
1

Energy-Efficient and Low-Complexity Transmission
Control with SWIPT-NOMA for Green Cellular

Networks
Thi My Tuyen Nguyen, The Vi Nguyen, Wonjong Noh, Senior Member, IEEE, and Sungrae Cho, Member, IEEE

Abstract—In this study, we consider an energy-efficient and
low-complexity transmission control in a SWIPT-NOMA-based
green cellular network (GCN) that consists of a green base
station (GBS) and green users (GUEs). First, we formulate a
non-convex problem that minimizes transmit power consump-
tion while supporting minimum downlink user service rate,
downlink data queue stability, and user battery availability.
Then, we transform the problem into a Lyapunov-drift-penalty
minimization problem, which can determine a new resource
allocation scheme that balances transmit power consumption and
queue stability. Second, the Lyapunov-drift-penalty problem is
decomposed into subchannel assignment, power allocation, and
power splitting (PS) ratio control problems. The subchannel
assignment problem is solved using a matching theory-based low-
complexity algorithm. The power allocation and PS ratio control
problems are solved using the alternating optimization (AO)
approach and bisection method. This decomposed subproblem-
based control also enables distributed control between the GBS
and GUEs. Third, we prove the convergence, optimality, and
polynomial computation complexity of the proposed algorithm.
Lastly, we demonstrate that the proposed control outperforms the
benchmark controls regarding transmit power consumption and
the achievable rate. Owing to the optimality and low complexity,
the proposed control can be efficiently applied to large-scale and
distributed GCNs in sixth-generation environments.

Index Terms—Green Cellular Network, Lyapunov Optimiza-
tion, NOMA, SWIPT, Queue Stability

I. INTRODUCTION

Because of the exponentially increasing internet of things
(IoT) devices, designing energy-efficient green communica-
tion systems (GCNs) that consist of a green base station
(GBS) and green users (GUEs) is increasingly becoming
important in upcoming sixth-generation (6G) environments.
Some of the representative future GCNs could be unmanned
aerial vehicle-based networks, low-earth orbit/geostationary-
earth orbit satellite-based networks, underwater networks, and
spacecraft networks. These networks are envisioned to support
mission-critical applications, autonomous driving, industrial

This research was supported by the MSIT (Ministry of Science and ICT),
Korea, under the ITRC (Information Technology Research Center) support
program (IITP-2023-RS-2022-00156353) supervised by the IITP (Institute for
Information Communications) and National Research Foundation of Korea
(NRF) grant (NRF-2020R1F1A1069119). It was also supported by the Chung-
Ang University Young Scientist Scholarship in 2021. (Corresponding authors:
Wonjong Noh and Sungrae Cho.)

T. M. T. Nguyen, T. V. Nguyen, and S. Cho are with the School of Computer
Science and Engineering, Chung-Ang University, Seoul 156-756, South Korea
(e-mail: tuyen@uclab.re.kr, tvnguyen@uclab.re.kr, srcho@cau.ac.kr).

W. Noh is with the School of Software, Hallym University, Chuncheon
24252, South Korea (e-mail: wonjong.noh@hallym.ac.kr).

automation, public safety, remote monitoring, and vehicle-
to-everything (V2X) communication in network environments
where power supply is limited [1].

Several paradigm-shifting technologies, such as nonorthog-
onal multiple access (NOMA) and simultaneous wireless in-
formation and power transfer (SWIPT), must be considered
to design energy-efficient green systems. Recently, NOMA
technology has been introduced to boost the system capacity
over orthogonal multiple access (OMA) systems with re-
stricted resources. Contrary to OMA methods, NOMA can
minimize the transmission latency for each user by offering
additional access in the power domain. However, because of
the design complexity of NOMA, in particular with massive
multiple-input multiple-output (MIMO) [2], transitioning from
an OMA-GCN to a NOMA-GCN presents many challenges.
Second, SWIPT provides a promising solution to energy-
constrained networks, such as the IoT networks and wire-
less sensor networks. In addition, SWIPT allows the energy-
constrained node to extract information and energy from the
received radio frequency (RF) signals simultaneously. Receiver
architectures based on time switching (TS) and power splitting
(PS) were proposed to realize the SWIPT [3].

A. Related Works
Recent studies have combined NOMA and SWIPT to

prolong the lifetime of the energy-constrained networks and
support massive connectivity. Mao et al. [4] focused on
energy-efficient resource allocation. They adopted a non-linear
EH model and proposed a penalty function-based resource
allocation algorithm. Song et al. [5] suggested a joint power
allocation and sensing time optimization algorithm based on a
dichotomy method to achieve the optimal resource allocation
solution in a NOMA-based SWIPT system. Tang et al. [6],
[7] investigated joint power allocation and TS or PS controls.
They aimed to maximize the total transmission rate and
harvested energy considering the maximum transmit power
budget, minimum data rate, and minimum harvested energy
per terminal. Andrawes et al. [8] optimized power allocation
and PS to maximize energy efficiency under the eligible
spectral efficiency using the genetic algorithm. The outage
probability for the near and far users was considered for the
optimization process. Diamantoulakis et al. [9] investigated
proportional fairness maximization among users in uplink
NOMA-SWIPT. In particular, some studies [10]–[12] have
investigated the secrecy sum-rate optimization problem for
SWIPT-enabled NOMA systems.
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Furthermore, cooperative SWIPT-based NOMA has also
attracted considerable research interest. In [13], the application
of SWIPT to NOMA networks where users are spatially
randomly located was investigated. It confirmed that the op-
portunistic use of node locations for user selection can achieve
a low outage probability and deliver superior throughput
compared to the random selection scheme. Do et al. [14]
studied the performance of a cell-edge user in a two-user
multiple-input single-output (MISO) NOMA system, where a
cell center user acts as a relay to assist the cell-edge user. In
addition, its relaying operation is powered by a hybrid TS/PS
SWIPT protocol, and transmit antenna selection protocols
are employed. Some researchers [15], [16] have considered
SWIPT-enabled full-duplexing cooperative NOMA systems.
They derived the outage probabilities and ergodic rates of
both the near and far users under adaptive and fixed power
allocation strategies.

