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Abstract

Advancements in drone technology and high-frequency millimeter-wave communications are transforming unmanned-aerial-
vehicles(UAV)-aided networks, expanding their potential across diverse applications. Despite the advantages of broad frequency
bandwidth and enhanced line of sight connectivity in the UAV-aided millimeter-wave networks, it is challenging to provide high net-
work performance because of the inherent limitations of limited UAV energy and millimeter-wave’s large path loss. This challenge
becomes more important in dynamically changing multi-UAV environments. To address this challenge in multi-UAV networks,
we propose a novel approach based on multi-agent deep reinforcement learning called action-branching QMIX. Our method de-
termines nearly optimal codebook-based discrete beamforming vectors and UAV trajectories while maintaining a balance between
communication efficiency and energy consumption. The proposed approach employs a new Long Short-Term Memory module to
control long sequences effectively and enables it to adapt to changing environmental variables in real-time. We thoroughly evalu-
ate the proposed control with a real-world measurement-based channel model. The evaluation confirms that the proposed control
converges stably and consistently, and provides enhanced performance in terms of downlink data rate, success rate of reaching
the destination, and service duration when compared to traditional benchmark multi-agent reinforcement learning schemes. These
results emphasize the enhanced energy sustainability, robustness, and stability of the proposed approach in dynamically changing
multi-UAV environments when compared to the existing benchmark algorithms.

Keywords: Energy management, millimeter-wave communication, multiagent reinforcement learning (MARL), uncrewed aerial
vehicle (UAV), UAV-based communication systems

1. Introduction

The emergence of unmanned aerial vehicles (UAVs), paired
with advances in millimeter-wave (mmWave) communications
and the widespread availability of wireless technology, has
accelerated the development of UAV-aided mmWave commu-
nication systems. These systems are becoming increasingly
recognized as promising alternatives for providing high-speed
connectivity in rural or disaster-prone places where conven-
tional communication infrastructures fail. The wide range of
mmWave bands enables large data rates and low latency, which
are critical for effective UAV communication. Furthermore, the
elevation at which UAVs operate usually improves line-of-sight
connectivity to ground units, which is essential for mmWave
transmissions.

Despite their benefits, UAV-based mmWave communication
networks encounter significant challenges that hinder their ef-
fectiveness. The first challenge is the limited onboard en-
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ergy resources of UAVs, which requires the development of
efficient energy management strategies to extend their opera-
tional lifespan and maintain uninterrupted service [1]. Addi-
tionally, mmWave communications are highly prone to inter-
ference from other aerial or terrestrial signals and have inher-
ent limitations from the free-space path loss. Advanced and
sophisticated beamforming (BF) techniques are therefore es-
sential. However, integrating multiple antennas, necessary for
effective beamforming and spatial multiplexing, is restricted
by the UAVs’ limited size and weight capacity. Furthermore,
managing a network of multiple UAVs to efficiently fulfill on-
demand user requests presents logistical challenges, especially
in deploying multiple UAVs over a target area cost-effectively
compared to a single high-power UAV system.

Prior research has explored various strategies to overcome
these challenges, utilizing approaches such as genetic algo-
rithms, game theory, and deep reinforcement learning (DRL)
[2–6]. However, existing research often overlooks the complex-
ities of enhancing both energy and throughput efficiency within
multi-UAV networks, and the majority of studies concentrate
primarily on scenarios involving only a single UAV. This work
introduces a novel control mechanism designed to enhance both
the energy and throughput performance of mmWave commu-
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nication networks supported by multiple UAVs. By account-
ing for critical factors such as UAV mobility, channel condi-
tions, energy status, and communication demands, this study
ensures adaptability to dynamically changing environments. To
achieve this, we have developed a multi-agent reinforcement
learning (MARL) framework that synergistically integrates re-
inforcement learning (RL) with multi-UAV systems, proposing
solutions that are both innovative and applicable in real-world
scenarios.

1.1. Backgrounds

We provide background information essential for compre-
hending this research. Placing this study within the larger set-
tings of technology and theory highlights the importance of
establishing advanced control mechanisms, such as the pro-
posed MARL framework. This research advances UAV-assisted
mmWave communication systems by addressing both their
promising potential and substantial challenges.

Unmanned Aerial Vehicles (UAVs). UAVs, commonly known
as drones, are increasingly being integrated into communica-
tion networks to provide critical services in areas where tradi-
tional infrastructure is limited or non-existent. Coupled with
millimeter-wave (mmWave) technology, which operates at fre-
quencies typically within the 30 GHz to 300 GHz range, UAVs
can offer high-speed, high-capacity communications [7]. This
combination is particularly promising for the deployment of
fifth-generation (5G) and future telecommunications networks
[8].

Millimeter-Wave Communications: Advantages and Chal-
lenges. Millimeter-wave (mmWave) communications are char-
acterized by their ability to transmit large amounts of data
quickly due to their high frequency. However, these waves have
shorter wavelengths, which can lead to higher losses through
absorption and scattering in the atmosphere [9]. This makes
line-of-sight communication essential for maintaining strong
connections. The integration of mmWave technology with
UAVs helps overcome some of these challenges by providing
elevated platforms that enhance line-of-sight probability [10].

Relevance of UAVs in Communication Networks. Because of
their mobility and versatility, UAVs are ideal for rapidly ex-
tending network coverage to remote areas. They can be de-
ployed swiftly after natural disasters to restore communications
and facilitate emergency responses [11]. Despite their advan-
tages, UAVs face operational challenges, including limited bat-
tery life and payload capacity, which restrict the equipment they
can carry [12].

The Role of Beamforming. Beamforming is a signal process-
ing technique used in mmWave communications to direct the
transmission and reception of radio signals to specific devices,
thus improving the signal’s strength and reducing interference
[13]. Advanced beamforming techniques are crucial in UAV
networks to ensure efficient energy use and robust communica-
tion links.

Multi-Agent Reinforcement Learning (MARL) in UAV Net-
works. The dynamic nature of UAV communication systems,
coupled with the challenges posed by mmWave technology,
requires adaptive and intelligent control mechanisms. Multi-
agent reinforcement learning (MARL) offers a framework
through which multiple UAVs can learn to coordinate their
movements and communication strategies effectively, adapting
to the environment’s complexities [14]. This approach allows
UAVs to operate autonomously with minimal human interven-
tion, optimizing network performance in real-time. Section 3.1
will further elaborate on this.

QMIX: Optimizing Multi-Agent Cooperation. QMIX is a sig-
nificant advancement in the field of multi-agent reinforcement
learning, designed to optimize agent cooperation in complex
and dynamic environments [15]. This algorithm improves the
ability of individual agents, such as UAVs in communication
networks, to make decisions that benefit the overall system per-
formance. QMIX accomplishes this by allowing each agent to
act based on local observations while ensuring that their actions
are coordinated toward a common goal, making it ideal for sce-
narios in which agents must adapt to rapidly changing condi-
tions. However, a notable drawback of QMIX is its reliance on
a centralized training process, which may be impractical in sce-
narios requiring full decentralization or when communication
limitations exist. Furthermore, QMIX assumes a fully cooper-
ative environment, which can be restrictive in scenarios involv-
ing competitive elements or mixed objectives. Despite these
limitations, QMIX’s approach to integrating individual learn-
ing processes into a cohesive strategy significantly improves
both individual agent autonomy and overall network operating
efficiency, particularly in UAV communication systems. Sec-
tion 3.1 will go into further detail on QMIX and its use in UAV
networks, emphasizing its role in enhancing communication re-
liability and operating efficiency.

1.2. Related Works
Recently, many researchers [16–19] have investigated energy

problems in the UAV networks. Zhang et al. [16] emphasized
energy efficiency in UAV-assisted emergency communication
networks by optimizing the UAV trajectory and power alloca-
tion to extend the battery life of user devices. They addressed
the challenge of providing reliable communication services in
post-disaster scenarios where traditional networks may be com-
promised and where energy resources are scarce. Using convex
optimization and a DRL method called the soft actor-critic algo-
rithm, they enhanced the energy sustainability of user devices,
ensuring more extended operational periods and improving re-
liability in critical communication tasks.

