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Deep-Learning-Based Resource Allocation for 6G
NOMA-Assisted Backscatter Communications

Van Dat Tuong and Sungrae Cho

Abstract—The proliferation of Internet-of-Things applications
has given rise to several challenges, including network congestion
and high energy consumption. Among the promising technologies
for beyond-5G networks, nonorthogonal multiple access (NOMA)
and ambient backscatter communications stand out. These tech-
nologies enhance wireless access capacity and enable energy-
efficient data sharing. In this study, we propose a novel energy-
efficient resource allocation scheme for 6G NOMA-assisted
backscatter communication networks. Our network model com-
prises a central reader (RD) and distributed backscatter devices
(BDs) that harvest energy from incident signals to modulate
useful data and reflect it toward the RD. To maximize energy
efficiency, we formulated a joint optimization problem of channel
resource allocation and BDs’ reflection coefficients. However,
solving this problem is challenging because of its nonconvexity
and system dynamics. To address this issue, we developed a novel
deep-learning-based algorithm that leverages the advantages
of deep reinforcement learning. During training, we estimated
the state components without relying on exact channel state
information (CSI), which is computationally expensive. This
estimation reduces communication overhead raised in collecting
CSI data. Extensive simulations were conducted to demonstrate
the superiority of the proposed scheme. Simulation results show
that the proposed scheme notably enhances energy efficiency
compared to existing benchmarks. Specifically, improvements of
approximately 30.3%, 41.7%, 6.0%, and 4.4% were observed
when compared to the greedy approach, random approach,
Deep Q-Network, and successive convex approximation approach,
respectively.

Index Terms—Backscatter communications, deep reinforce-
ment learning, energy-efficient communications, nonorthogonal
multiple access (NOMA).

I. INTRODUCTION

THE proliferation of IoT devices has brought forth numer-
ous challenges for wireless networks, including connec-

tivity congestion, high energy consumption, and throughput
degradation. Nonorthogonal multiple access (NOMA) tech-
nologies have emerged as promising solutions, capable of
enhancing wireless access capacity and data rate for beyond-
5G networks [1]. NOMA facilitates access for a large number
of devices by enabling multiple devices to share the same
resource. A comprehensive review of recent NOMA advance-
ments for the IoT was conducted that focused on grant-free
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connectivity [2]. Moreover, the superiority of NOMA over the
conventional orthogonal multiple access (OMA) technique in
reducing energy and delay costs was highlighted [3].

Several recent studies have focused on identifying effective
solutions for improving energy efficiency (EE) toward sixth-
generation (6G) networks [4]. Backscatter communication
(BackCom) has emerged as a promising technology for en-
abling low-power communication in the Internet-of-Things
(IoT) systems [5]. However, backscatter devices (BDs) pose
certain challenges because of their lack of active radio com-
ponents. BDs rely on modulating and reflecting incident radio
frequency (RF) signals to facilitate network transmissions, in
which signal reflection is implemented dynamically by varying
antenna impedance. Notably, BDs can harness energy from
RF signals to power their own circuits in wireless powered
networks [6], [7] and Internet-of-Vehicles networks [8].

To meet the stringent requirements of massive IoT net-
works, such as ultra-low energy consumption and extremely
high spectral efficiency, researchers have investigated the
combination of BackCom and NOMA, which offers dual
benefits to conventional systems [9]–[11]. Compared to the
OMA technique, NOMA proves superior BackCom networks.
Guo et al. [9] demonstrated that NOMA significantly improves
the successful decoding rate performance. Yang et al. [10]
integrated NOMA with dynamic time division multiple access
to maximize the minimum throughput of BDs by jointly opti-
mizing backscattering time and reflection rates. Xu et al. [11]
extended the work of Ye et al. [6] and Yang et al. [7] to
address the EE maximization problem in a NOMA-assisted
BackCom network. To enhance the quality of service (QoS),
several constraints were adopted, such as minimum signal-
to-interference plus noise ratio (SINR), maximum transmit
power, and NOMA decoding order.

Given the dynamic nature of wireless network environments
with time-varying channels, conventional optimization ap-
proaches of the above studies often involve repeated computa-
tions to obtain the optimal solution, resulting in high computa-
tional overhead. This problem can be addressed using machine
learning techniques that learn the optimal policy through
training with the observed data input. Subsequently, the ob-
tained policy enables optimal decision-making for each en-
countered state. Reinforcement learning (RL), which is among
the advanced machine learning algorithms, has demonstrated
its potential for BackCom networks in various optimization
schemes. Examples include total throughput maximization
using the Double Deep Q-Network (DDQN) algorithm [12],
total UAV flight time minimization using the Multi-agent Deep
Option Learning algorithm [13], and interference reduction
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using a Q-learning model [14]. Therefore, it is necessary to
investigate an efficient solution to enhance EE for 6G NOMA-
assisted BackCom networks based on RL approach.