Understanding the influence of hardware impairments and
imperfect channel state information (CSI) on the SWIPT-
assisted NOMA systems has recently attracted substantial
interest [17]. Due to hardware impairments and imperfect CSI,
successive interference cancellation (SIC) cannot be error-free.
There is residual power from incompletely canceled previous
symbols. This SIC error can propagate and increase with a
rising number of simultaneously connected users [18]. Guo et
al. [19] focused on analyzing the combined effect of hardware
impairments and imperfect CSI on a SWIPT-assisted adaptive
NOMA/OMA system with user selection. In the NOMA mode,
the near users employ the PS receiver architecture to harvest
energy and act as a decode-and-forward relay to forward
the far users’ signals. In addition, in the existing wireless
communication system, CSI at the transmitter is obtained
by feedback links, but the finite-rate uplink cannot precisely
receive the instantaneous perfect CSI because of the limited
resources and quantization errors. Therefore, Zhou et al. [20]
employed statistical CSI that can be easily and accurately
obtained. Xu et al. [21] proposed the imperfect CSI-based
energy-efficient resource allocation scheme in NOMA-based
device-to-device networks with SWIPT.

Some researchers [22], [23] have considered data-buffer-
aided communications in SWIPT-NOMA networks, which has
attracted considerable research attention because it opens up
a new degree of freedom to improve the system capacity
and energy efficiency. However, most previous studies have
assumed that the harvested energy could be used immediately
within one transmission block, leading to poor performance in
terms of long-term power consumption. Therefore, Ren et al.
[24] formulated a long-term time-average sum-rate maximiza-
tion problem, guaranteeing the stability of all users’ data and
energy queues. Then, an online scheduling scheme based on
the Lyapunov optimization framework was proposed to solve
the long-term stochastic optimization problem. Accordingly,
control decisions and resource allocations were performed
according to the real-time CSI and buffer states. For the
buffer-aided relaying system, the relay can adaptively select
the operation mode between the relay reception and relay
transmission based on the current CSI, which enables a larger
network throughput at the cost of an increased queueing

delay. This approach motivated [25], who formulated a long-
term time-average power consumption minimization problem
considering the data and energy queue causality, peak transmit
power constraint, and transmission mode selection. To make
the problem easier to be handled, they demonstrated how
to transform the long-term time-average power consumption
minimization problem into a real-time optimization problem
using the Lyapunov optimization framework. On this basis,
the buffer-aided adaptive transmission scheme was derived.

B. Motivation and Contribution

To our knowledge, no study has simultaneously considered
energy efficiency and queue stability in the non-linear energy
harvesting SWIPT-NOMA based GCNs. Therefore, we were
motivated to study and develop an energy-efficient and queue-
stable SWIPT-NOMA control scheme while satisfying impor-
tant quality-of-service (QoS) requirements in GCNs. The key
aspects of the proposed method and that of the other existing
studies are compared in Table I. The main contributions can
be summarized as follows:

• In this work, we formulate a non-convex problem that
minimizes transmit power consumption while supporting
minimum downlink user rate, downlink data queue stabil-
ity, and user battery availability. Then, we transform the
long-term stochastic control problem into a Lyapunov-
drift-penalty minimization problem. This approach per-
forms a new resource allocation control through an op-
portunistic slot-by-slot decision while balancing data and
the battery queue stability and power consumption.

• We decompose the problem into subchannel assignment,
power allocation, and PS ratio control problems. We solve
the subchannel assignment problem using a matching
theory-based low-complexity algorithm. The power allo-
cation and PS ratio control problems are solved using an
alternating optimization (AO) approach and the bisection
method. The decomposed subproblem-based control en-
ables distributed controls between the GBS and GUEs.

• We rigorously prove that the proposed matching theory
and AO-based approach stably converges to a nearly-
optimal solution and demonstrate that the proposed con-
trol has polynomial computation complexity. Owing to
the optimality and low complexity of the proposed solu-
tion, the proposed controls can be efficiently applied to
large-scale and distributed GCNs in 6G environments.

• Through simulations, we demonstrate that the proposed
control outperforms benchmark controls regarding trans-
mit power consumption and achievable rate.

The remainder of this paper is organized as follows. Section
II introduces the system model and presents the problem for-
mulation. Next, Section III presents a Lyapunov optimization-
based problem reformulation and optimization. Section IV
proposes the matching theory and AO-based low-complexity
solutions for subchannel assignment, power allocation, and PS
ratio decisions in the SWIPT-NOMA system. Then, Section V
provides numerical results demonstrating the correctness of the
proposed control. Finally, conclusions are presented in Section
VI.
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TABLE I
COMPARISON OF THE PROPOSED AND EXISTING SWIPT-NOMA-BASED STUDIES.