In addition, Ding et al. [17] investigated energy efficiency
and user fairness by optimizing three-dimensional (3D) trajec-
tories and frequency band allocation of quad-rotor UAVs us-
ing a deep deterministic policy gradient-based DRL algorithm.
Further, Mohamed et al. [18] and Zhou et al. [19] explored
energy-aware UAV trajectory optimizations. They developed
an algorithm focusing on maximizing data rates while mini-
mizing energy usage. The algorithm demonstrated superiority
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in balancing energy efficiency and communication quality and
targeting urban hotspots in mmWave communications. More-
over, Zhou et al. [19] introduced a constrained soft actor-critic
algorithm for minimizing mission time while adhering to en-
ergy limits. The algorithm is noted for its adaptability to gener-
ate optimal trajectories in dynamic environments and improve
energy efficiency in data collection.

Moreover, recently, some literature [20–24] has investigated
the UAV BF design problem. For example, Susarla et al. [20]
examined the role of UAVs in sixth-generation (6G) millimeter-
wave wireless networks, emphasizing the importance of fast
beam alignment for efficient mmWave communications with
base stations (BSs). They leveraged the hierarchical deep Q-
network (H-DQN) for UAV-BS beam alignment in uplink com-
munications. The framework, operating in fifth-generation
(5G) new radio (NR) BS coverage with 3D beams, uses UAV
data and reduces the beam search complexity via location infor-
mation and a fixed antenna spatial arrangement. Liu et al. [22]
proposed a deep learning-based location-aware predictive BF
scheme, employing a long short-term memory (LSTM)-based
recurrent neural network (RNN) that addresses challenges in
accurate beam alignment with ground BSs. The scheme pre-
dicts the UAV location, enabling effective and rapid beam align-
ment in the next time slot for reliable UAV-to-BS communica-
tion. Vaezy et al. [23] explored the use of UAVs as wireless
service providers, using a uniform linear array to improve the
quality of service for downlink users. The research introduces
a BF design method for mmWave communication, aiming to
maximize user coverage and consider human body blockage.
The optimal beam direction problem is modeled as a multi-
armed bandit and can identify the optimal beam angle within
10 iterations. Paper [24] introduced a DQN-based RL frame-
work for beam alignment in UAVs employing mmWave uplink
communications. The framework leverages a specialized BF
codebook optimized by UAV location data to streamline the
beam selection process. This method achieves quicker align-
ment and reduces search complexity, demonstrating enhanced
performance and adaptability over traditional techniques, such
as multiarmed bandit and exhaustive search methods, particu-
larly in dynamic UAV environments.

Although prior studies predominantly addressed UAV BF
challenges in cellular-connected communication, recent re-
search [25–28] has increasingly recognized the need to inte-
grate trajectory optimization into the framework. The joint
optimization of the UAV trajectory and BF presents a refined
approach, acknowledging the interplay between UAV move-
ment and beam alignment to enhance the overall system per-
formance. Abdalla et al. [25] proposed using UAVs as mo-
bile aerial relays to counter passive eavesdropping in wireless
communications. The method clusters users, optimizes mul-
tiuser BF, and employs the DQN to optimize the 3D position,
BF, and transmission power of the UAV. Muy et al. [26] ex-
plored a wireless power transfer network with UAVs that charge
ground devices. They introduced a DRL framework to optimize
the UAV trajectory, BF, and power transmission, demonstrating
better performance than hover-and-fly algorithms. Paper [27]
developed a path-planning approach for UAVs in 5G NR BSs

using mmWave technology. They employed DRL and the DQN
for path planning and beam tracking, offering improved con-
nectivity and beam-tracking efficiency. Dong et al. [28] studied
UAV-enabled mmWave communications for physical layer se-
curity. They jointly optimized BF, UAV trajectory, and user
scheduling using a DRL method to balance secure transmis-
sions and energy efficiency.

In contrast, in UAV-enabled communication systems, the sig-
nificance of a multi-UAV system model surpasses that of a
single-UAV system model. Although single-UAV models pro-
vide valuable insight, the complex dynamics and challenges in-
herent in modern wireless networks necessitate a more compre-
hensive understanding afforded by multiple UAVs. As such, re-
cent studies and advancements [29–32] in the field have shifted
to embracing the potential of multi-UAV system models to un-
lock the full capabilities of UAV-enabled communication net-
works. For example, Khalili et al. [29] presented a method
to enhance network performance using multiple UAVs with
RISs, optimizing the transmission power, UAV trajectory, and
beamformer. They employed dueling DQN and successive con-
vex approximation methods, achieving a 6 d Bm reduction
in transmission power while maintaining the quality of ser-
vice. Chiang et al. [30] proposed a machine learning solution
for mmWave hybrid BF in multi-UAV networks. They used
Q-learning for analog beam tracking and digital BF to max-
imize the signal-to-interference-plus-noise ratio (SINR), en-
hancing data transmission and beam efficiency in dynamic en-
vironments. Chiang et al. [31] studied hybrid analog-digital
BF for UAVs in 3D space, focusing on low-latency and direc-
tional mmWave communications. They used Q-learning for
beam prediction and digital weight optimization to maximize
the SINR. Zhang et al. [32] explored a cooperative jamming
approach using UAVs to protect against eavesdroppers, using
multiagent DRL (MADRL), specifically multiagent deep deter-
ministic policy gradient (MADDPG), to optimize the UAV tra-
jectory and power in order to reduce jamming. They introduced
continuous action-attention MADDPG for enhanced learning
and convergence, which performed better than the standard
MADDPG. In addition, Cui et al. [33] offered a MARL strat-
egy for multi-UAV networks, allowing UAVs to learn coor-
dination tactics to increase the overall system performance.
Park et al. [34] introduced an energy-efficient framework for
multi-UAV networks using a modified version of communica-
tion neural network (CommNet) for collaborative optimization
of flight paths and power usage, reducing energy consump-
tion and ensuring robust network coverage. This approach en-
ables autonomous UAV coordination, adapting to environmen-
tal changes and user needs and highlighting the role of the mul-
tiagent system in enhancing UAV network efficiency.

1.3. Motivations, Contributions, and Organizations
Previous studies have contributed to energy-aware UAV com-

munication; however, scarce literature has studied the resource
and behavior control of mmWave-based multi-UAV networks
in a distributed environment. The main contributions of this
work are summarized as follows, and Table 1 lists the main dif-
ferences and features from the representative references.
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• First, we formulate a mixed-integer optimization problem
that maximizes the total system rate with stringent energy
consumption constraints in a multi-UAV-aided mmWave
communication network. We leverage the capabilities
of multiple UAVs equipped with advanced multi-antenna
systems to implement directional BF. Under UAV en-
ergy limitations, this method significantly boosts the net-
work capacity by directing transmitted energy toward spe-
cific ground users (GUs), improving signal quality while
minimizing interference—a critical challenge in mmWave
communication. The solution strategically and jointly op-
timizes UAV positioning and BF, ensuring optimal re-
source usage and enhanced network performance in a dis-
tributed manner.

• Second, we propose a novel MARL framework as a
model-free approach to solve the non-convex sequen-
tial optimization problem. The proposed distributed
MARL model, referred to as action-branching QMIX
(AB-QMIX), determines nearly optimal codebook-based
discrete BF vectors and UAV trajectories while maintain-
ing a balance between communication efficiency and en-
ergy consumption. The proposed AB-QMIX employs a
new LSTM module to control long sequences effectively.
Using the proposed framework, the UAVs cooperatively
move, hover, and provide downlink communication for all
GUs in a distributed environment.

• Extensive simulations employ a real-world measurement-
based channel model to validate the effectiveness of the
proposed AB-QMIX framework in terms of network ca-
pacity and underscore its efficiency in energy utiliza-
tion. The framework demonstrates stable convergence
and performance enhancement over conventional MARL
approaches, achieving over 90% of the theoretical upper
limit in terms of energy efficiency, specifically the maxi-
mum possible service duration of UAVs.

The rest of this paper is structured as follows. Section 2
presents a system model comprising the architecture and com-
ponents of the proposed multi-UAV energy-aware system and
the problem formulation. Then, Section 3 describes the pro-
posed algorithm and training technique. Next, Section 4 pro-
vides the performance evaluation. Finally, Section 5 concludes
the study by reviewing the findings and prospective future re-
search topics.

2. System Model

This section presents the models for the network scenario,
antenna, UAV mobility, UAV-user association, energy con-
sumption, and channel of the proposed system.

2.1. Network Model

We considered a downlink mmWave wireless communica-
tion network, where M UAVs are deployed as aerial BSs to
serve a set of K single antenna GUs, as illustrated in Fig. 1.