A. Literature Review

Several researchers have explored the performance of ambi-
ent BackCom in NOMA networks. Zhang et al. [15] proposed
a downlink NOMA-assisted BackCom system and investigated
the corresponding outage probabilities and ergodic rates. The
system model involved a BD that transmits information to a
cellular user using base station (BS) signals. Zeb et al. [16]
explored the enhancement of outage probability and through-
put in a wireless-powered BackCom network by incorporating
a hybrid channel access mode with time division multiplexing
access and NOMA. Ding et al. [17] emphasized the advan-
tages of using NOMA as a multiple access technique in
BackCom networks to improve throughput and connectivity
over other OMA techniques. Farajzadeh et al. [18] integrated
uplink NOMA and ambient backscatter technologies into
aerial networks, enhancing successive decoded bit rates while
minimizing flight time by optimizing the unmanned aerial
vehicle (UAV) altitude. The provided numerical results indi-
cated the potential for computing the optimal altitude of UAVs
and revealed an intimate relationship between backscattering
reflection coefficients (RCs) and network performance in terms
of throughput. Chen et al. [19] investigated the expected rates,
outage probability, and diversity-multiplexing trade-off in a co-
operative NOMA-assisted BackCom network. Nazar et al. [20]
derived closed-form expressions for the bit error rate in a
NOMA-assisted BackCom system to evaluate the RCs needed
to achieve the most favorable data rates. Li et al. [21] derived
closed-form expressions for outage and intercept probabilities
to analyze the secrecy of NOMA-assisted BackCom systems.
Similar to the study of Zhang et al. [15], Raza et al. [22]
proposed a massive machine-type communication framework
based on a NOMA-assisted BackCom system and inves-
tigated the corresponding outage probabilities and ergodic
rates. Li et al. [23] investigated the reliability and security
of maritime transmission systems and derived analytical ex-
pressions for outage and intercept probabilities in a NOMA-
assisted BackCom Internet-of-Vehicles network. The author of
[24] proposed NOMA-assisted BackCom and wireless power
transfer (WPT)-assisted NOMA systems to enhance energy
and spectral efficiency. Li et al. [25] considered malicious
eavesdroppers and analyzed the impact of channel estimation
error, imperfect successive interference cancellation (SIC), and
residual hardware impairments on the security and reliability
of a NOMA-assisted BackCom system. By deriving analytical
expressions for outage and intercept probabilities, insightful
asymptotic analyses were conducted for the high signal-to-
noise ratio and high main-to-eavesdropper ratio models.

In addition, within the realm of NOMA-assisted BackCom
networks, researchers have explored diverse resource alloca-
tion and optimization frameworks. Notably, a study by [8]
investigated a joint optimization framework that encompasses
both cellular device association and power allocation, with the
objective of maximizing the achievable EE while adhering

to QoS constraints such as successive signal decoding and
minimum rate requirements. Moreover, Xu et al. [11] proposed
a joint optimization framework for maximizing EE in NOMA-
assisted BackCom networks. This framework optimized the
allocation of transmit power for the BS and the design
of RCs for the BDs. The employed optimization relied on
an iterative algorithm based on Dinkelbach’s method and
quadratic transformation. Liao et al. [26] jointly optimized
the RC and power and time allocations to maximize the
minimum user throughput for a full duplex NOMA-assisted
BackCom network. The authors developed an iterative algo-
rithm using block coordinated descent and successive convex
optimization to address the formulated non-convex problem.
Khan et al. [27] proposed a novel analysis for NOMA-assisted
BackCom Vehicle-to-Everything networks that maximized the
minimum achievable rate of all vehicles by jointly optimizing
the transmit power allocation of BS and roadside units. Convex
transformation was used to solve the formulated problem.
Ding et al. [28] studied the application of NOMA-assisted
BackCom to 6G ultra-massive machine-type communications
and introduced an optimization framework for improving the
uplink sum rate while mitigating the interference between
downlink and uplink transmissions. A nonconvex optimization
problem of the downlink transmit power and RCs of the
BDs was formulated, which required a linear programming
transformation to be solved. Ahmed et al. [29] investigated
the EE maximization problem in a multi-cell NOMA-assisted
BackCom IoT network that jointly optimized the total transmit
power, power allocation, and RCs of the BDs. Applying
Dinkelbach’s method, the problem was transformed and de-
coupled into two subproblems of RC selection and power
allocation, which were iteratively solved using Karush-Kuhn-
Tucker conditions and the Lagrangian dual method.

B. Motivations and Contributions
State-of-the-art BackCom studies focus on improving en-

ergy efficiency, communication range, and secure and reliable
communications for IoT systems. However, addressing the
exponentially growing number of IoT devices necessitates a
significant increase in access capacity, which requires ad-
vanced multiple access techniques. Therefore, this study is
motivated to explore the effectiveness of integrating NOMA
with BackCom for 6G IoT networks. Specifically, the study
focuses on the energy problem, aiming to maximize EE by
jointly optimizing the subcarrier allocations (SAs) and RCs
of the BDs. The key contributions of this study can be
summarized as follows:
• Model of a NOMA-assisted BackCom IoT system, which

comprises a central reader and multiple distributed BDs
as IoT nodes. The central reader sends probe signal and
observes backscattering data from the BDs. The system
allows multiple arbitrary BDs to be paired by NOMA
to concurrently backscatter data using the same resource
block. Each BD is assumed to be equipped with a battery
to save harvested energy for its own operation, enhancing
system realism.

• Formulation of a joint optimization problem of SAs and
RCs to maximize EE. Owing to the deeply coupled
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Fig. 1. Illustration of a NOMA-assisted BackCom network: (a) NOMA-paired backscatter devices simultaneously reflect signals, (b) Architecture of a
backscatter device.

variables, the formulated problem is non-convex and
challenging to solve directly. The study employs deep re-
inforcement learning (DRL), a promising tool in wireless
communication problems, surpassing the complexity of
iterative algorithms and successive convex approximation
(SCA) techniques proposed in previous literature [11],
[26]–[29].

• Development of a channel state information (CSI)-
estimation technique to handle unknown CSI of sleep-
state BDs. This technique computes the CSI based on
historical data. Subsequently, a DRL framework is devel-
oped in which the estimated CSI and BD battery levels are
incorporated into the system state. This inclusion notably
minimizes communication overhead raised in collecting
CSI data. To mitigate the impact of the CSI estimation
error on the training results, the proposed DRL framework
deducts the error of the estimated channel gain from the
achievable EE in computing the step reward.