Ref. System Optimization
objective EH model Optimization variables Optimization methods

[4] Cognitive-NOMA with
SWIPT

System power
consumption Non-linear (2) Transmit beam former, PS

control (4)
Semi-definite relaxation,

SCA (7)

[5] Cognitive-NOMA with
SWIPT Achievable throughput Linear (3) Power allocation, sensing

time
Lagrangian dual method,

bisection method

[6] NOMA-SWIPT Energy efficiency Linear Power allocation, TS
control (5)

AO algorithm (8),
Lagrangian dual method

[7] MC-NOMA with
SWIPT Achievable data rate Linear Power allocation, PS

control

AO algorithm, Lagrangian
dual method, and

deep-learning-based
method

[24] WPCN (1) with NOMA Time-average sum rate Linear

WPT and WIT (6) mode
selection, arrival rate

control, energy
beamforming, rate and

power allocations

Lyapunov-based online
optimization

[25]
Cooperative

NOMA-relay with
SWIPT

Time average power
consumption Linear

Rate allocation, power
allocation, and

transmission mode
selection

Lyapunov-based online
optimization

Proposed NOMA-SWIPT Time average power
consumption Non-linear

subchannel assignment,
power allocation, and PS

control

Lyapunov-based online
optimization, AO

algorithm, and matching
algorithm

(1) WPCN: wireless-powered communication network
(2) The harvested energy first increases almost linearly as the received power increases, and then saturates as the received power reaches a specific

level
(3) The harvested energy at the EH receiver is linearly and directly proportional to the received power
(4), (5) PS: power splitting and TS: time switching schemes in SWIPT
(6) WPT: wireless power transmission and WIT: wireless information transmission
(7), (8) SCA: successive convex approximation algorithm and AO: alternating optimization algorithm

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we elaborate on the proposed system model
in Fig. 1 and problem formulation.

A. Network Model

We consider a single-cell downlink system in which one
single-antenna GBS serves 2N single-antenna GUEs. We
assume that the whole cell region is divided into two regions
centered at the GBS: the inner region with radius ri and outer
region with radius ro. According to these regions, we assume
that users are classified as inner and outer users, respectively.
We assume that N inner GUEs and N outer GUEs exist,
and the set of GUEs is denoted as N ∆

= {1, . . . , 2N}.
The users are assumed to be grouped in pairs of one inner
and one outer user. The set of user groups is denoted as
G ∆
= {1, 2, . . . , N}. For g ∈ G, the g-th pair includes an outer

user, indexed as 2g − 1, and an inner user, indexed as 2g.
The total bandwidth B is equally divided into M subchannels,
denoted byM ∆

= {1, . . . ,M}, where M = N . The set of time
slots is denoted as T = {0, . . . , t, . . . , T − 1}. At each time
slot, all GUEs simultaneously receive data and energy from
the GBS and send their battery state information and CSI to
the serving GBS.

B. SWIPT-NOMA Model

According to the NOMA protocol [26], one subchannel can
be allocated to multiple users. However, to reduce the multiple-

access interference produced by subchannel sharing among
users and decrease the complexity of SIC decoding operations
at the receiver side, we consider that each subchannel can
be assigned to only one user pair [27]. In particular, we let
χm,i(t) ∈ {0, 1} denote the subchannel assignment indicator.
Specifically, χm,i(t) = 1 if user i is assigned to subchannel
m at time slot t and χm,i(t) = 0, otherwise. A pair of GUEs
can share one subchannel simultaneously and each user can
receive its data from only one subchannel,

N∑
g=1

(χm,2g−1(t) + χm,2g(t)) = 2,∀m ∈M, and

M∑
m=1

χm,i(t) = 1,∀i ∈ N .

(1)

Then, the superimposed signal sent from the GBS to the pair
g ∈ G on the subchannel m at time slot t, is given as

xm,g(t) = χm,2g−1(t)
√

pm,2g−1(t)sm,2g−1(t)

+χm,2g(t)
√
pm,2g(t)sm,2g(t), (2)

where (sm,2g−1(t), sm,2g(t)) and (pm,2g−1(t), pm,2g(t)) are
the message signals and powers allocated to the pair g with
GUEs 2g − 1 and 2g on the subchannel m at time slot t,
respectively. The power allocation for each user group must
satisfy the following constraints

pm,2g−1(t)− pm,2g(t) ≥ 0, ∀m, g, t (3)
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(a)

(b)

Fig. 1. System model. (a) Cell architecture, (b) Power-splitting SWIPT (PS-
SWIPT).

P0,g(t) ≤ Pmax
g . ∀g, t (4)

Constraint (3) ensures that the transmit power for outer GUE
must be greater than that for inner GUE. Constraint (4)
indicates the maximum power allocation for each user group,
denoted by Pmax

g . The received signal at GUE k on the
subchannel m is given by

ym,k (t) = hm,k(t)xm,g (t) + nm,k, ∀k ∈ {2g − 1, 2g},
(5)

where hm,k(t) denotes the complex channel coefficient from
the GBS to GUE k on the subchannel m at time slot t, which
is not varying during the time slot but changes from one slot to
another. In addition, nm,k represents complex additive white
Gaussian noise at GUE k with zero mean and variance σ2.