Specifically, the sets of UAVs and GUs are denoted by M =

{1, 2, . . . ,M} and K = {1, 2, . . . ,K}, respectively. The UAVs
were deployed from an initial position, where they coopera-
tively move, hover, and provide downlink communication for
all GUs. The position of the m-th UAV at time step t is rep-
resented by bm(t) = [Xm(t),Ym(t),H], where Xm(t) and Ym(t)
denote the horizontal coordinates of the UAV, indicating its
x- and y-axis positions, respectively, whereas H represents
the constant altitude of the UAV, maintaining a fixed height
above ground to ensure stable service coverage. Conversely,
the 3D location of the k-th GU at each time step is given by
uk(t) = [xk(t), yk(t), 0], with xk(t) and yk(t) marking the GU po-
sition and the zero value indicating the GU altitude at ground
level. Each GU is equipped with a global positioning system
(GPS) and periodically broadcasts its position to all the UAVs,
facilitating accurate and efficient UAV positioning and commu-
nication link optimization.

UAV charger

UAV battery

Figure 1: Downlink millimeter-wave communication system aided by multiple
uncrewed aerial vehicles.

2.2. Antenna Model

Each UAV is equipped with N antennas in a uniform linear
array structure, which helps UAVs construct BF designs to im-
prove the downlink transfer signal for GUs. Figure 2 illustrates
the detailed BF architecture of each UAV, adopting an analog
BF structure. The structure consists of one radio frequency
chain that is fully connected with N antennas to provide BF
gain. In analog BF systems, where the signal amplitude adjust-
ment is constrained, the constant-modulus constraint is essen-
tial for ensuring uniform signal transmission power across all
antennas, as in the following equation:

|[Wm](n)| =
1
√

N
, ∀m ∈ M, ∀n ∈ N , (1)

where |[Wm](n)| specifies the magnitude of the BF weight for
the n-th antenna element on the m-th UAV, which is set to 1

√
N

to ensure each antenna transmits with equal power. This con-
straint simplifies the analog BF design, focusing on phase ad-
justments for directional control and maximizing system effi-
ciency by equally distributing power across the UAV antennas.
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Table 1: Comparison of the proposed and previous approaches.
Reference Beamforming Trajectory Design Multi-UAV Energy Problem Method Used

[16] # # CO + SAC
[17] # # DDPG
[18] # # # MAB
[19] # # C-SAC
[20] # H-DQN
[21] # DQN-PER
[22] # LSTM Net
[23] # MAB
[24] # DQN
[25] # # DQN
[26] # # DQN
[27] # # DQN
[28] # # PPO
[29] # # # D-DQN
[30] # # # DQN
[31] # # # DQN
[32] # # # A-MADDPG
[33] # # # DQN
[34] # # Comm-Net

Proposed # # # # AB-QMIX

RF Chain

Analog phase shifter

Antenna

Figure 2: Uncrewed aerial vehicle beamforming architecture.

2.3. UAV Mobility Model
The mobility model of each UAV m is crucial for optimiz-

ing network performance and ensuring efficient energy usage
within the UAV-assisted mmWave communication system. In
each time step, the movement of UAV m is determined by its
flight speed Vm(t) within the range [0,Vmax], and its azimuth
angle φm(t) within (0, 2π]. These parameters dictate the UAV’s
trajectory and are fundamental to managing both communica-
tion coverage and energy consumption dynamically. The fol-
lowing kinematic equations govern the position updates:

Xm(t + ∆t) = Xm(t) + Vm(t) cos(φm(t))∆t, (2)

Ym(t + ∆t) = Ym(t) + Vm(t) sin(φm(t))∆t. (3)

Collision avoidance is critical, particularly in dense UAV de-
ployments. It is enforced through the following constraint, en-
suring a minimum separation distance of 2r between any two

UAVs:
||bm(t) − bm′ (t)||2 > 2r, ∀m , m′,∀t, (4)

In the above model, r represents the safety radius around
each UAV. This radius is a critical parameter in the collision
avoidance mechanism, ensuring that all UAVs maintain a safe
distance from each other to prevent accidents. The value of
r is assumed to be homogeneous across all UAVs, reflecting
standardization in UAV design and operational protocols. This
uniform approach helps simplify the computational require-
ments of the collision avoidance algorithm and ensures consis-
tent safety margins across the entire fleet. Additionally, oper-
ational boundaries are set for the airspace in which the UAVs
can operate, defined as follows:

Xm(t) ∈ [0, Xmax], ∀m, t, (5)

Ym(t) ∈ [0,Ymax], ∀m, t. (6)

To ensure sustainable operation, UAVs are equipped with
a finite energy reserve, primarily depleted by propulsion and
operational demands. This reserve mandates strategic energy
management to allow safe return to charging stations upon near-
ing depletion. This aspect is critical as it dictates the UAVs’
operational endurance and their ability to maintain continuous
service. The return to the charging station at the end of a mis-
sion is mandated as follows:

bm(T ) = bd, ∀m, (7)

where bm(T ) denotes the UAV’s position at the mission’s con-
clusion, aligning with the designated charging station coordi-
nates, bd.
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Figure 3: Uncrewed aerial vehicle mobility model.

2.4. UAV-User Association Model
In the realm of UAV operations, especially where multiple

UAVs are deployed within the same airspace, establishing an
efficient and reliable communication system between the UAVs
and their users is paramount. Time-division multiple access
(TDMA) offers a structured method to facilitate this commu-
nication by dividing the communication channel into distinct
time slots. In TDMA, each user is assigned a UAV in a spe-
cific time slot, within which the user can receive data from the
UAV, ensuring that a limited number of UAVs can serve every
user. This model can be more precisely articulated through bi-
nary variables to indicate the allocation of UAVs to users during
specific time steps. A binary variable that takes the value of 1 if
UAV m is serving user k at time step t is denoted by αm,k(t) and
is 0 otherwise:

αm,k(t) = {0, 1}, ∀t,∀m,∀k. (8)

The objective is to ensure that precisely one UAV serves each
user at any given time step and that each UAV can only serve
one user at a time, adhering to the constraints of TDMA to avoid
interference and optimize service delivery. Thus, we have the
following two constraints:

M∑
m=1

αm,k(t) ≤ 1, ∀t,∀m,∀k (9)

K∑
k=1

αm,k(t) ≤ 1, ∀t,∀m,∀k. (10)

This paper simplifies the association decision by adopting a
proximity-based assignment strategy, wherein each UAV is des-
ignated to serve the nearest GU. The overall association matrix
can be easily solved using a linear assignment solver based on
the 3D distance between all UAV-user pairs to minimize the to-
tal distance between paired UAVs and users. Thus, the possibil-
ity of interference due to multiple UAVs serving the same GU
is reduced, and the quality and reliability of the communication
links are significantly enhanced.

2.5. Energy Consumption Model
In this system, we assumed that the UAV has a limited battery

pool with a maximum capacity of Emax. The battery level of the
m-th UAV at each time step t is denoted as Em(t). All UAVs start
their flights with a full battery level and end their service once
their battery level reaches a pre-defined critical level Ecritical.
Thus, we have the following energy constraints:

Em(1) = Emax, ∀m (11)

Em(T ) ≤ Ecritical, ∀m. (12)

The consumed energy of each UAV is primarily from the pro-
cesses of propulsion and transmission. In particular, the propul-
sion process is the action of flying and hovering, whereas the
transmission process is the action of providing mmWave com-
munication to the GU. We disregard the energy consumption
of the transmission process because, in practice, it is insignif-
icant compared to the propulsion energy cost, as demonstrated
in previous work [35]. We can compute the propulsion energy
cost using the following formula [36]:

Pm (V) = Pi

√√√√
1 +

V4

4v2
0

−
V2

2v2
0

+ Pb

1 + 3V2

U2
tip

 + 1
2

d0ρsAV3.