• Implementation of the proposed DRL framework based
on the double deep Q-network (DDQN) algorithm, which
is suitable for the discretized SA and RC spaces. Fur-
thermore, an adaptive genetic algorithm (AGA) [30] is
adopted in the action exploration process, which reduces
training time and improves the action output.

• Conducting extensive simulations to demonstrate the su-
periority of the proposed scheme. Compared to greedy,
random, DQN, and SCA approaches, the proposed algo-
rithm improves the EE by approximately 30.3%, 41.7%,
6.0%, and 4.4%, respectively. Furthermore, the achievable
EE of the proposed scheme closely resembles that of
the optimum scheme based on the exhaustive search
algorithm, with a difference of only 0.6%.

The remainder of this paper is organized as follows. Sec-
tion II describes the system model and EE maximization prob-
lem formulation. Section III presents the proposed algorithm
based on DRL. The performance evaluation is discussed in
section IV. Section V presents the concluding remarks.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Model

As illustrated in Fig. 1-(a), we consider a NOMA-assisted
BackCom network comprising a central reader (RD) and 𝐾

single-antenna BDs. The BDs are uniformly and independently
distributed within a network coverage area with inner and
outer radii of, 𝑅𝑖 and 𝑅𝑜, respectively. Let K = {1, . . . , 𝐾}
denote the set of BDs. Each BD represents an IoT device
consisting of a receiver, transmitter, energy harvester, and
micro controller, as shown in Fig. 1-(b). These BDs can harvest
energy from the incident RF signals to power their circuit and
reflect modulated signals that carry information to the RD.
In addition, each BD is equipped with a battery to store the
harvested energy ensuring sustained circuit operation in the
long term. Furthermore, each BD controls its RC by varying
the impedance. Let 𝐷 be the number of impedance values,
deriving 𝐷 levels for RC selection.

The network model adopts a block fading model with flat
fading. The channel gain between the RD and BD 𝑘 over
channel 𝑠 can be defined as 𝑔𝑠,𝑘 = |ℎ𝑠,𝑘 |2𝑟−𝛼𝑘 , where 𝛼 is the
path-loss exponent, ℎ𝑠,𝑘 is the small-scale fading component,
and 𝑟𝑘 is the distance between the RD and BD 𝑘 . Without
loss of generality, the reciprocal RF and backscatter links are
assumed to have the same channel condition owing to the
proximity between the RD and BDs. The received signal at
the RD is considered a double-path signal, which includes the
RF path (RD→BD) and the backscatter path (BD→RD). The
noise at the BD of the former path is negligible because each
BD consists only of passive components [31]. Therefore, the
signal received by the RD from BD 𝑘 via channel 𝑠 can be
determined as follows:

𝑦𝑠,𝑘 = (𝑔𝑠,𝑘𝑥𝑠) (𝜉𝑘 𝑝𝑠𝑔𝑠,𝑘𝑧𝑘) + 𝑁𝑠
= 𝜉𝑘 𝑝𝑠𝑔

2
𝑠,𝑘𝑥𝑠𝑧𝑘 + 𝑁𝑠 , (1)

where 𝑥𝑠 and 𝑝𝑠 are the information symbol and trans-
mit power of the RD, respectively; 𝑧𝑘 and 𝜉𝑘 ∈ Ξ =
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{𝜍1, . . . , 𝜍𝐷 |0 ≤ 𝜍𝑖 ≤ 1,∀𝑖 = 1, . . . , 𝐷} are the information
symbol and RC of BD 𝑘 , respectively; and 𝑁𝑠 is the zero-
mean additive white Gaussian noise arriving at the RD, with
variance 𝜎2.

B. Uplink NOMA-assisted BackCom
The network operates using NOMA to enhance spectral

efficiency (SE). According to NOMA standardization [32],
two BDs can be multiplexed in the power domain, allowing
them to share the same frequency resource. The RD receives
the composite signal and then applies the SIC to decode
it. In the case of uplink NOMA, the better signal, which
considers the worse signal as noise, is detected and decoded
first. Subsequently, the decoded signal is subtracted from the
composite signal using SIC, allowing the remaining inferior
signal to be decoded without NOMA interference.

Let 𝑜𝑠,𝑘 ∈ {0, 1} denote the SA of BD 𝑘 , where 𝑜𝑠,𝑘 = 0
and 𝑜𝑠,𝑘 = 1 represent the sleep and active states, respectively.
The network model operates over 𝑇 time slots indexed by
𝑡 ∈ {0, . . . , 𝑇 − 1}. At time 𝑡, two BDs, i.e., 𝑘𝑖 and 𝑘 𝑗
(𝑘𝑖 , 𝑘 𝑗 ∈ K, 𝑘𝑖 < 𝑘 𝑗 ), may be active on channel 𝑠 with
𝑜𝑠,𝑘𝑖 (𝑡) = 𝑜𝑠,𝑘 𝑗 (𝑡) = 1. Without loss of generality, all BDs are
assumed to be sorted and indexed based on descending channel
gain, i.e., 𝑔𝑠,𝑘𝑖 (𝑡) ≥ 𝑔𝑠,𝑘 𝑗 (𝑡) if 𝑘𝑖 < 𝑘 𝑗 . Moreover, the signal of
BD 𝑘𝑖 is decoded before that of BD 𝑘 𝑗 by performing NOMA.
Therefore, the uplink SINRs considering transmissions from
BDs 𝑘𝑖 and 𝑘 𝑗 are computed as follows:

𝜑𝑠,𝑘𝑖 (𝑡) =
𝑜𝑠,𝑘 𝑗 (𝑡)𝜉𝑘𝑖 (𝑡)𝑝𝑠𝑔4

𝑠,𝑘𝑖
(𝑡)

𝑜𝑠,𝑘 𝑗 (𝑡)𝜉𝑘 𝑗 (𝑡)𝑝𝑠𝑔4
𝑠,𝑘 𝑗
(𝑡) + 𝜎2

(2)

and

𝜑𝑠,𝑘 𝑗 (𝑡) =
𝑜𝑠,𝑘 𝑗 (𝑡)𝜉𝑘 𝑗 (𝑡)𝑝𝑠𝑔4

𝑠,𝑘 𝑗
(𝑡)

𝜎2 . (3)

C. Energy Harvesting Model
In the sleep state, most of the harvested energy of BD 𝑘 is

stored in its battery as follows:

𝐸
sleep
𝑘
(𝑡) =

(
1 − 𝑜𝑠,𝑘 (𝑡)

)
𝜂𝑘 𝑝𝑠𝑔𝑠,𝑘 (𝑡), (4)

where 𝜂𝑘 represents the energy harvesting efficiency coef-
ficient of BD 𝑘 . The harvested energy is defined without
considering thermal noise because none of the BDs have any
active RF components [33]. In the active state, the harvested
energy is divided by 𝜉𝑘 , in which a portion is used to reflect
the modulated signal, 𝜉𝑘 𝑝𝑠𝑔𝑠,𝑘 (𝑡). The remaining harvested
energy is computed as follows:

𝐸active
𝑘 (𝑡) = 𝑜𝑠,𝑘 (𝑡)𝜂𝑘 (1 − 𝜉𝑘 (𝑡))𝑝𝑠𝑔𝑠,𝑘 (𝑡). (5)

If 𝜉𝑘 (𝑡) approaches 1, 𝐸active
𝑘
(𝑡) becomes relatively close to 0,

resulting in ineffective circuit operation. In this case, the
accumulated energy is used to supplement the required power
and maintain normal circuit operation. Let 𝑀𝑘 denote the
accumulated energy of BD 𝑘 , which can be updated as follows:

𝑀𝑘 (𝑡 + 1) = 𝑀𝑘 (𝑡) + 𝐸sleep
𝑘
(𝑡) + 𝐸active

𝑘 (𝑡) − 𝑃𝑐𝑘 , (6)

where 𝐸sleep
𝑘

and 𝐸active
𝑘

are concurrently controlled by 𝑜𝑠,𝑘 ,
and 𝑃𝑐

𝑘
denotes the constant circuit power of BD 𝑘 .

D. EE Maximization Problem

Applying the Shannon formula, the overall SE at time 𝑡 can
be computed as follows:

Ψ(𝑡) =
∑︁

1≤𝑚≤𝑛≤𝐾

(
log2 (1 + 𝜑𝑠,𝑚 (𝑡)) + log2 (1 + 𝜑𝑠,𝑛 (𝑡))

)
.

(7)
The energy consumption consists of the (i) energy for RD
transmissions, 𝐸0 = 𝑝𝑠/𝜚, where 𝜚 ∈ (0, 1] is the power
amplifier efficiency; (ii) constant circuit power consumption
of the RD, 𝑃𝑐0 ; and (iii) constant circuit power consumption
of the BDs, 𝑃𝑐

𝑘
. Each BD 𝑘 can harvest energy as Δ𝑀𝑘 (𝑡) =

𝐸
sleep
𝑘
(𝑡) + 𝐸active

𝑘
(𝑡) − 𝑃𝑐

𝑘
. Therefore, the EE of the complete

system can be computed as follows:

Υ(𝑡) = Ψ(𝑡)
𝐸0 + 𝑃𝑐0 −

∑
𝑘∈K Δ𝑀𝑘 (𝑡)

. (8)

The objective of this study is to maximize long-term EE by
jointly optimizing SA and RCs. The mathematical formulation
of the corresponding optimization problem is as follows:

max
o(𝑡 ) ,x(𝑡 )

𝑇−1∑︁
𝑡=0

𝛾𝑡Υ(𝑡), (9)

s.t. 𝑜𝑠,𝑘 (𝑡) ∈ {0, 1},∀𝑘 ∈ K, (9a)∑︁
𝑘∈K

𝑜𝑠,𝑘 (𝑡) ≤ 2, (9b)

𝑜𝑠,𝑘 (𝑡) = 1 : 𝜑𝑠,𝑘 (𝑡) ≥ 𝜑min,∀𝑘 ∈ K, (9c)

where o(𝑡) = {𝑜𝑠,𝑘 (𝑡) |𝑘 ∈ K} is the SA vector, x(𝑡) =

{𝜉𝑘 (𝑡) |𝑘 ∈ K} is the RC vector, and 𝛾 ∈ (0, 1) is a discounting
factor. Constraints (9a) and (9b) ensure that at most two
BDs are allowed to share the channel in the context of SA.
Constraint (9c) sets the lower bound of the SINRs (𝜑min) for
SIC decoding.