In this study, we adopt PS-based SWIPT, in which 1−ρk(t)
and ρk(t) are denoted as the PS ratio for the energy harvesting
(EH) and for the information decoding (ID) at GUE k at time
slot t, respectively. The received signals at GUE k for ID and
EH are respectively given by

yIDm,k(t) =
√
ρk(t)ym,k(t) + zm,k, (6)

yEH
m,k(t) =

√
1− ρk(t)ym,k(t), (7)

where zm,k ∼ CN
(
0, ϖ2

)
denotes the additional circuit noise

introduced by the ID receiver at GUE k, which is also modeled
as the additive white Gaussian noise.

The SIC decoding technique is employed to cancel user
interference for information decoding at the receiver. The SIC
decoding can be determined by the increasing order of channel
gains normalized by the noise variance [28]. Thus, the signal-

to-interference-plus-noise ratio (SINR) at GUE 2g− 1 (where
the signal of GUE 2g is treated as noise) is expressed as
follows:

SINRm,2g−1(t)

=
χm,2g−1(t)ρ2g−1(t)pm,2g−1(t)

ρ2g−1(t) [χm,2g(t)pm,2g(t) + Im,2g−1] + Jm,2g−1
, (8)

where Im,k
∆
= σ2

|hm,k(t)|2 and Jm,k
∆
= ϖ2

|hm,k(t)|2 ,∀k ∈ {2g −
1, 2g}. In addition, at GUE 2g, the signal of GUE 2g − 1 is
decoded with the following SINR:

S̃INRm,2g−1(t) =
χm,2g−1(t)ρ2g(t)pm,2g−1(t)

ρ2g(t) [χm,2g(t)pm,2g(t) + Im,2g] + Jm,2g
.

(9)

Then, the decoded signal of GUE 2g−1 is canceled out using
the SIC technique; hence, the SINR at GUE 2g is expressed
as follows:

SINRm,2g(t) =
χm,2g(t)ρ2g(t)pm,2g(t)

ρ2g(t)Im,2g + Jm,2g
. (10)

To ensure a successful SIC, the SINR of GUE 2g to decode
the signal of GUE 2g− 1 should be no less than that of GUE
2g − 1 to decode its own signal [29], [30]. Thus,

S̃INRm,2g−1(t) ≥ SINRm,2g−1(t). (11)

Therefore, the achievable rates at GUE 2g − 1 and 2g can be
written as

Rm,2g−1(t) = log2 (1 + SINRm,2g−1(t)) ,

Rm,2g(t) = log2 (1 + SINRm,2g(t))) .
(12)

The linear EH model has commonly been adopted in the
literature, where the total harvested energy is linearly pro-
portional to the received RF power. However, the EH circuit
presents non-linear end-to-end wireless power transfer in prac-
tice [31]. In this study, we consider a practical non-linear EH
model [32], which captures the non-linear phenomena caused
by the limitations of hardware circuits. Based on this model,
the harvested energy of GUE k from subchannel m at time
slot t is expressed as follows:

EHm,k(t) =

Hmax
k

1+e
−ak(PEH

m,k
(t)−bk)

− Hmax
k

1+eakbk

1− 1
1+eakbk

, (13)

where P EH
m,k denotes the received power for EH at GUE k,

which is given by:

P EH
m,k(t) = (1− ρk(t))

(
|hm,k(t)|2

(
χm,2g−1(t)pm,2g−1(t)

+ χm,2g(t)pm,2g(t)
)
+ σ2

)
, (14)

and Hmax
k is the maximum harvested power at GUE k

when the EH circuit reaches saturation. In addition, ak and
bk are parameters related to circuit specifications, such as
capacitance, resistance, and the diode turn-on voltage. They
can be obtained using a standard curve fitting tool.
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C. Queue Model

This paper considers two types of queues: the downlink data
queue and the energy queue.

1) Downlink Data Queue at GBS: The GBS separately
maintains the data queue for each GUE. In every time slot,
the data for each GUE arrives in the queue and is forwarded
to the GUE. In particular, the data queue for GUE i ∈ N at
time slot t, denoted by Qi(t), evolves as follows:

Qi(t+ 1) = [Qi(t)−Rm,i(t)]
+
+Ai(t), (15)

where a+
∆
= max{0, a}, Ai(t) is the number of arrived data at

time slot t, which is assumed to follow the Poisson distribution
with an arrival rate given by λi

∆
= E{Ai(t)}, and Rm,i(t) is

the service (departure) rate at time slot t.
2) Battery Queue for the GUE: Each GUE consumes

battery energy to collect and receive data from the GBS and
for EH. The GUE charges its battery energy using PS-SWIPT
for every time slot. We assume that the GUEs complete EH at
the end of each time slot and consume energy for operation at
the beginning of the next time slot. In time slot t, the harvested
energy EHm,i(t) cannot be used immediately. We let Bi(t)
be the energy stored in the battery of GUE i at the beginning
of time slot t. Then, the battery energy Bi(t+1) in time slot
t+ 1 can be described as follows:

Bi(t+ 1) = [Bi(t)− Ci(t)]
+
+ EHm,i(t), (16)

where Ci(t) denotes the consumed battery energy of the GUE
i in time slot t. Moreover, for each GUE i, the consumed
battery energy Ci(t) should satisfy the following condition:

0 ≤ Ci(t) ≤ Bi(t),∀t ∈ {1, 2, . . . }, (17)

which means that the consumed battery energy should be no
more than the available battery energy. In addition, battery
energy Bi(t) for each GUE satisfies