(13)
The energy required for propulsion is determined by three
main factors of power use: induced drag, represented

as Pi

√√
1 + V4

m

4v2
0
− V2

2v2
0
, blade profile drag, denoted by

Pb

(
1 + 3V2

U2
tip

)
, and parasite drag. Here, Pi and Pb are constants

that stand for the power consumed by induced drag and blade
profile drag, respectively, when the UAV is hovering. When
the UAV ceases motion and remains stationary in the air (i.e.,
Vm = 0), the propulsion power simplifies to Pm(0) = Pi + Pb.
Additionally, v0 is the average rotor-induced velocity when hov-
ering, and Utip is the speed at the tip of the UAV’s blades, mea-
sured in meters per second. The term d0 refers to the fuselage
drag ratio, while ρ, s, and A represent the air density, the rotor’s
radius, and the rotor disk area, respectively. Table 2 summa-
rizes the parameters related to energy consumption modeling.
Thus, the m-th UAV energy consumption at each time step is
Pm (V) (t)∆t. As each UAV m has a limited battery pool, we
updated its current battery pool at each time step t, denoted by
Em (t), using the following formula:

Em (t + ∆t) = Em (t) − Pm (V) (t)∆t. (14)

2.6. Channel Model
Akdeniz et al. [37] developed a statistical model based on

real-world measurements in New York City. This model de-
rives a meticulous spatial statistical assessment of mmWave
wireless communication networks in a densely populated ur-
ban environment for important channel metrics. These metrics
include path loss, spatial cluster count, angular dispersion, and
outage probability. Given the study’s vast and practical insight,

6



Table 2: Energy consumption modeling parameters.
Notation Meaning
W UAV weight
ρ Air density
R Rotor radius
A Rotor disk area
Ω Angular velocity of UAV blades
Utip Tip speed of UAV blades
s Rotor solidity
d0 Fuselage drag ratio
k Correction factor for induced power
v0 Mean rotor-induced velocity during hover
δ Profile drag coefficient
Pi Induced drag power consumption during hover-

ing status
Pb Profile blade drag power consumption during

hovering status

including these known models in this research enables a more
accurate representation of channel features in similar urban en-
vironments.

Remark 1. Combining UAV platforms and mmWave cellular
networks provides significant benefits. First, the broad band-
width inherent in the mmWave frequency spectrum enables
managing ultra-high data traffic and supports a broad range of
UAV applications. Another advantage is the short wavelength
of mmWave, allowing the integration of more antennas in a
smaller space. As the number of antennas increases, so does the
potential for increased BF gain, improving the channel quality
in the system. Furthermore, an advantage of mmWave commu-
nication is its spatial sparsity, facilitated by pencil-like beams
that allow directional communication, improving the efficient
reuse of spectrum resources in the spatial domain. Finally, the
combination of mmWave communication and a multi-antenna
array allows for flexible BF. The flexibility of mmWave BF of-
fers the degrees of freedom to address interference effectively in
the spatial domain.

2.6.1. LoS, NLoS, and outage probabilities
The evaluation methods currently endorsed by the Third-

Generation Partnership Project (3GPP), such as those docu-
mented in [38], typically employ a statistical approach where
each communication link is categorized as either LoS or non-
LoS, with the likelihood of each state being dependent on the
distance. The characteristics of path loss and other aspects of
the link are then determined based on whether the condition is
LoS or NLoS.

However, for millimeter-wave (mmWave) communications,
it’s necessary to introduce an additional state to account for sit-
uations where a link might not just be LoS or NLoS, but com-
pletely non-existent due to outage. In such an outage state, the
link is considered to have no connectivity between the trans-
mitter and receiver, resulting in an infinite path loss. By incor-
porating this third state, which signifies a total signal loss with

a certain random probability, the model more accurately repre-
sents the potential for outages that are a distinct characteristic of
mmWave communication systems. This statistical model thus
adjusts to include probabilities for these three distinct states:
LoS, NLoS, and outage.

pout(d) = max(0, 1 − e−aoutd+bout ), (15)

pLoS = (1 − pout(d))e−alosd, (16)

pNLoS = 1 − pout(d) − pLoS (d), (17)

In this context, the constants alos, aout, and bout are specific
parameters that have been determined through analysis of gath-
ered data and vary according to the particular environment be-
ing studied. The model for predicting outage probability, as
referenced in 15, bears a resemblance to the model used by
the 3GPP for non-line-of-sight (NLoS) conditions between sub-
urban relay stations and user equipment, as detailed in [38].
The methodology for calculating the probability of line-of-sight
(LoS) conditions, as mentioned in 16, is developed from the
principles of random shape theory, a concept explored in depth
in [39].

2.6.2. Distance-based path loss
We investigated the air-to-ground channel model for the com-

munication link between UAVs and GUs, including the con-
ditional probability of the LoS and NLoS components [40].
Because the transmission range is one of the bottlenecks that
degrade the mmWave communication link, the path loss com-
prises distance-based path loss plus excessive path loss due to
shadowing:

PL = β1 + 10β2 log10(d) + ξ [dB], (18)

where d denotes the 3D Euclidean distance between the UAV
and GU. Under the assumption that each GU knows its geomet-
rical location information with the help of global positioning
systems (GPS) and broadcasts its position information period-
ically, m-th UAV can calculate the distance between itself and
the k-th GU by using the following formula:

dm,k =

√
(Xm − xk)2 + (Ym − yk)2 + H2 (19)

Meanwhile, β1 and β2 represent parameters related to the
transmission environment, differing between LoS and NLoS
links. The symbol ξ is the excessive path loss resulting
from lognormal shadowing, with the value depending only on
whether the current transmission link is LoS or NLoS: ξLoS ∼
N(0, σ2

LoS ) and ξNLoS ∼ N(0, σ2
NLoS ). We define the path loss

PL based on the probabilistic state of the communication link
as follows:

PL =


+∞ with probability poutage,

pLoS PLLoS with probability pLoS ,

pNLoS PLNLoS with probability pNLoS .

(20)

In mapping out the spatial distribution of the antenna’s pat-
tern, we utilized a conventional approach aligned with the
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3GPP/International Telecommunication Union specifications
for multiple input, multiple output technologies, as outlined in
[38] and [41]. This approach posits that the channel consists
of a random assortment C of ”path clusters,” each signifying a
significant scattering path at a macro level. The description of
each path cluster encompasses its proportion of the total power,
the primary angles of departure, the spread of beams around
these central angles, and the delay in cluster propagation time,
all of which are considered hidden variables in this analysis.

The statistical characterization of the channel is based on at-
tributes of the clusters, specifically their quantity and the distri-
bution of power among them. Initially, the quantity of clusters
is determined to adhere to a Poisson distribution:

C ∼ max(Poisson(λ), 1), (21)

with λ being the average number of clusters observed. Next,
the distribution of power for each cluster c, within the range of
[1, 2, . . . ,C], relative to the total power of the signal, is formu-
lated as:

Γc = Urτ−1
c 10−0.1Zc ,Uc ∼ U[0, 1],Zc ∼ N(0, ζ2), (22)

where rτ and ζ2 serve as the parameters for this model.

2.6.3. Small-Scale Fading Model
In the small-scale fading model, each path cluster, denoted

by Z, can be broken down into L subpaths. Within each cluster,
indexed by c ranging from 1 to C, and each subpath, indexed
by l from 1 to L, there are specific angles of departure. These
angles are derived from a Gaussian distribution centered around
the cluster’s core angles, with the standard deviation defined by
the cluster’s angular spreads (denoted as rms). Consequently,
the narrowband channel gain for the connection between the m-
th UAV and the k-th user can be depicted as follows (refer to
[42] for an in-depth explanation):

Hm,k(t) =
1
√

L

C∑
c=1

L∑
l=1

gc,l(t)u(θc,l)
√

PL
, (23)

where gc,l(t) and θc,l are the complex small-scale fading gain
and angle of departure of the l-th subpath of the c-th cluster,
respectively. Additionally, u(.) denotes the steering vector of
the transmission antenna arrays given the angles of departure.
The small-scale coefficients are given by

gc,l(t) = ḡc,le2π j∆t, ḡc,l ∼ CN(0,Γc10−0.1PL). (24)

2.7. Problem Formulation

This study aims to optimize the downlink sum rate of all K
GUs. We jointly optimized the analog transmit BF Wm and the
UAV 3D trajectory design bm. The problem is formulated as

follows:

(P1) : max
Wm,bm

T∑
t=0

M∑
m=1

K∑
k=1

Rm,k(t) (25)

s.t. (1),
(4), (5), (6), (7),
(8), (9), (10),
(11), (12).

In (25), the achievable data rate is calculated as follows:

Rm,k(t) = log2(1 + SINRm,k(t)), (26)

where the SINR for each GUs k served by UAV m is calculated
as follows:

SINRm,k(t) = αm,k(t)
Hm,k(t)wm(t)∑

m′,m Hm′,k(t)wm′ (t) + σ2 , (27)

where wm(t) is the BF vector of the m-th UAV at time step t.
The term

∑
m′,m Hm′,k(t)wm′ (t) is the total interference acting

on user k from all other UAVs, and σ2 is the additive white
Gaussian noise.