III. ALGORITHM DESIGN

The formulated problem poses challenges for conventional
optimization tools because of two main reasons: First, the
objective function is a long-term non-convex function with
mixed-integer variables. Second, considering the dynamic
channel conditions, the RD cannot determine the channel
power gain with which sleep-state BDs harvest energy. There-
fore, before the optimization process, the RD must send
probing signals to all BDs and wait for the signals carrying
the CSI. This method is highly complex and incurs significant
communication overhead. To this end, DRL emerges as a
promising solution that can maximize long-term reward for
dynamic systems. We developed a DRL-based solution for the
formulated problem. Specifically, a DRL agent is deployed at
the RD, which follows a Markov decision process model. At
each time 𝑡, the agent selects a joint action of the SA and RCs
based on the observed states, computes EE result as a reward,
and transitions to the subsequent state. This iterative process
aims to learn the optimal policy that maximizes the achievable
long-term EE. The state, action, and reward function are
specified as follows:

1) State space: One of the main challenges in solving the
formulated problem is the lack of knowledge regarding
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Fig. 2. Architecture of the DDQN algorithm for EE maximization.

the channel gain of sleep-state BDs. To address this
challenge, we estimate the unknown channel gain using
the historical CSI data collected during the active periods
of BDs as follows:

�̃�𝑠,𝑘 (𝑡) = E
[
𝑔𝑠,𝑘 (𝑡) |𝑜𝑠,𝑘 (𝑡) = 1

]
, (10)

where the initial value can be initialized as �̃�𝑠,𝑘 (0) =
𝑟−𝛼
𝑘
,∀𝑘 ∈ K. Furthermore, the estimated channel gain

can be incrementally updated as

�̃�𝑠,𝑘 (𝑡 + 1) =
𝛿𝑘 �̃�𝑠,𝑘 (𝑡) + 𝑜𝑠,𝑘 (𝑡)𝑔𝑠,𝑘 (𝑡)

𝛿𝑘 + 𝑜𝑠,𝑘 (𝑡)
, (11)

where 𝛿𝑘 ← 𝛿𝑘 +𝑜𝑠,𝑘 (𝑡) is the total number of historical
CSI data points of BD 𝑘 . Then, at each time 𝑡, the agent
obtains a system state, which is formulated based on the
estimated channel gain and stored energy of the BDs:

𝑆(𝑡) ≜ {�̃�𝑠,𝑘 (𝑡), 𝑀𝑘 (𝑡) |𝑘 ∈ K}. (12)

2) Action space: The joint action of the agent is defined as

a(𝑡) ≜ {o(𝑡), x(𝑡)}
= {𝑜𝑠,𝑘 (𝑡), 𝜉𝑘 (𝑡) |𝑘 ∈ K}, (13)

where 𝜉𝑘 (𝑡) = 0 if 𝑜𝑠,𝑘 (𝑡) = 0 that simplifies the RC
action in the sleep state. This consideration is reasonably
practicable because signal reflection must be disabled in
the sleep state.

3) State transition and reward function: When the selected
action, a(𝑡), is executed in the observed state, 𝑆(𝑡), the

system transitions to the next state, 𝑆(𝑡 + 1), The state
components are obtained based on 𝑆(𝑡) and the newly
arrived CSI. In addition, a step reward is computed based
on the achievable EE as

𝑈 (𝑡) = Υ(𝑡) − Δ�̃�𝑠,𝑘 (𝑡), (14)

where Δ�̃�𝑠,𝑘 (𝑡) =
∑
𝑘∈K 𝑜𝑠,𝑘 (𝑡)

��𝑔𝑠,𝑘 (𝑡) − �̃�𝑠,𝑘 (𝑡)�� is the
error of the estimated channel gain.

Based on the DQN algorithm, we developed a novel al-
gorithm that combines the benefits of using a finite replay
buffer memory to store recent experiences for training and
an additional target Q-network. This design mitigates the
overoptimistic estimation of Q-values [34], as shown in Fig. 2.
The pseudo code is presented as Algorithm 1. Initially, the
system parameters are initialized as follows: K; S; 𝑍; 𝑇 ;
replay memory M; two DQNs Q𝑝 (primary) and Q𝑡 (target)
with weights 𝜃𝑝 and 𝜃𝑡 , respectively. The training error 𝐿 (𝜃𝑝);
and error threshold value 𝜙. Q𝑝 and Q𝑡 have the same neural
network structure, each consisting of two fully connected
hidden layers using the rectified linear unit as the activation
function. The input and output layers are sized according to
the dimensions of the state and action vectors, respectively.
For each observed state 𝑆(𝑡), the agent selects action a(𝑡) to
collect experiences based on the 𝜖-greedy strategy. Exploration
is executed with probability 𝜖 , and exploitation is executed oth-
erwise. To facilitate convergence, we partition the exploration
based on a mini-batch Q-value loss. Specifically, if the loss is
smaller than the threshold value 𝜙, the adaptive genetic action
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Algorithm 1 DRL-based algorithm for EE maximization
1: Initialize K,S, 𝑍, 𝑇,M, 𝜃𝑝 , 𝜃𝑡 ← 𝜃𝑝 , 𝐿(𝜃𝑝), 𝜙;
2: for episode 𝑖 = 1, . . . , 𝑍 do
3: Reset �̃�𝑠,𝑘 (0) and 𝑀𝑘 (0), ∀𝑘 ∈ K;
4: for step 𝑡 = 1, . . . , 𝑇 do
5: Observe state 𝑆(𝑡);
6: Select a(𝑡) based on probability 𝜀 and 𝜖-greedy:
7: Adaptive genetic a(𝑡) with AGA algorithm [30]

if 𝜀 < 𝜖 and 𝐿 (𝜃𝑝) < 𝜙;
8: a(𝑡) is random if 𝜀 < 𝜖 and 𝐿 (𝜃𝑝) ≥ 𝜙;
9: a(𝑡) = argmaxaQ𝑝 (𝑆(𝑡), a; 𝜃𝑝) o.w.;