0 ≤ Bi(t) ≤ Bmax
i ,∀t ∈ {1, 2, . . . }, (18)

where Bmax
i represents the maximum battery capacity at GUE

i. Under the Constraints (17) and (18), the queue update for
Bi(t) in (16) can be rewritten as follows:

Bi(t+ 1) = min{Bi(t)− Ci(t) + EHm,i(t), B
max
i }. (19)

D. Problem Formulation

This work aims to minimize the long-term time average
transmission power at the GBS while supporting the user
quality of service, data queue stability, and battery energy
availability. To this end, at each time t, we control the
subchannel assignment χ(t), power allocation P(t), and PS
ratio ρ(t). Then, the optimization problem can be stated as
follows:

(P1) min
χ(t),P(t),ρ(t)

lim
T→∞

1

T

T−1∑
t=0

N∑
g=1

E{P0,g(t)} (20)

s.t.

lim
T→∞

1

T

T−1∑
t=0

E{Rm,i(t)} ≥ Rreq
i , ∀i (21)

lim
T→∞

1

T

T−1∑
t=0

E{Bi(t)− Ci(t) + EHm,i(t)} ≥ θi,∀i

(22)
pm,2g−1(t) ≥ 0, pm,2g−1(t) ≥ 0, ∀m, g, t (23)
0 ≤ ρi(t) ≤ 1, χm,i(t) ∈ {0, 1}, ∀m, i, t (24)
Qi(t) is stable, ∀i (25)
(1), (3), (4), (11), (26)

where P0,g(t)
∆
= χm,2g−1(t)pm,2g−1(t) + χm,2g(t)pm,2g(t),

E{·} denotes the statistical expectation. In addition, χ(t) ∆
=[

χg(t)
]
g∈G denotes the subchannel assignment matrix, where

χg(t)
∆
= [χm,2g−1(t), χm,2g(t)]. Further, P(t)

∆
= [pg(t)]g∈G

represents the power allocation matrix, where pg(t)
∆
=

[pm,2g−1(t), pm,2g(t)] and ρ(t)
∆
= [ρg(t)]g∈G indicates the

PS ratio matrix, where ρg(t)
∆
= [ρ2g−1(t), ρ2g(t)]. Constraints

(21) and (22) require that the minimum long-term average rate
for each user i and the expected amount of remaining energy in
the battery of each user i should be greater than the required
minimum rate Rreq

i and the minimum energy threshold θi,
respectively. Constraint (25) indicates that the data queue for
each user should be stable. A queue is stable (there is no data
overflow) if the long-term average of output data is greater
than or equal to the long-term average of the input data [33],
which motivates the definition of mean rate stability, which is
presented in a later section.

Problem (P1) is challenging to solve directly. Because it
contains continuous variables, P (t) and ρ(t), and discrete
variable χ(t). Therefore, (P1) is a mixed-integer programming
problem. Second, the expectation operator and non-convex
terms appear in the objective function and Constraints (11),
(21), and (22). Third, feasible solutions should satisfy the
queue stability condition. To address the above challenges, we
applied the Lyapunov optimization framework [33], which has
advantages compared with other methods, such as stochastic
dynamic programming, calculus of variation-based control,
and reinforcement learning for stochastic control-type prob-
lems. Specifically, the Lyapunov approach can provide a way
to solve a long-term stochastic control problem in a way
that solves an instantaneous and opportunistic online control
problem. In addition, Lyapunov control enables a control that
ensures the system stability in terms of various types of real
and virtual queues. Furthermore, because of the possibility of
online control, Lyapunov control has much less computational
complexity.

III. LYAPUNOV OPTIMIZATION-BASED ALGORITHM

In this section, before applying the Lyapunov optimization
to solve Problem (P1), we first transform Constraints (21)
and (22) into queue stability problems [33]. In particular, for
each user i, the virtual queues for the data rate and battery
constraints are denoted by Yi(t) and Zi(t), respectively, with
the following update equations:

Yi(t+ 1) = [Yi(t)−Rm,i(t) +Rreq
i ]

+
, (27)

Zi(t+ 1) = [Zi(t)−Di(t) + θi]
+
, (28)
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where Di(t)
∆
= Bi(t)−Ci(t)+EHm,i(t). According to [33],

Yi(t) and Zi(t) are mean rate stable if limT→∞
E{Yi(T )}

T =

0 and limT→∞
E{Zi(T )}

T = 0, respectively. Then, using the
following lemma, we can prove that Constraints (21) and (22)
are satisfied if the corresponding virtual queues are mean rate
stable.

Lemma 1. For all i ∈ N , if Yi(t) and Zi(t) are mean rate
stable, Constraints (21) and (22) are satisfied, respectively.

Proof. Please see Appendix A.

To proceed with Lyapunov optimization, we first define
a concatenated vector of the general and virtual queues as
Ω(t)

∆
= [Qi(t), Bi(t), Yi(t), Zi(t) : i ∈ N ] and then define the

corresponding Lyapunov function as follows [33]:

L(Ω(t))
∆
=

1

2

[∑
i∈N

w1,iQ
2
i (t) +

∑
i∈N

w2,i (B
max
i −Bi(t))

2

+
∑
i∈N

w3,iY
2
i (t) +

∑
i∈N

w4,iZ
2
i (t)

]
, (29)

where {wj,i}4j=1 are positive weights to ensure that the queues
are in the same order of magnitude. This function measures
queue congestion in the network, which is large when at
least one queue backlog is large and is small when all queue
backlogs are small. The one-slot conditional Lyapunov drift at
time slot t can be denoted as