Additionally, the constraint in (1) is the constant-modulus
constraint of the analog BF matrix for each UAV. The constraint
in (4) represents the collision constraint between all UAVs in
the system. Moreover, (5) and (6) are the boundary constraints
of the system model, where the UAVs can only operate inside
this target area. The constraint in (7) indicates that all UAVs
must reach the predefined final destination point at the end of
the service duration. In addition, (8) to (10) are UAV-user as-
sociation constraints. Each GU can only be served by a single
UAV at a time, and each UAV can only serve, at most, one GU
at a time. Additionally, (11) and (12) are energy-related con-
straints. The constraint in (11) indicates the initial energy level
of all UAVs at the beginning of the service duration, whereas
(12) indicates that all UAVs are only considered to have fin-
ished the service duration when the battery level falls below a
threshold Ecritical.

In practice, the problem (P1) is mathematically challenging
due to its non-convexity. In addition, it must be jointly op-
timized in multiple UAV scenarios, making the problem even
more difficult to solve using conventional mathematic tools.
Determining the optimal solution is infeasible using an exhaus-
tive search, which must be performed over all 3D coordinates
of all UAVs for every possible UAV-user association. When the
number of UAVs increases, the computational cost significantly
increases.

Nonetheless, MADRL-based approaches can address large-
scale optimization problems because they can approximate suf-
ficient solutions by exploring the environment and can quickly
execute online once they finish the offline training session. This
research investigates a QMIX-based multi-agent machine learn-
ing approach to address this optimization problem. In the fol-
lowing section, we present the proposed controls to solve the
multi-UAV problem.

8



3. Proposed Joint Control of Three-Dimensional Trajec-
tory and Beamforming

3.1. Preliminaries for Multiagent Deep Reinforcement Learn-
ing

As a sequential optimization problem, the proposed problem
can be solved using the Markov decision process (MDP) for-
mulation. Moreover, each UAV is treated as a unique agent
that cannot directly interact with others throughout the service
and can only obtain its state via local observations. Each agent
monitors its state in the environment and acts according to its
learned optimal policy. Therefore, this problem can be modeled
as a decentralized, partially observable MDP (Dec-POMDP).
The goal of this Dec-POMDP problem is to maximize the ex-
pected cumulative reward over a finite (or infinite) number of
steps. However, due to the limited information on the state
transition probability and reward, instead of solving this Dec-
POMDP directly, we suggest a MADRL solution as a model-
free control. Before presenting the proposed control, we intro-
duce preliminary information on MADRL.

3.1.1. Overview of multi-agent deep reinforcement learning
One of the most common machine learning methods is RL,

which assists the agent in determining an optimal policy by
learning from its interactions with the environment. Further-
more, deep learning is a powerful machine learning technique
in which numerous processing unit layers extract increasingly
complex properties from input data. In addition, DRL com-
bines RL and deep learning, which can make judgments based
on unstructured input data without manually building the state
space. This method is also preferred due to its ability to pro-
cess large volumes of data and select optimal actions to achieve
a goal. Particularly, MADRL is a sub-field of DRL that deals
with the behavior of many learning agents interacting in the
same environment. To build a MADRL model, we considered
the following elements:

• Agents: Each agent acts as an independent entity that can
perceive the information from its environment and take ap-
propriate actions to achieve a goal.

• Environment: The medium contains agents that interact
with the environment to gain information.

• State: At each time step t, the environment has an overall
state denoted by s(t) consisting of all the information re-
lated to itself. The set of all possible states that can occur
in a configured environment is regarded as the state space
and is denoted by S.

• Observation: At each time step t, the observation om(t)
represents the information that can be observed from the
current state s(t) of the environment by the m-th agent.
The agent can use that information to reconstruct its view
of the surrounding world.

• Action: At each time step t, an action am (t) derived from
a policy π (.) is performed by the m-th agent after it ob-
serves the environmental information. After executing that

action, the agent makes changes to the environment. Thus,
it receives the following observation sm (t + 1) of the next
step. Moreover,A is the joint action space from all agents,
which is the set of all possible action combinations in a
multi-agent system.

• Reward: A reward function R(s, a) assigns numerical val-
ues to state-action pairs based on their outcomes, guid-
ing the agent toward goals by distinguishing beneficial ac-
tions. This feedback mechanism enables the agent to learn
optimal behaviors through trial and error, maximizing the
cumulative rewards.

• Policy: A policy πm (.) is a function that maps information
from the observation space to the action space. The policy
acts as a guideline for the agent to take action after each
observation.

• State-action-value function (also called the Q-function):
This function maps a state-action pair (s, a) to a scalar
value representing the expected reward the agent receives
after it executes the specific action following the policy
π (.) after that specific state.

• Finally, γ ∈ [0, 1) is the discount factor used to maintain a
finite sum in the infinite-horizon case.

At every discrete time step t, each agent m executes an ac-
tion ai chosen from a set of possible actions Ai. The system’s
state then changes according to the transition function P(s′|s, a),
which depends on the present state and the combined actions of
all agents. Subsequently, each agent receives an observation
determined by the observation function O(o|s′, a), which uti-
lizes the subsequent state and collective action. Following this,
a collective reward is allocated to the entire group based on the
reward function R(s, a).

3.1.2. Multi-agent deep reinforcement learning with the QMIX
network

In multi-agent cooperative systems, all agents pursue a com-
mon goal instead of seeking only to maximize their gains; how-
ever, this system encounters challenges. The first problem is
the curse of dimensionality, where the joint action space grows
exponentially by the number of agents, preventing the system
from being scalable. Another problem is that, in most real-
world scenarios, each agent cannot access the full state infor-
mation of the environment and can only rely on partial obser-
vation with communication constraints. Fixing these problems
requires decentralized policy algorithms, and the most common
method is centralized training and decentralized execution.

In the QMIX architecture, concerning fully cooperative be-
havior with centralized training and decentralized execution,
the joint action-value function Qtot can be decomposed into
M different Q-functions for M agents, where each Q-function
Qm measures how good each action is, given a state, for the
agents following a policy [15]. The fundamental concept of
this method is that training consistency can be achieved if a
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global argmax performed on Qtot yields the same result as a set
of individual argmax operations performed on each Qm:

argmax
a

Qtot(τ, a) =


argmaxa1 Q1(τ1, a1)

...
argmaxan Qm(τm, am).

 (28)

This method allows each agent m to participate in a decentral-
ized execution solely by choosing greedy actions with respect
to Qm. To satisfy (28), we can enforce monotonicity through a
constraint on the relationship between Qtot and each Qm:

∂Qtot

∂Qm
≥ 0,∀m ∈ M. (29)

The QMIX architecture employs a structure to compute the to-
tal action-value function Qtot that includes an agent network, a
mixing network, and hypernetworks:

• Agent Network: Each agent m operates a distinct Q-
network that calculates its action-value function based on
the current observation and the action taken in the preced-
ing time step, yielding a Q-value Qm.

• Mixing Network: This network is a feedforward type that
aggregates the Qm values from all agents into the compre-
hensive action-value function Qtot. It is designed to en-
sure monotonicity through the application of nonnegative
weight constraints.

• Hypernetwork: Hypernetworks generate weights from the
global state st for use in the mixing network. Each consists
of a linear layer followed by a ReLU activation function,
which guarantees the nonnegativity of the weights for the
mixing network.

3.2. Proposed Control: Action-Branching QMIX Network
This section presents the proposed AB-QMIX method for

joint trajectory and BF design to maximize the system sum rate.

