• Action space

Under the present conditions of each user, the agent
chooses and implements actions guided by policy π [36].
As alterations occur in the network state for users and the
forthcoming quality of the video segment, the agent under-
takes modifications to the phase-shift matrix, beamform-
ing vector, common rate, and video bitrate for each user
to improve the system QoE. A collection of optimization
variables of the problem (13) is encompassed within the
action vector denoted by A.

A = [θ[s],w[s], a[s], b[s]] (16)

• Reward The reward function was formulated to maximize
the system’s QoE, as delineated in equation (13). In the
pursuit of promoting QoE optimization while diligently
considering the QoS requisites of users, the BS is subject
to penalties for any QoS violations among users. At given
time step t, the BS undertakes observation of the present
state st ∈ S, enacts an action at ∈ A, and subsequently
acquires an instantaneous reward rt(st, at). The immediate
reward is established through the subsequent definition:

rt(st, at) =
K∑

k=1

QoEk(1 − κt), (17)

where κt signifies the punitive consequence incurred by the
BS for an action at that fails to meet the QoS criteria de-
lineated in Constraint (14c). Further, the penalty κt corre-
sponding to the specific time step t is

κt =
1
K

K∑
k=1

sgn(Rk − Rmin), (18)

sgn(x) =
1 if Rk > Rmin

0 if Rk < Rmin.
(19)

In contrast to the QoS constraint, the common rate and
power constraints must remain unbroken during any in-
dividual time step due to the inherent constraints from
the total BS transmission power limitations and the essen-
tial requirement for the common message to be decodable
across all users. Consequently, we chose not to incorpo-
rate penalties into the immediate reward for violations of
the common rate and power constraints. Instead, we inte-
grated these constraints into the algorithm framework, as
explained in the next section.
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5.2. Proximal Policy Optimization-based Approach

By formulating the problem as an MDP, we utilized the state-
of-the-art PPO algorithm to learn an optimal policy that dynam-
ically selects actions in each state, maximizing the expected cu-
mulative QoE for users over time. This DRL algorithm was de-
veloped by OpenAI organization [37, 38], and adheres to the
actor-critic framework. In this framework, the actor network
generates precise actions based on a given state, and the critic
network provides a value function to assess the performance
of the actor network, effectively adapting to the dynamic na-
ture of IoMT environments. In our context, the actor network,
informed by the current network state and user state, gener-
ates optimal bitrate and resource allocation decisions. Simul-
taneously, the critic network evaluates the long-term impact of
these choices on overall QoE, guiding the actor network to-
ward achieving superior performance. A noteworthy advan-
tage of PPO is its adaptability to continuous and discrete action
spaces within various environments. Moreover, PPO shares cer-
tain attributes with the trust region policy optimization (TRPO)
method regarding dependability and stability. However, due to
its first-order optimization nature, it surpasses TRPO in terms
of generality and ease of implementation. As explicitly detailed
in [37], PPO optimizes a clipped surrogate objective function,
defined as

J(θ) = Ê
[
min(ut(θ)Âθold (st, at), clip(ut(θ), 1 − ϵ, 1 + ϵ)Âθold (st, at)

]
,

(20)
where Âθold (st, at) corresponds to an advantage function derived
through a generalized advantage estimation. The parameter ϵ
denotes a predefined clipping threshold. Finally, ut(θ) repre-
sents the probability ratio between the policies of the old and
new iterations, formulated as follows:

ut(θ) =
[
πθ(at |st)
πθold (at |st)

]
. (21)

Particularly, the clip function serves to prevent excessive pol-
icy updates, effectively addressing the problem of a drastic per-
formance decline. In other words, its role is to curtail any in-
centives for the new policy to significantly diverge from the old
policy. Consequently, if Âθold (st, at) has a positive value, the
value of ut(θ) is bounded by 1+ ϵ. Conversely, when Âθold (st, at)
is negative, the value of ut(θ) is constrained by 1 − ϵ. The cal-
culation of Âθold (st, at) is