∆(Ω(t))
∆
= E {L(Ω(t+ 1))− L(Ω(t))|Ω(t)} . (30)

This function represents the change in the Lyapunov function
from one slot to the next, given the current state Ω(t).
Then, we define the drift-plus-penalty expression, denoted
as ∆V (Ω(t)), which is the weighted sum of the conditional
Lyapunov drift and total power consumption at time slot t:

∆V (Ω(t))
∆
= ∆(Ω(t)) + V E

{
N∑

g=1

P0,g(t)|Ω(t)

}
, (31)

where V is a non-negative control parameter representing how
much we emphasize minimizing the transmit power at the
GBS. To stabilize the queues while minimizing the transmit
power at the GBS, we aim to minimize the drift-plus-penalty
function ∆V (Ω(t)). First, we propose an upper bound for the
drift.

Lemma 2. The upper bound of ∆V (Ω(t)) for all t is given
by

∆V (Ω(t)) ≤ ξ + V E

{
N∑

g=1

P0,g(t)|Ω(t)

}
+
∑
i∈N

w1,iQi(t)E
{
Ai(t)−Rm,i(t)|Ω(t)

}
+
∑
i∈N

w2,i (B
max
i −Bi(t))E {Ci(t)− EHm,i(t)|Ω(t)}

+
∑
i∈N

w3,iYi(t)E {Rreq
i −Rm,i(t)|Ω(t)}

+
∑
i∈N

w4,iZi(t)E {θi −Di(t)|Ω(t)} , (32)

where ξ is a positive constant that satisfies the following for
all t:

ξ =
1

2

∑
i∈N

[
w1,i

(
R̂2

m,i + Â2
i

)
+ w2,i

(
Ĉ2

i + ÊH
2

m,i

)
+ w3,i

(
(Rreq

m,i)
2 + R̂2

m,i

)
+ w4,i

(
B̂2

i + ÊH
2

m,i +
θ2i
2

)]
,

with Âi, Ĉi, ÊHm,i, R̂m,i, and B̂i are the maximum val-
ues of E{Ai(t)},E{Ci(t)},E{EHm,i(t)},E{Rm,i(t)}, and
E{Bi(t)}, respectively.

Proof. Please see Appendix B.

From the above lemma, the drift-plus-penalty ∆V (Ω(t))
has an upper bound for all t. Thus, instead of minimizing
∆V (Ω(t)) at each time slot, the strategy is to minimize the
upper bound given on the right-hand side of (32), which can
be accomplished via the concept of the opportunistic mini-
mization of (conditional) expectation [33]. Then, the resulting
optimization problem at each time slot is stated as follows (the
time indicator t is omitted to simplify the notation):

(P2) min
χ,P,ρ

U(P,ρ,χ)
∆
=

N∑
g=1

Ug(χg,pg,ρg)

s.t. (1), (3), (4), (11), (23), (24),

where Ug(χg,pg,ρg)
∆
=
(
V P0,g −

∑
k∈{2g−1,2g} αkRm,k −∑

k∈{2g−1,2g} βkEHm,k

)
, αk

∆
= w1,kQk + w3,kYk, βk

∆
=

w2,k(B
max
k −Bk)+w4,kZk,∀k ∈ {2g− 1, 2g}. In this study,

we propose a subchannel assignment, power allocation, and PS
ratio control to minimize the long-term average power transmit
consumption by minimizing the above upper bound. Moreover,
the problem only depends on the current queue states, CSI,
and battery state information, facilitating an online algorithm
design.

It can be observed that Problem (P2) is non-convex and
highly coupled with three variables: subchannel assignment,
power allocation, and PS ratio. In addition, the subchan-
nel assignment variable is binary, which makes the prob-
lem even more challenging. To address this difficulty, we
decouple the problem into three subproblems: subchannel
assignment, power allocation, and PS ratio optimization. First,
a low-complexity subchannel assignment algorithm is pro-
posed based on one-to-one matching. Then, for the given
subchannel assignment, the power allocation and PS ratio are
jointly optimized using AO technique and the solutions can
be obtained in closed form or approximated using the low-
complexity bisection method. Moreover, the joint optimization
of the power allocation and the PS ratio can be performed
on each user group, which facilitates an efficient distributed
algorithm.

IV. PROPOSED ONLINE RESOURCE SCHEDULING
ALGORITHM

A. Matching-based subchannel Assignment

In this subsection, we apply the matching theory to de-
termine the optimal solution for subchannel assignment. For
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the given power allocation P and PS ratio ρ, optimization
Problem (P2) with respect to χ is reformulated as the
following maximization problem:

max
χm,i∈{0,1},

∀m,i

N∑
g=1

(
− V P0,g +

∑
k∈{2g−1,2g}

αkRm,k (33)

+
∑

k∈{2g−1,2g}

βkEHm,k

)
,

s.t. (1). (34)

In this study, we propose a low-complexity algorithm based
on the matching theory [34]. This problem can be formulated
as the one-to-one matching game between two sets of players,
which are the set of user groups G and set of subchannelsM.
Formally, the matching model is defined as follows.

Definition 1. In one-to-one matching, a matching φ is a one-
to-one correspondence from the set G∪M onto itself such that
the following conditions hold for every g ∈ G and m ∈M:

1) φ(g) = m if and only if φ(m) = g;
2) If φ(g) ̸= g, then φ(g) ∈M;
3) If φ(m) ̸= m, then φ(m) ∈ G.