3.2.1. Definitions for multi-agent deep reinforcement learning
State. For each agent m, its state consists of a variable indicat-
ing its identification ID to differentiate between itself and other
UAVs, the 3D position of all UAVs V(t), the horizontal distance
between it and the charging station d0,m(t), the current battery
level Em(t), and the 2D locations of all GUs U(t). Thus, the state
information for each UAV m in each time step t is formulated
as follows:

si(t) = {ID,V(t), d0,m(t), Em(t),U(t)}. (30)

Action. We considered the joint trajectory design and BF de-
sign; thus, the action output from each agent m in each time
step t consists of the next position and the BF design vector.
However, because the proposed algorithm is based on the DQN
method where the action space must be discretized, we dis-
cretized the target region into a grid system, where each grid
is equally sized, denoted by ς. We considered the trajectory
design for the agent to choose one of the following actions

atra jectory
m ∈ (hover, up, down, left, right, up left,

up right, down left, and down right). To calculate the
UAV movement corresponding to each of these control actions,
we converted the discrete action into the corresponding V and
φ and applied them to eqs. (2) and (3):

1. Hover: V = 0 and φ = 0
2. Up: V = ς∆t and φ = π/2
3. Down: V = ς∆t and φ = −π/2
4. Left: V = ς∆t and φ = π
5. Right: V = ς∆t and φ = 0
6. Up left: V =

√
2ς∆t and φ = 3π/4

7. Down left: V =
√

2ς∆t and φ = −3π/4
8. Up right: V =

√
2ς∆t and φ = π/4

9. Down right: V =
√

2ς∆t and φ = −π/4

For the BF design, we considered that the agent m selects
its BF vector ab f

m from a beam-steering-based BF codebook F ,
with the nth element in this codebook defined as follows:

f n(ϕ) =
1
√

N

[
1, e j 2π

λ dcos(ϕn), . . . , e j 2π
λ d(N−1)cos(ϕn)

]T
, (31)

where ϕn is the controlled angle of departure, and we select it
from a pool consisting of multiple predefined angles with cardi-
nality |Ab f |. This paper considers the angle pool to be equally
quantized from the range (0, 2π), making the BF selection ac-
tion the following:

ab f
m ∈

{
0,

2π
|Ab f |

, 2
2π
|Ab f |

, 3
2π
|Ab f |

, ..., 2π
}
. (32)

Therefore, we designed the action space for each agent m at
each time step t to be

am(t) =
{
atra jectory

m (t), ab f
m (t)
}
. (33)

Reward. In each time slot, after executing the action accord-
ing to the policy, each system agent receives the corresponding
individual reward from the environment. We considered using
the sum rate to be the main reward for the agents:

r1,m =

M∑
m=1

Rm. (34)

Also, we considered a step penalty function that scales with the
consumed energy to encourage the agent to be efficient with its
energy consumption:

r2,m = Pm(V)∆t. (35)

When the terminal state occurs, if the UAV fails to reach the
destination, it is punished by a constant penalty. Instead, if the
UAV successfully reaches the destination, it is rewarded with a
large reward that scales with the service duration:

r3,m =

−w f ail
3 , agent m does not reach the destination

wsuccess
3 × T, agent m reaches the destination.

(36)
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Afterward, the total reward for each agent is summed from
these three rewards:

rm = w1r1,m − w2r2,m + r3,m, (37)

where w1, w2, w f ail
3 , and wwin

3 are hyperparameters controlling
the trade-off weights between the three reward parts.

3.2.2. Proposed architecture and algorithm
The proposed learning model consists of the agent network,

mixing network, and hypernetwork. Each agent m has an
agent network to represent its action-value function. We pro-
pose using the action-branching dueling DQN (D-DQN) to pre-
vent exponential action space growth due to the high dimen-
sions of the action space. Instead of outputting the action-
value function Qm for all possible action combinations, we sep-
arated them into J independent action branches, where each
branch is responsible for controlling one subaction [43]. Then,
we output one Q action-value function for each action branch
Qm,1,Qm,2, . . . ,Qm,J and take the sum of all branches to obtain
the final Q-value, Qm =

∑J
j=1 Qm, j.

The mixing network requires input from an RNN; therefore,
we further modified the action-branching D-DQN by adding an
LSTM module to the architecture. For a specific agent m at the
current step t, with the current local observation ot

m and previ-
ous subaction at−1

m , we can calculate the Q-value for the optimal
subaction at

m,d at the current step by combining the value from
the common state estimator Vm(τt

m) and the subaction advan-
tage estimator A j

m(τt
m, a

t
m, j) as follows:

Qm, j(τt
m, a

t
m, j)

=Vm(τt
m) +

Am, j

(
τt

m, a
t
m, j

)
−

1
J

∑
a′m, j∈Am, j

Am, j

(
τt

m, a
′
m, j

) , (38)

where τt
m = (ot

m, a
t−1
m ). Afterward, the mixing network takes all

outputs from the agent network of all agents as input to calcu-
late the total Q-value for the whole system. Inside the mixing
network, hypernetworks also work to transform global state in-
formation st for the current time step t into the weights of the
mixing network. Each hypernetwork consists of a single linear
layer, followed by a rectified linear unit activation function to
ensure that the mixing network weights are non-negative, help-
ing to maintain the monotonicity of the mixing structure. The
mixing network can be trained by calculating the following loss
function:

L(θ) =
b∑

i=1

[(
ytot

i − Qtot (τ, a, s; θM)
)2]
, (39)

where b is the total number of sampled transitions from the re-
play buffer memory, θ denotes the main mixing network param-
eters, and ytot = r + γmaxa′Qtot(τ′, a′, s′; θ−M), where θ− repre-
sents the parameters of the target mixing network.

The primary mixing network has a corresponding target net-
work, which has static parameters and only updates parame-
ters by copying them directly from the primary network after

a fixed number of training steps. The reason is that, for DQN-
based methods, many state-action values are updated per time
step, affecting the action values for the very next state of the
agents instead of guaranteeing their stability. The algorithm
stability can be improved using a fixed target network that is
only updated occasionally because the target networks change
at a much slower speed than the primary network. Figure 4
presents the overall architecture of the proposed algorithm.
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Figure 4: Action-branching QMIX architecture.

The proposed framework uses an action filter to filter out all
unavailable actions to ensure that all selected actions by the
agents are not illegal (out-of-bounds or colliding with other
UAVs). For the implementation, at every time step, the pro-
posed framework checks for all the unavailable actions and fil-
ters out their corresponding Q-value so that the agent only se-
lects the optimal action from the remaining pool.

For policy selection, we chose the ϵ-greedy action selection
policy, with these two modes:

1. Exploration: the action is randomized to help agents ex-
plore the environment randomly and have a better chance
of discovering effective action.

2. Exploitation: the agents choose the action that maximizes
the state-action-value function based on previous experi-
ence.

In the ϵ-greedy policy, the agent performs exploration with a
probability of ϵ and performs exploitation with a probability of
1−ϵ, where ϵ ∈ [0, 1] is a hyperparameter that adjusts the trade-
off between exploration and exploitation. Usually, for best prac-
tice, ϵ = 1 at the start of each training epoch, and the value
gradually reduces as the training epoch continues to shift the
agent behavior from exploring the environment to exploiting
the trained optimal policy from the networks. The advantage
of using the ϵ-greedy policy is enhancing the trade-off between
exploration and exploitation.

Upon successfully selecting the next action according to
the ϵ-greedy policy, the state transition information tuple
(st, ot, at, rt, st+1, ot+1) is stored into a replay buffer memory D.
Once the buffer D reaches a certain size Cmin, the proposed
framework starts performing the training process by randomly
sampling a batch of data from B episodes in the buffer. Each
sampled episode from this buffer has a sequence length sl, used
as the data to update the parameters for the proposed networks.
The buffer memory has a fixed upper limit of C and emits the
oldest data whenever the maximum size is reached. The overall
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training process for the proposed algorithm is demonstrated in
Fig. 5, with further step-by-step details summarized in Algo-
rithm 1.
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Figure 5: Overall training process of the action-branching QMIX algorithm.

Algorithm 1 Action-Branching QMIX Training Procedure
1: Initialize the mixing network, target mixing network, agent networks, tar-

get agent networks, and hypernetwork
2: Set the total training episodes E, and the maximum steps per ep stepmax
3: Set the batch size B, sequence length sl, ϵ, ϵ decay ∆ϵ, total number of

agents M, discount factor γ, target network copy frequency L
4: Initialize a buffer memory D with a maximum capacity of C, and mini-

mum buffer size to start sampling CMin
5: for each episode do
6: Get the initial state s0, reset ϵ to the initial value
7: while not last step do
8: for each agent m do
9: ϵ = max(0, ϵ − ∆ϵ)

10: if probability ϵ then
11: ut

m = random action
12: else if probability 1 − ϵ then
13: ut

m = argmaxut
m

Qm(τtm, a
t
m)

14: end if
15: end for
16: Get reward rt , next state st+1, and next joint observation ot+1

17: Store the tuple (st , ot , at , rt , st+1, ot+1) in the bufferD
18: if current step t > CMin then
19: Randomly sample a minibatch of transitions fromD
20: Qtot = Mixingnetwork(Q1, ...,QM ; Hypernetwork(st))
21: Q′tot = Mixingnetwork′(Q′1, ...,Q

′
M ; Hypernetwork′(st))

22: ytot = rb + γQ′tot
23: loss = MSE(ytot ,Qtot)
24: Update network parameters with the gradient descent
25: end if
26: if the target network update interval passed then
27: Copy main network parameters to target network parameters
28: end if
29: end while
30: end for

4. Simulation Results

In this simulation, we implemented and evaluated the pro-
posed model using the PyTorch library with Python 3.