Âθold (st, at) = δt + (γλ)δt+1 + . . . + (γλ)L−tδU , (22)

where L signifies the size of the mini-batch, and the param-
eter γ denotes the discount factor. Additionally, λ represents
a parameter associated with the generalized advantage estima-
tion technique to reduce the variance and facilitate more stable
training. Subsequently, δt denotes the temporal difference error,
computed as follows:

δt = rt + γVϕ(st+1)Vϕ(st), (23)

where Vϕ(st) represents the value-function approximation. By
minimizing the subsequent loss function, the critic network can

undergo enhancements:

J(ϕ) = Ê
[
(Vϕ(st) − V̂t)2

]
. (24)

The computation of V̂t is expressed as follows:

V̂t =

U∑
j=t

γ j−tr j. (25)

We assigned ξc to represent the learning rate applied to the critic
network

V̂t =

U∑
j=t

γ j−tr j (26)

We assigned ξc to represent the learning rate applied to the
critic network, and ξa signifies the learning rate applied to the
actor network. Finally, the update process involves adjusting
the parameters of the actor network θ using mini-batch stochas-
tic gradient ascent and the critic parameter ϕ using mini-batch
stochastic gradient descent, as indicated below:

θ ← θ + ξa∇θJ(θ), (27)

ϕ← ϕ − ξc∇ϕJϕ). (28)

Given a state, the agent selects an action based on the output
of the actor network at each time step t, receives a reward,
and transitions to the next state. This trajectory, represented
as (st, at, rt, st+1), is stored in the replay buffer B. The agent
collects L samples from this buffer to form a mini-batch and
subsequently iterates through V updates of its network parame-
ters using the Adam optimizer. Additionally, the architecture of
the actor and critic networks involves two fully connected hid-
den layers, each comprising 256 neurons. The rectified linear
unit activation function is applied within these hidden layers.
Moreover, the actor-network output layer is followed by a tanh
layer.

To ensure adherence to the common rate vector constraint
specified in (14a) to (14b), we employed the softmax activation
function for actions related to the common rate, following the
network generation of an action as the output. By integrating
Constraints (14e) and (14f), we adjust the network output ac-
tions to a suitable range that aligns with the conditions set by
these constraints. Algorithm 1 presents the pseudo-code out-
lining the proposed PPO-based QoE management strategy to
comprehensively understand this approach.

6. Performance Evaluation

This section extensively examines the effectiveness of the
PPO algorithm. This assessment involves a comprehensive
comparison with the alternative benchmark methodologies.
The evaluation is achieved through a series of simulation exper-
iments conducted in a programming environment using Python
3.10.12 and PyTorch 2.0.1, executed on a personal computer
equipped with the following hardware specifications: a 12th-
generation Intel Core i7-12700 CPU operating at 4.90 GHz with
32.0 GB of RAM and an NVIDIA GeForce GTX 3070 Lite
Hash Rate graphics card featuring CUDA 12.2.
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Algorithm 1: Proximal policy optimization-based qual-
ity of experience management algorithm

1 Initialize parameters of the actor network θ
2 Initialize parameters of the critic network ϕ
3 Initialize the old actor parameter θold ← θ
4 for ep← 1 to max episode do
5 Set the initial state st

6 for step← 1 to max step do
7 Obtain the current state st

8 Generate an action at based on the old actor πθold

9 Get the reward rt and the next state st+1
10 Store {st, at, rt, st+1} in the replay buffer B
11 if size of B equals U then
12 for m← 1 to V do
13 Using the sampled data from B
14 Compute J(θ) by (20) then update the

parameter of actor network θ by (27)
15 Compute J(ϕ) by (24) then update the

parameter of the critic ϕ by (28)
16 end
17 Update the old actor parameter θold ← θ

18 end
19 end
20 end

6.1. Data Description and Experiment Setup

This study employs the comprehensive video quality dataset
Comyco [19], which was designed explicitly for dynamic adap-
tive streaming over the Hypertext Transfer Protocol (DASH )
scenarios and offers a wide variety of content types, includ-
ing movies, games, sports, news, television shows, and music
videos. The dataset involves breaking down these video clips
into smaller units called segments to facilitate effective analy-
sis and evaluation. These segments adhere to a predefined en-
coding ladder, ensuring consistency and comparability across
various video sequences.