10: Execute a(𝑡) to observe 𝑈 (𝑡) and 𝑆(𝑡 + 1);
11: Save tuple ⟨𝑆(𝑡), a(𝑡),𝑈 (𝑡), 𝑆(𝑡 + 1))⟩ in M;
12: if number of tuples ≥ batch size 𝐶 then
13: Sample 𝐶 tuples from M for learning;
14: for 𝑡 = 1, . . . , 𝐶 do
15: Find 𝑎(𝑡) = argmaxaQ𝑡 (𝑆(𝑡 + 1), a; 𝜃𝑡 );
16: Find 𝑦(𝑡) = 𝑈 (𝑡) + 𝛾Q𝑝 (𝑆(𝑡 + 1), 𝑎(𝑡); 𝜃𝑝);
17: end for
18: Perform gradient descent w.r.t. 𝜃𝑝 on Q-value

loss: 𝐿 (𝜃𝑝) = E𝐶𝑡
[ (
𝑦(𝑡) − Q𝑝 (𝑆(𝑡), a(𝑡); 𝜃𝑝)

)2] ;
19: Every 𝐺 steps, soft update 𝜃𝑡 ← 𝜏𝜃𝑝+(1−𝜏)𝜃𝑡 ;
20: end if
21: end for
22: end for
23: for each step 𝑡 in exploitation phase do
24: Observe state 𝑆(𝑡);
25: Output a∗ (𝑡) = argmaxaQ𝑝 (𝑆(𝑡), a; 𝜃𝑝);
26: end for

is selected from a candidate set using the AGA algorithm [30].
Otherwise, a random action is selected. The learning process
employs the the stochastic gradient descent method to update
the weight 𝜃𝑝 , minimizing the Bellman residual Q-value loss
as follows:

𝐿 (𝜃𝑝) = E𝐶𝑡=1

[ (
𝑦(𝑡) − Q𝑝 (𝑆(𝑡), a(𝑡); 𝜃𝑝)

)2]
, (15)

where 𝐶 is the batch size, Q𝑝 (𝑆(𝑡), a(𝑡); 𝜃𝑝) denotes the
output of Q𝑝 for the state-action pair (𝑆(𝑡), a(𝑡)), and 𝑦(𝑡) =
𝑈 (𝑡) + 𝛾Q𝑝 (𝑆(𝑡 + 1), 𝑎(𝑡); 𝜃𝑝), 𝑡 ∈ {1, . . . , 𝐶}, is a target Q-
value with 𝑎(𝑡) = argmaxaQ𝑡 (𝑆(𝑡 + 1), a; 𝜃𝑡 ). The training
process is terminated when all episodes are implemented or
when the updated amount of 𝜃𝑝 becomes significantly small.

The following proposition defines the convergence of the
proposed algorithm as the prerequisite condition for using the
primary DQN to select adaptive genetic actions.

Proposition 1. Algorithm 1 converges to the global optimal
Q-function for EE maximization.

Proof. In the training process of Algorithm 1, weight 𝜃𝑝 is
updated at each iteration to minimize the Q-value loss, 𝐿 (𝜃𝑝),
such that the Q-value is gradually updated as follows:

Q𝑝 (𝑆(𝑡), a(𝑡); 𝜃𝑝) ← (1− 𝜐)Q𝑝 (𝑆(𝑡), a(𝑡); 𝜃𝑝) + 𝜐𝑦(𝑡), (16)

where 𝜐 ∈ (0, 1) is the learning rate. Moreover, using the
Bellman equation, the global optimal Q-value is obtained as

Q∗𝑝 (𝑆(𝑡), a(𝑡)) =
∑︁

Θ(𝑆′ (𝑡) |𝑆(𝑡), a(𝑡))
× [𝑈 (𝑡) + 𝛾maxa′ (𝑡 )Q𝑝 (𝑆

′ (𝑡), a′ (𝑡))], (17)

where Θ(𝑆′ (𝑡) |𝑆(𝑡), a(𝑡)) is the state transition probability
from 𝑆(𝑡) to 𝑆

′ (𝑡) when action a(𝑡) is executed. Without loss
of generality, we assume that the state transition probabilities
are stationary. For instance, the probabilities can be predefined
or follow a Gaussian distribution. Therefore, a global optimal
Q-value, Q∗𝑝 (𝑆(𝑡), a(𝑡)) exists. Moreover, the difference be-
tween the training and optimal Q-values is

ΔQ𝑝 (𝑆(𝑡), a(𝑡)) =

(1 − 𝜐)ΔQ𝑝 (𝑆(𝑡), a(𝑡)) + 𝜐
(
𝑦(𝑡) − Q∗𝑝 (𝑆(𝑡), a(𝑡))

)
(18)

Without loss of generality, we assume that the training process
is sufficiently long to ensure that all possible state-action pairs
are visited. This assumption is reasonably feasible because of
the following reasons. First, the state-action space is shrunk
remarkably owing to the quantization. Specifically, instead
of using directly the estimated channel gain values for the
state, we quantize them into four determined levels, such as
excellent, good, normal, and poor channel gain states. As a
result, the total number of state values is significantly reduced.
Second, the probability of visiting each state-action pair is
generally increased when implementing more episodes, which
are based on a larger number of initial randomized generations
of state values. Practically we conducted extensive simulations
and achieved stable convergence based on 1000 episodes
corresponding to 1000 initial randomized generations of state
values. Therefore, the Q-value difference, ΔQ𝑝 (𝑆(𝑡), a(𝑡)),
converges to zero because sufficient data is available for
updating the estimated Q-value [35]. That completes the proof
of Proposition 1. □