From the above definition, Condition 1 indicates that user
group g is matched with subchannel m if and only if sub-
channel m is also matched with user group g. Conditions 2
and 3 indicate that any player not matched with itself must be
matched with a player in the opposite set.

1) Preference list: In this game, each player first collects
information from opposite players, then performs ranking
based on preference. The ranked list of preferences is called
the preference list, which is created according to the objective
function presented in (33). Specifically, a user group g prefers
subchannel m to m′ based on its utility, as follows:

m ≻g m′ ⇔ Φg(m) > Φg(m
′), (35)

where the utility of the user group g on subchannel m is
defined as follows:

Φg(m)
∆
=− V

∑
k∈{2g−1,2g}

pm,k +
∑

k∈{2g−1,2g}

αkRm,k

+
∑

k∈{2g−1,2g}

βkEHm,k,∀m ∈M, (36)

Accordingly, the preference list of user group g on subchannels
in M, denoted as PLU (g), can be generated by sorting the
utilities in descending order. The preference list of all user
groups in G on subchannels in M is denoted as PLU =
{PLU (g)}g∈G . Analogously, the preference for subchannel m
on two arbitrary user groups g and g′ ∈ G is defined as

g ≻m g′ ⇔ Φm(g) > Φm(g′). (37)

where the utility of subchannel m on user group g is defined
as follows:

Φm(g)
∆
=− V

∑
k∈{2g−1,2g}

pm,k +
∑

k∈{2g−1,2g}

αkRm,k

+
∑

k∈{2g−1,2g}

βkEHm,k,∀g ∈ G. (38)

Accordingly, the preference list for subchannel m on the user
groups in G is denoted as PLS(m). The preference list for all
subchannels in M on user groups in G is denoted as PLS =
{PLS(m)}m∈M.

Algorithm 1 Matching-based subchannel assignment algo-
rithm
Input: 1. Construct the preference list for user groups PLU

and subchannels PLS .
2. Initialize the set of user groups not matched to any
subchannel (A0 ∆

= G).
Output: The matching solution.

1: while A0 ̸= ∅ do
2: for g ∈ A0 do
3: User group g proposes to the most preferred

subchannel in its preference list PLU (g), which has
never before rejected it;

4: end for
5: for m ∈M do
6: if subchannel m has not been matched with any user

group then
7: Subchannel m keeps the proposed user group g

and removes it from A0;
8: else if subchannel m has been currently matched with

a group g̃
9: if subchannel m prefers g to g̃ according to its

preference list PLS(m) then
10: Subchannel m keeps g and rejects g̃;
11: Remove g from A0 and keep g̃ in A0;
12: Update PLU (g̃) by removing m;
13: else
14: Subchannel m keeps g̃ continually and rejects

g;
15: Update PLU (g) by removing m;
16: end if
17: end if
18: end for
19: end while

2) Matching-based Subchannel Assignment Algorithm: Af-
ter the preference list for each user group and subchannel is
constructed, the matching algorithm based on the well-known
Gale-Shapley algorithm [34], [35] is adopted. Specifically,
A0 denotes as the set of user groups not matched to any
subchannel. Each unmatched user group sends a proposal
to the most preferred subchannel according to its preference
list during the matching process. When any subchannel has
not been matched with any user group, the new proposal
user group is kept as a partner. Otherwise, when it has
been currently matched with a group, it chooses the most
preferred group based on its preference list and rejects the
other group. The process continues until no user group is
left in A0 (every user group has a partner). The algorithm
for subchannel assignment is summarized in Algorithm 1.
The proposed matching algorithm focuses on the one-to-one
matching between user groups and subchannels, whereas other
studies have focused on many-to-many (one) matching with
peer effects, where the agents care more about their own
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matching [36], [37]. The traditional stability (demonstrated in
Definition 3, Subsection IV-D) cannot be guaranteed in such
a matching type.

B. Optimizing Power Allocation in Each User Group

For the given PS ratio ρ and subchannel assignment χ,
the power allocation can be performed over each user group.
Specifically, the minimization Problem (P2) in a user group
g ∈ G with respect to (pm,2g−1, pm,2g) can be equivalently
rewritten as the following maximization problem:

min
pm,2g−1,pm,2g

V (pm,2g−1 + pm,2g)

− α2g−1 log2

(
1 +

ρ2g−1pm,2g−1

ρ2g−1 (p2g + Im,2g−1) + Jm,2g−1

)
− α2g log2

(
1 +

ρ2gpm,2g

ρ2gIm,2g + Jm,2g

)
−

β2g−1B2g−1H
max
2g−1

1 + e−a2g−1(PEH
m,2g−1−b2g−1)

−
β2gB2gH

max
2g

1 + e−a2g(PEH
m,2g−b2g)

(39)
s.t. pm,2g−1 + pm,2g ≤ Pmax

g , (40)

pm,2g−1 − pm,2g ≥ 0, (41)
pm,2g−1 ≥ 0, pm,2g ≥ 0, (42)

where P EH
m,k = (1− ρk)