4.1. Simulation Setup

We considered a target area of 300 × 300 m divided into 30 ×
30 equal-sized grids, where M = 3 UAVs, each equipped with
N = 48 antennas, are deployed to serve K = 20 GUs, uniformly
distributed in the target area. The UAV location is randomly
generated close to the origin, and the charging station is located
at the opposite corner of the target area. The flying speed of the
UAV is assumed to be at a constant speed of one grid at a time,
and only the flying direction is decided by the RL agent for each
time step, with each time step having a length of ∆t = 0.5 s.

The agent network consists of three hidden layers, with the
first hidden layer having 256 neurons. The second layer is an
LSTM layer, and the third hidden layer has 128 hidden neu-
rons. For the reward function, we considered w1 = 1.2,w2 =

1.0,w f ail
3 = 2, 500, and wsuccess

3 = 1.0. The discount factor for
calculating the reward function is set to γ = 0.99. We trained
the model with 1,000 episodes, where each episode lasts un-
til all the UAVs reach their terminal state, either successfully
reaching the destination when the battery level is lower than
the critical level or failing to reach the destination and running
out of energy. For the other training parameters, we set the
learning rate to lr = 0.0001 and the buffer memory capacity
to |C| = 500, 000. To balance the exploration and exploitation
trade-off, we used the ϵ-greedy policy, with ϵ starting at 1.0
and gradually decreasing by ∆ϵ = 5 × 10−6 until it reaches the
minimum ϵmin = 0.1. At each time slot, the agents either per-
form a random action with the probability of ϵ or perform the
best possible action, outputting from the agent network with the
probability of 1 − ϵ. Afterward, they store the state transition
information in the buffer memory. Once the current memory
size reaches a minimum threshold of Cmin = 10, 000, the agent
network parameters are updated through backpropagation by
randomly sampling a batch of data from B = 4 episodes in the
memory, where each sampled episode has a sequence length of
sl = 500. Furthermore, to ensure a stable training session for
each of the primary agent networks, we also have a copy ver-
sion called the target network, where the parameters are fixed,
and we only update them once every fixed interval of 10,000
main network parameter updates.

Regarding propulsion energy consumption, each UAV has
a fixed energy pool starting at Emax = 200, 000, which is de-
pleted to maintain its flying status. The propulsion energy cost
is a function of its current flying velocity. Table 3 provides the
physical parameters related to the propulsion energy consump-
tion for the UAV flights. With the provided physical variables,
Fig. 6 illustrates the propulsion energy cost for various flying
speeds.

The simulations were conducted using a custom-built sim-
ulation environment in Python, utilizing the PyTorch frame-
work for implementing the MARL algorithms. The simula-
tions were executed on a machine with the following specifi-
cations to ensure high computational performance and accu-
racy in the multi-agent reinforcement learning simulations: (1)
Operating System: Windows 10 Education 64-bit, (2) Proces-
sor: 12th Gen Intel(R) Core(TM) i7-12700 CPU @ 2.1GHz
(20 CPUs), (3) Memory: 32 GB RAM, and (4) Graphics Card:

12



NVIDIA GeForce RTX 3070, with a total of 24 GB of mem-
ory (8 GB GDDR6 VRAM directly available to GPU). This
hardware setup provided the computational power necessary to
handle the complex real-time data processing and learning algo-
rithms involved in the simulations, ensuring that the simulation
environment was robust and reflective of real-world operational
conditions.

Table 3: Simulation parameters related to energy consumption.
Notation Meaning Value
W UAV weight 100 N
ρ Air density 1.225 kg/m

3

R Rotor radius 0.5 m
A Rotor disk area 0.79 m2

Ω Angular velocity of UAV blades 400 rad/s
Utip Tip speed of UAV blades 200 m/s
s Rotor solidity 0.05
d0 Fuselage drag ratio 0.3
k Correction factor for induced power 0.1
v0 Mean rotor-induced velocity during

hover
7.2

δ Profile drag coefficient 0.012
Pi Induced drag power consumption dur-

ing hovering status
88.6279

Pb Profile blade drag power consumption
during hovering status

79.8563

Figure 6: Propulsion energy consumption at various velocities.

This work uses the following standard benchmark algorithms
to illustrate the effectiveness of the proposed algorithm:

• Standard DQN (S-DQN) [44]: The S-DQN is a ground-
breaking RL algorithm that combines Q-learning with
deep neural networks. The critical innovation of DQN is
using a deep convolutional neural network to approximate
the Q-value function, which assesses the quality of actions
in given states within an environment. This approach en-
ables addressing high-dimensional sensory inputs, making
it suitable for tasks with complex input spaces, such as

video games or robotic control systems. The original DQN
algorithm introduced such techniques as experience replay
and target networks to stabilize the learning process and
improve convergence.

• Dueling DQN [45]: The D-DQN enhances the architecture
of the standard DQN by separately estimating two compo-
nents of the Q-value function: the value function V(s) that
estimates the expected reward of being in a particular state
s and the advantage function A(s, a) that reflects the addi-
tional benefit of taking a specific action a in state s over
others. The D-DQN combines these two streams at the fi-
nal layer to produce the Q-value. This architectural tweak
allows the network to learn which states are (or are not)
valuable without having to learn the effect of each action
for each state, providing a more robust estimate of state
values, often leading to better policy evaluation, especially
where the action choice does not significantly affect the
outcome.

• Hierarchical DQN (H-DQN) [46]: The H-DQN introduces
a two-tiered system of agents to manage tasks with hier-
archical structures. The higher-level agent sets abstract
goals, which are subtasks that guide the lower-level agent’s
actions. By dividing the problem into a hierarchy of
decision-making processes, H-DQN can manage complex
tasks that require long-term planning and decision-making
and learn policies involving sequences of actions and sub-
goals. This hierarchical approach is beneficial when the
environment has a natural hierarchical structure or when
tasks can be decomposed into meaningful subtasks, lead-
ing to more efficient learning and better performance on
complex problems.

4.2. Numerical Analysis

4.2.1. Convergence analysis
Figure 7 provides insight into the convergence rate through

the reward optimization aspect of algorithms with over 1,000
training episodes. The graph displays a general trend of increas-
ing rewards, indicative of the improving performance of the al-
gorithms as they learn from the environment. The proposed al-
gorithm displays a higher and more stable reward-increase tra-
jectory, signifying that it is consistently making better decisions
over time. Among the benchmark algorithms, S-DQN and H-
DQN also slowly converge but at a slower rate than the pro-
posed method. In addition, D-DQN also experienced a sudden
reward spike around episodes 600 to 800. However, it dropped
back to its previous state afterward, indicating a sudden change
in its optimal policy, leading to the agent being stuck in a new
local optimum. This outcome underscores the enhanced stabil-
ity of the proposed approach, illustrating its superior robustness
in comparison to the existing benchmark algorithms.

The same pattern as above is also depicted in Fig. 8 be-
cause the reward is calculated using the overall system sum rate.
This figure indicates that the proposed algorithm also exhibits
an upward trend, indicative of its ability to optimize network
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throughput over time. Initially, all algorithms emphasize ex-
ploring the state space. This exploration phase results in seem-
ingly random movements within the target area, experiencing a
decrease in the overall system throughput. Furthermore, during
this early period, the agent struggles to optimize its energy con-
sumption, resulting in a lower service duration and leading to a
lower overall total throughput in each episode. As the training
episode progresses, the ϵ value slowly decreases, and the agents
slowly switch from exploration to exploitation mode. They start
using their learned strategy to control their flight path and BF
to slowly optimize the total throughput of the system while en-
suring the possibility of reaching the destination before running
out of energy. As the ϵ value continues decreasing, the proposed
method quickly recovers and continues to improve, demonstrat-
ing resilience and an effective learning strategy.