IV. PERFORMANCE EVALUATION

A. Simulation Settings

Extensive simulations were conducted based on a network
area bounded by 𝑅𝑖 = 1 m and 𝑅𝑜 = 15 m. A set of
𝐾 = 10 BDs was uniformly distributed in the coverage area.
The transmit power of the RD was 𝑝𝑠 = 500 mW. The
path-loss exponent was 𝛼 = 2.5 for Rayleigh fading, and
the noise power was 𝜎2 = −100 dBm. The other system-
level parameters were set as follows: 𝜂𝑘 = 0.6, 𝜚 = 0.9,
𝑃𝑐
𝑘
= 1 mW, 𝑃𝑐0 = 110 mW, and 𝜑min = 3 dB. The DRL-based

training process was implemented at a maximum of 𝑍 = 1000
episodes, each including 𝑇 = 50 steps. The probability of
exploring the action space (𝜖) was initialized as 0.9, and it
was gradually reduced in each training step until it reached
0.1. The discounting factor was 𝛾 = 0.9. The replay memory
was sized at |M| = 104, which provided batches for learning,
each with 𝐶 = 32 samples. A learning rate of 𝜏 = 0.001 was
adopted to the soft update weight 𝜃𝑡 . Finally, each hidden layer
of the DQNs had 128 nodes.
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Fig. 3. Convergence of the proposed scheme in terms of achievable EE.
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Fig. 4. Convergence of the proposed scheme when using perfect CSI and
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B. Convergence Analysis

Fig. 3 illustrates the convergence of the proposed scheme
in terms of the achievable EE under various learning rates,
i.e., 𝜐 = 0.1, 𝜐 = 0.01, and 𝜐 = 0.001. Across all
learning-rate settings, EE starts low and gradually increases
as training progresses. We observe that during training, EE
with learning rates of 0.01 and 0.001 exhibits slightly more
superior performance than that with a learning rate of 0.1.
Moreover, convergence is achieved after approximately 400
episodes. After convergence, the achievable EE remains con-
sistent across different learning-rate settings. The slight differ-
ence in achievable EE between different learning-rate settings
is attributed to the consecutive reduction in the exploration
rate during training. This reduction leads to a decrease in
the updating number of weight and decreases the impact of
learning rates. Consequently, the effectiveness of the proposed
DRL-based algorithm is observed to be relatively independent
of the learning rate.

Fig. 4 illustrates the impact of using estimated CSI for
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Fig. 5. EE comparison between existing approaches.

training. We observe that both of the proposed scheme and
DQN algorithm converge when using either the perfect or
the estimated CSI. Furthermore, the performance gap of the
proposed scheme when using the perfect and the estimated CSI
is relatively small. For instance, after 1000 training episodes,
the average achievable EE when using perfect CSI reaches
to approximately 5.91 bits/J, which is 0.5% greater than that
achieved when using estimated CSI. This small performance
gap is explained because either of the perfect or estimated CSI
can represent the system information, which is the input for
the proposed DRL-based scheme to approximate the mapping
from system information to the optimal SA and RC utilizing
deep neural networks. In addition, the estimation error is
deducted to step reward in each training iteration that also
reduces the impact of estimation error on training performance.

C. Performance Comparison

Fig. 5 depicts the EE comparison plotted against the RD
transmit power, considering different approaches. Specifically,
we compare the EE achieved in the proposed scheme with
those of the following methods: greedy approach which max-
imizes the RCs of active BDs to enhance the SE; random
decision; SCA approach; and the optimum strategy obtained
through exhaustive search using the exact CSI. The achievable
EE values are averaged from the results of 100 consecutive
episodes. The results reveal that our proposed scheme out-
performs the SCA, greedy, and random decision schemes.
Remarkably, it is comparable to the optimum scheme with
exhaustive search algorithm. For instance, at a transmit power
of 0.5 W, the achievable EE in the proposed scheme is
6.07 bits/J, which is only 0.6% less than that of the optimum
scheme and 30.3%, 41.7%, and 4% greater than those of the
greedy, random, and SCA approaches, respectively. Moreover,
as the transmit power increases, the EE increases across all
schemes with different slopes. Notably, the most significant
increase we observe in the proposed and optimum schemes.
This result is attributed to the joint optimization of SA and
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Fig. 7. EE comparison between various DRL frameworks.

RCs of the proposed scheme, which enhances utility at higher
transmit power values.

We further compare the performance of 3 outstanding
schemes: the SCA approach, exhaustive search, and proposed
schemes. Fig. 6 shows the fluctuation in EE over 100 con-
secutive episodes. Notably, both the proposed and exhaustive
search schemes exhibit similar average EE, which surpasses
that of the SCA approach scheme. The gap between them falls
within the range of 2% and 4%, demonstrating the superiority
of the proposed scheme over the SCA approach. Moreover, the
fluctuation range remains consistent across all three schemes
and is influenced by the variation in channel conditions.

Fig. 7 shows the performance comparison of different DRL
frameworks in terms of the achievable EE under various RD
transmit power, 𝑝𝑠 . The results reveal that increasing RD
transmit power increases the achievable EE. For instance, the
achievable EE increases from 6.0 bits/J with 𝑝𝑠 = 0.5 W to
7.1 bits/J with 𝑝𝑠 = 1 W in the proposed scheme. We observe
similar behavior of the achievable EE in other DRL framework
schemes. Compared to the other DRL schemes using DQN,
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Fig. 8. EE achieved in joint and non-joint optimizations of SA and RCs.