The encoding ladder corresponds to a hierarchy of bitrate lev-
els, specifically {235, 375, 560, 750, 1050, 1750, 2350, 3000,
4300} kbps. Each segment (or “chunk”) is encoded to last
for 4 seconds. This segmentation strategy facilitates adaptive
streaming by allowing devices to dynamically adjust the video
stream’s quality in response to the available network conditions.
Each video undergoes assessment using the VMAF metric as
part of the quality evaluation process. This quality metric offers
insight into the perceptual quality of the videos by considering
factors that influence the user experience. The assessments are
conducted using a reference resolution of 1920×1080, ensuring
consistency in the evaluation process. We assumed that initially,
the buffer size for each user was set at 24 seconds.

In the context of the network configuration, the setup in-
volves a BS equipped with six antennas (M = 6), and the IRS
comprises six reflecting elements (N = 6). The transmit power
of the BS is standardized at 1 W. When considering the commu-
nication channel characteristics, we set the path loss exponent

Table 2. Simulation parameter configurations.

Parameter Value

Duration of each video segment τ 4 sec
Initial buffer size 24 sec
QoE weighting parameter α 1.0
QoE weighting parameter β 200.0
Mini-batch size L 300
Generalized advantage estimation parameter λ 0.95
Clipping rate ϵ 0.2
Discount factor γ 0.99
Number of steps per episode 300
Number of episodes 10000
Critic network learning rate ξc 0.0003
Actor-network learning rate ξa 0.0003

Figure 4. Comparison of the reward proximal policy optimization by learning
rate (K = 3).

to 3.8 for direct channels that connect the BS to users. Ad-
ditionally, for channels that link the IRS to users, the path loss
exponent is established at 2.2. The noise power spectral density,
represented as σ2, is valued at -174 dBm/Hz. Another critical
consideration is ensuring the user experience regarding receiv-
ing video segments at the minimum required bitrate before the
subsequent segment download initiates. A minimal rate thresh-
old, Rmin, is set to 235,000 bits/s to fulfill this requirement.

The weighting parameters linked to the quality variation (α)
and content rebuffering (β) were established at 1.0 and 200.0,
respectively. The PPO algorithm undergoes training for 10,000
episodes, with each episode consisting of 300 steps. The simu-
lation’s system parameters are outlined in Table 2.

6.2. Convergence Performance of Proximal Policy Optimiza-
tion

We analyzed the convergence behavior exhibited by the pro-
posed PPO algorithm. We monitored the acquired reward over
multiple training iterations to evaluate its performance. Addi-
tionally, we assessed the evolution of the achievable sum-rate
throughout the training process, as this metric significantly in-
fluences content quality and latency during user delivery. In
addition, Figs. 4 and 5 present a graphical depiction of these
metrics. Furthermore, we conducted a comparative evaluation
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Figure 5. Comparison of the achievable system sum rate proximal policy
optimization by learning rate (K = 3).

Figure 6. Comparison of the rewards for PPO and DDPG algorithm (K = 3).

by integrating the deep deterministic policy gradient (DDPG)
algorithm [39] into the experimental setup.

The PPO algorithm effectively enhances the learned policy
by selecting an appropriate learning rate, such as 3 × 10−4.
The outcomes illustrated in Fig. 4 emphasize that employing
an excessively high learning rate (i.e., 3 × 10−5) can result in
inefficient policy learning. Specifically, with a learning rate of
3 × 10−5, a slightly lower reward is observed. A similar trend
is noticeable regarding the achievable sum rate, as illustrated in
Fig. 5.

We thoroughly examined Fig. 6, observing that during the
initial 6,000 episodes, the performance of PPO exhibited a
slight advantage over the DDPG algorithm. However, an in-
triguing shift occurred between episodes 6,000 and 10,000,
where PPO notably improved over the DDPG algorithm. Be-
tween episodes 6000 and 10000, as the DDPG algorithm main-
tains coverage, its reward remains stable. Conversely, the PPO
algorithm exhibits a consistent increase in reward, stabilizing
after the 9000th episode. The comparative stability of PPO is
apparent in Fig. 6, illustrating that the PPO algorithm achieved
higher rewards post-training and displayed reduced variability
compared to DDPG.