Figure 7: Convergence of rewards per training episode.

Figure 8: Convergence of sum rates per training episode.

4.2.2. Probability of reaching the destination and service du-
ration

Figure 9 illustrates the average success rate over the training
episodes. Initially, a fluctuation is observed across all meth-
ods, which is related to the early exploration phase when all

algorithms are learning how to explore the environment. How-
ever, once the agent slowly moves away from the random explo-
ration mode, the proposed algorithm rapidly ascends to a high
success rate, asymptotically approaching 1.0, indicating swift
convergence and an effective learning strategy. The proposed
method outperforms the benchmarks by reaching a higher suc-
cess rate more rapidly. This enhanced performance is owing to
the use of an LSTM structure in the proposed algorithm. The
LSTM is recognized for its memory capabilities and proficiency
in learning long sequences of data. This attribute helps the
proposed agent learn the necessary sequence of optimal con-
trol that leads it to the destination. Moreover, benchmark al-
gorithms have lower success rates, with S-DQN and D-DQN
depicting intermediate performance, suggesting a potential in-
efficiency in dealing with complex or high-dimensional action
spaces. In contrast, H-DQN outperforms both S-DQN and D-
DQN and comes close to the proposed algorithm, underscoring
the advantage of hierarchical approaches in complex decision-
making scenarios.

Figure 9: Average probability of reaching the destination per training episode.

In Fig. 10, the average service duration is provided along-
side the upper bound of the possible service duration calculated
from simulation variables. Initially, all agents randomly explore
following the random exploration policy; thus, they perform in
the same way. However, as more episodes pass and the agent
shifts to using its learned optimal policy, the proposed algo-
rithm starts rapidly increasing its service duration, especially
during the first 200 episodes. The proposed algorithm experi-
enced a drop in service duration around episode 200 ∼ 400 but
gradually rebounded throughout the remaining episodes. Be-
fore this episode window, the proposed algorithm focuses too
much on obtaining a higher session terminal reward because
the reward at the terminal state is set equal to the service du-
ration. However, afterward, the proposed algorithm shifts its
optimal policy to optimize the sum-rate reward in each time
slot, exemplifying the superiority of the LSTM memory mech-
anism at memorizing and learning from long data sequences.
For the remaining episodes, the proposed method tries to op-
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timize the sum-rate-related reward and destination-reaching-
related reward simultaneously, resulting in a much higher over-
all reward. The benchmark algorithms also converge to the up-
per bound service duration but at a slower speed.

Figure 10: Average service duration per training episode.

4.2.3. Hyperparameter comparison
Figure 11 compares the average data rate against various

UAV altitudes, specifically for H ∈ {5, 8, 11, 14, 17, 20}. The
figure reveals that the proposed method maintains a higher data
rate across various altitudes, suggesting robustness to altitude
changes, a crucial attribute for UAV networks. Additionally,
the downward trend across all algorithms implies that altitude
negatively affects the data rate, consistent with the attenuation
effects in mmWave communications. Among the three bench-
mark algorithms, S-DQN and D-DQN perform similarly, with
S-DQN having a slight edge at lower altitudes, whereas H-DQN
performs the worst among all three benchmarks.

Figure 11: Average data rate for various uncrewed aerial vehicle altitudes when
K = 20 and N = 48.

Figure 12 presents the average data rate according to the
number of served GUs. The graph indicates a general up-

ward trend in the average data rate as the number of users in-
creases until reaching a certain threshold. The reason for the
data rate drop for the lower number of users is that users are
more sparsely distributed in the target area. Hence, the overall
communication distance between the UAV and the target user
becomes longer, further degrading the mmWave signal. How-
ever, as the number of users reaches the threshold K = 14, the
performance for all the algorithms starts converging. Generally,
the proposed algorithm still outperforms benchmark algorithms
for sufficiently high K settings. Among the benchmark algo-
rithms, D-DQN performs well when K is not high, but once the
number of users is sufficiently high, S-DQN starts performing
slightly better than D-DQN. In addition, H-DQN demonstrates
a weaker data-rate performance, as the H-DQN agent is more
focused on flying quickly toward the destination while focusing
less attention on optimizing the transfer data rate.

Figure 12: Average data rate for different number of ground users when H = 30
and N = 48

Lastly, we observe the average data rate according to the
number of UAV antennas in Figure 13. The proposed method
demonstrates a consistent increase in the data rate with more
antennas, highlighting its ability to exploit additional hard-
ware capabilities effectively. The other algorithms also benefit
from increased antennas, but the improvement rate is less pro-
nounced than that of the proposed method. This outcome sug-
gests that the proposed method may have a more sophisticated
strategy for leveraging increased antenna counts, which could
be critical for enhancing communication network capacities.

4.2.4. Execution time analysis
Figure 14 demonstrates the execution time per step among

the proposed algorithm and three benchmark algorithms, with
conditions set at K = 20 and N = 48. The y-axis quantifies
the execution time per step in milliseconds, providing a mea-
sure of each algorithm’s computational efficiency. Notably, the
proposed algorithm exhibits a slightly higher median execution
time relative to the benchmarks, suggesting a more computa-
tionally intensive process. Nevertheless, the tighter distribution
of the proposed algorithm’s execution times implies enhanced
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stability in its processing. This slight increase in execution time
is justifiable given the substantial improvements in communica-
tion quality and system performance delivered by the proposed
algorithm. The proposed algorithm employs the LSTM mod-
ule, which efficiently maintains long sequences and dynami-
cally adapts to environmental changes, ensuring robust and sta-
ble communication capabilities. This sophistication contributes
to slightly longer execution times but results in significant im-
provements in network capacity and energy efficiency. These
advantages validate the trade-off between execution speed and
extensive functionality, underlying the algorithm’s capability to
manage complicated, dynamic communication environments.

Figure 13: Average data rate for various numbers of UAV antennas when K =
20 and H = 30.

Figure 14: The box plot distribution of execution time per step (in milliseconds)
when K = 20 and N = 48.

4.3. Simulation Summary and Discussion

The extensive simulations demonstrate the effectiveness
of the proposed multi-agent reinforcement learning (MARL)

framework, Action-Branching QMIX (AB-QMIX), in optimiz-
ing the performance of UAV-assisted mmWave communication
networks. The results underscore several key contributions:

• Enhanced Network Performance: The implementation of
AB-QMIX led to significant improvements in network
throughput and efficiency. By optimizing UAV trajecto-
ries and beamforming strategies in real-time, the system
achieved nearly 90% of the theoretical upper bound for
energy efficiency. This is a substantial improvement over
benchmark algorithms, highlighting the adaptability and
robustness of the proposed approach.

• Energy Efficiency: The proposed framework effectively
manages the limited energy resources of UAVs, extend-
ing their operational life and maintaining consistent com-
munication capabilities even in challenging environments.
This is crucial for ensuring reliable service in remote or
disaster-stricken areas without access to traditional com-
munication infrastructure.

• Adaptability to Dynamic Environments: The use of the
MARL-based proposed approach allows each UAV in the
network to adapt independently to changes in the environ-
ment, including variable user demands and physical obsta-
cles. This adaptability is critical for maintaining high lev-
els of service quality across diverse deployment scenarios.

• Practical Implications: The real-world measurement-
based channel model used in the simulations provides a
robust basis for validating the proposed approach, suggest-
ing its applicability and effectiveness in actual deployment
scenarios. This enhances the potential for practical im-
plementation and sets the stage for future on-field deploy-
ments.

5. Conclusion

This work proposes a novel MARL framework, called the
AB-QMIX network, that maximizes the total system rates un-
der energy and mobility constraints in a UAV-aided mmWave
communication network. The proposed AB-QMIX network
employs a new LSTM module to control long sequences ef-
fectively and adeptly manage the intricacies of the UAV trajec-
tory optimization and analog BF design within the constraints
of limited energy resources. Using the proposed framework, the
UAVs cooperatively move, hover, and provide downlink com-
munication for all GUs in a distributed environment. The exten-
sive simulations, employing a real-world measurement-based
channel model to validate its effectiveness, confirmed that the
proposed control provides significant network throughput and
energy performance enhancement, in particular, around 90% of
the upper bound performance in terms of energy sustainabil-
ity of UAVs, compared to legacy benchmark MARL schemes.
Future research directions include extending from analog BF
to hybrid digital-analog BF optimization and assessing the fair-
ness between users based on data demand.
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