SARSA, and DDPG algorithms, the proposed DRL framework
significantly improves the achievable EE. For instance, when
𝑝𝑠 = 1 W, the average EE in the proposed scheme reaches
to 7.1 bits/J, which is approximately 4.4%, 6.0%, and 7.7%
greater than those achieved using DDPG, SARSA, and DQN
algorithms, respectively.

Fig. 8 depicts the achievable EE in joint and non-joint
optimization schemes of SA and RC. Non-joint optimization
schemes of SA and RC are implemented by fixing each of the
variables and fully searching to determine the best remained
variable. The results reveal that joint optimization of SA
and RC significantly improves the achievable EE compared
to single optimizations of SA and RC. Remarkably, as the
transmit power increases, the performance gain in terms of the
achievable EE becomes greater. For instance, at the transmit
power of 0.5 W, the achievable EE gain of the proposed
joint optimization scheme over the fixed RC and fixed SA
schemes is approximately 11.1% and 20.0%, respectively,
which increases to 22.4% and 31.5%, respectively at the
transmit power of 1 W. These results reflect the effectiveness
in terms of EE of the proposed joint optimization scheme
applying for practical systems with high transmit power.

Fig. 9 depicts the stability of the achievable EE. The figure
shows that the EE achieved in the proposed scheme signif-
icantly surpasses that of the existing algorithms, including
the random decision, greedy, fixed SA, fixed RC, and SCA
approaches. In addition, the proposed scheme exhibits the
greatest stability with the fewest outliers. Notably, the achiev-
able EE in the proposed scheme is approximately 6.0 bits/J,
which is closely aligns with that of the optimum scheme
obtained using exhaustive search algorithm.

Fig. 10 shows a comparison between NOMA and OMA in
the context of a BackCom system under various RD transmit
power. The results reveal that integrating NOMA with a
BackCom system significantly increases data rate compared to
the OMA scheme. Specifically, when the RD transmit power
is 1 W, NOMA achieves a data rate of 5.35 bps, which
is approximately 38.6% higher than that obtained using the
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Fig. 9. Stability of the achievable EE.
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system.

OMA scheme. This improvement is attributed to NOMA’s
enhancement of the access capacity for BDs and the spectral
efficiency of the BackCom system. The adoption of NOMA,
which enhances data rate compared to OMA, leads to shorter
transmission time and reduces energy consumption during data
transmission.

D. Complexity and Practical Running Time

After Algorithm 1 converges, we can employ its trained
weight to make the SA and RC action output. Specifically,
for each step in the exploitation phase, the DRL agent de-
livers an optimal joint action of SA and RC as a∗ (𝑡) =

argmaxaQ𝑝 (𝑆(𝑡), a; 𝜃𝑝). The complexity of obtaining the op-
timal solution is calculated according to the size of the state
vector, 𝑆(𝑡), action vector, a(𝑡), and weight matrix, 𝜃𝑝 , as
O(𝐾2𝑀𝑁). This term is polynomial where 𝐾 is the number
of BDs and 𝑀 and 𝑁 represent the number of nodes in the two
hidden layers of the primary DQN. Moreover, communication

TABLE I
TIME CONSUMPTION FOR ACTION SELECTION

Scheme Action time
Random decision 0.00186 s
Greedy approach 0.00535 s
SCA approach 0.03671 s
Exhaustive search 1.35685 s
Proposed scheme 0.01378 s

overhead is significantly reduced because the RD agent does
not require exact CSI data for training the optimal policy.

Moreover, we compute the action decision time of various
schemes and present the results in Table I. The random
decision and greedy approach schemes exhibit the shortest
action decision time, with durations of 0.00186 and 0.00535 s,
respectively. Regrettably, their performance does not match
those of other schemes. Furthermore, the exhaustive search
scheme requires the longest time to deliver action, which is
up to 1.35685 s. Therefore, despite its ability to yield the best
action, it is unsuitable for practical IoT systems. In addition,
the proposed scheme outperforms the SCA approach scheme,
delivering action more rapidly in only 0.01378 s, which is
the inference time needed by the trained model to derive the
SA and RC. Notably, the training time is not considered the
running time of the proposed scheme because the training
process involves collecting experience data and optimizing
model weight parameters for the optimal policy of SA and
RC. When the training is complete, we use model weight
parameters to produce the SA and RC. Therefore, the proposed
scheme is most suitable for practical IoT systems because of
its ability to provide near-optimal action within a short time.

V. CONCLUSIONS

This paper proposes a novel energy-efficient resource al-
location scheme for 6G NOMA-assisted BackCom networks.
The scheme maximizes EE by jointly optimizing the SA and
RCs of BDs. To address the practical energy harvesting sce-
nario, where BDs are equipped with batteries, we formulated
a challenging joint optimization problem of SA and RCs.
This problem involved nonconvexity and system dynamics,
making it difficult to solve straightforwardly. Therefore, we
applied a DRL-based strategy to develop an efficient DDQN
algorithm that learned the optimal joint action in the long
term. During training, we estimated the CSI instead of relying
on the computationally expensive perfect CSI that reduced
the communication overhead raised in collecting exact CSI
data. Extensive simulation results demonstrated reliable con-
vergence. Compared to conventional approaches, such as the
random decision, greedy, DQN, and SCA approaches, the
proposed scheme significantly improved EE. The EE achieved
in the proposed scheme was relatively close to that achieved
in the optimum scheme adopted exhaustive search algorithm.
Furthermore, the proposed scheme provides the most suitable
solution for practical IoT systems because of its near-optimal
result and rapid action decision time.
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