Furthermore, an examination of the achievable system sum
rate reinforced the superiority of the PPO over the DDPG algo-
rithm. Additionally, Fig. 7 indicates that PPO exhibited supe-
rior performance. Specifically, the achievable system sum rate

Figure 7. Comparison of the achievable rate between PPO and DDPG
algorithm (K = 3).

Figure 8. Comparison of the average bitrate (K = 3).

attained by PPO was 185% higher than that achieved by the
DDPG. This observation underscores the substantial enhance-
ment the PPO algorithm offers regarding system efficiency and
overall performance.

6.3. Performance Comparison

Comparing the average video segment bitrates reveals that
the application of the PPO algorithm yields higher bitrates and
enhanced stability than the DDPG, greedy, and random algo-
rithms, demonstrated in Fig. 8.

Likewise, the pattern observed in Fig. 8 is consistent with
the trend in VMAF scores depicted in Fig. 9. Although the
average bitrate achieved by the PPO algorithm surpasses that
of the greedy algorithm by a factor of 2.5, the corresponding
VMAF score improvement is modest at a 35% increase over the
score for the greedy algorithm. This outcome is due to the non-
linear correlation between the VMAF score and video bitrates.

While the average bitrate improvement provided by the PPO
algorithm over the DDPG algorithm is only marginal, it is cru-
cial to consider the average rebuffering per segment (4 s). In this
aspect, the PPO algorithm outperforms DDPG. Notably, in sce-
narios involving three, five, or eight users, the PPO algorithm
experiences nearly no interruptions. However, with DDPG, the
rebuffering time increases with a growing number of users, as
presented in Table 3. This method leads to a rebuffering time
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Figure 9. Comparison of the video multimethod assessment function (VMAF)
score.

Table 3. Rebuffering time per video segment (in seconds)

PPO DDPG

3 users 0.0 0.020015
5 users 0.0 0.416756
8 users 5.5 × 10−6 0.531961

that constitutes approximately 12% of the video segment du-
ration when the user count reaches five or eight. The primary
cause lies in DDPG’s lower system achievable rate, leading to
playback interruptions for users.

The trend is evident from Fig. 10, where the achievable sys-
tem sum rate declines as the number of users rises. However,
the PPO algorithm demonstrates its capability to enhance the
achievable system sum rate. Specifically, when dealing with
eight users, the PPO algorithm achieves a sum rate that is 50%
higher than that achieved by the DDPG algorithm. This com-
parison highlights the efficacy of the PPO algorithm in con-
sistently maintaining higher and stabler bitrates for video seg-
ments and smoothness in video playback.

Figure 10. Comparison of the achievable system sum rate.

7. Conclusion

This work tackled the multifaceted challenge of deliver-
ing high-fidelity multimedia in resource-constrained IoMT net-
works, plagued by dynamism, heterogeneous devices, and lim-
ited capacity. We proposed a novel server-side bitrate adapta-
tion approach, empowered by DRL-based QoE management,
residing on an advanced IRS-aided RSMA network. This so-
lution combats overestimated bandwidth, ensuring smoother
playback with minimized quality fluctuations. By formulat-
ing the QoE optimization problem as an MDP and employ-
ing powerful PPO-DRL, we achieve real-time optimization of
crucial aspects like bitrates, beamforming, IRS phase shifts,
and RSMA parameters. Extensive simulations leveraging real-
world datasets showcase that our PPO-based approach excels
compared to baseline methods in both video quality and la-
tency, ultimately leading to an enhanced streaming experience
for IoMT users. While demonstrating effectiveness, future re-
search directions include exploring large-scale deployments,
dynamic content adaptation, and alternative DRL algorithms,
contributing to the advancement of QoE in IoMT multimedia
streaming.
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