(
|hm,k|2 (pm,2g−1 + pm,2g) +

σ2
)
,∀k ∈ {2g − 1, 2g}. Because this problem is non-

convex, it is difficult to solve analytically. To address this
challenge, the AO algorithm is adopted to determine the
optimal (pm,2g−1, pm,2g). However, we first define a new
variable psumg such that pm,2g−1 = psumg − pm,2g . With
such a new variable, we can obtain solutions more efficiently
by optimizing (pm,2g, p

sum
g ) instead of (pm,2g, pm,2g−1). The

solutions can be found in an alternative manner as follows.
1) Optimizing pm,2g for a Given psumg : For a given psumg ,

the optimization problem w.r.t. pm,2g is written as follows:

min
pm,2g

f(pm,2g)
∆
= α2g−1 log2 (ρ2g−1pm,2g + νm,2g−1)

− α2g log2 (ρ2gpm,2g + νm,2g) (43)
s.t. 0 ≤ pm,2g ≤ psumg /2, (44)

where νm,2g−1
∆
= ρ2g−1Im,2g−1 + Jm,2g−1, νm,2g

∆
=

ρ2gIm,2g + Jm,2g . To solve this problem, we first compute
the first-order derivative of f(pm,2g) with respect to (w.r.t.)
pm,2g and obtain

f ′(pm,2g)

=

[
(α2g−1 − α2g) ρ2g−1ρ2gpm,2g + α2g−1ρ2g−1νm,2g

− α2gρ2gνm,2g−1

]
log(2) (ρ2g−1pm,2g + νm,2g−1) (ρ2gpm,2g + νm,2g)

.

(45)

We define the numerator of (45) as

F (pm,2g)
∆
= (α2g−1 − α2g) ρ2g−1ρ2gpm,2g

+ α2g−1ρ2g−1νm,2g − α2gρ2gνm,2g−1. (46)

We propose the following lemma to obtain the optimal pm,2g .

Lemma 3. On the feasible region
[
0, psumg /2

]
, the function F

is a strictly increasing function if (α2g−1−α2g)ρ2g−1ρ2g > 0
and is a constant function if (α2g−1 − α2g)ρ2g−1ρ2g = 0.
Otherwise, it is a strictly decreasing function.

Proof. Please see Appendix C.

From the above lemma, according to the monotonicity of
the function F (pm,2g), we proceed to determine the optimal
solution p∗m,2g as follows:
Case 1: α2g−1 > α2g and ρ2g−1ρ2g ̸= 0, i.e., F (pm,2g) is
strictly increasing on

[
0, psumg /2

]
:

• If F (0) > 0, then F (pm,2g) > 0,∀pm,2g ∈
[
0, psumg /2

]
.

As a result, f ′(pm,2g) > 0,∀pm,2g ∈
[
0, psumg /2

]
, i.e., f

is strictly increasing. Therefore, p∗m,2g = 0.
• If F (0) ≤ 0 ≤ F (psumg /2), then p∗m,2g is the solution to

the equation F (pm,2g) = 0. Solving this equation yields
p∗m,2g =

α2gρ2gνm,2g−1−α2g−1ρ2g−1νm,2g

(α2g−1−α2g)ρ2g−1ρ2g
.

• If F (psumg /2) < 0, then F (pm,2g) < 0,∀pm,2g ∈[
0, psumg /2

]
. As a result, f ′(pm,2g) < 0,∀pm,2g ∈[

0, psumg /2
]
. Therefore, p∗m,2g = psumg /2.

Case 2: α2g−1 < α2g and ρ2g−1ρ2g ̸= 0, i.e., F (pm,2g) is
strictly decreasing on

[
0, psumg /2

]
:

• If F (psumg /2) > 0, then F (pm,2g) > 0,∀pm,2g ∈[
0, psumg /2

]
. As a result, f ′(pm,2g) > 0,∀pm,2g ∈[

0, psumg /2
]
. Thus, p∗m,2g = 0.

• If F (psumg /2) ≤ 0 ≤ F (0), then p∗m,2g =
argmin{f(0), f(psumg /2)}.

• If F (0) < 0, then F (pm,2g) < 0,∀pm,2g ∈
[
0, psumg /2

]
.

As a result, f ′(pm,2g) < 0,∀pm,2g ∈
[
0, psumg /2

]
. Thus,

p∗m,2g = psumg /2.

Case 3: α2g−1 = α2g or ρ2g−1ρ2g = 0:

• If α2g−1ρ2g−1νm,2g − α2gρ2gνm,2g−1 ≥ 0, then
f ′(pm,2g) ≥ 0, i.e., f is increasing on

[
0, psumg /2

]
. Thus,

p∗m,2g = 0.
• If α2g−1ρ2g−1νm,2g − α2gρ2gνm,2g−1 < 0, then
f ′(pm,2g) < 0, i.e., f is strictly decreasing on[
0, psumg /2

]
. Thus, p∗m,2g = psumg /2.

2) Optimizing psumg for a Given pm,2g: This part investi-
gates the optimal psumg . Given the optimal pm,2g found in the
previous part, we can derive the optimal psumg by solving the
following problem:

min
psum
g

fs(p
sum
g )

∆
=

V psumg − α2g−1 log2
(
ρ2g−1p

sum
g + νm,2g−1

)
−

β2g−1B2g−1H
max
2g−1

1 + e−ηm,2g−1psum
g −ξ2g−1

−
β2gB2gH

max
2g

1 + e−ηm,2gpsum
g −ξ2g

(47)
s.t. 2pm,2g ≤ psumg ≤ Pmax

g , (48)

where ηm,k
∆
= ak(1 − ρk)|hm,k|2, ξk

∆
=

ak
[
(1− ρk)σ

2 − bk
]
. Computing the first-order derivative of

fs(p
sum
g ) w.r.t. psumg yields

f ′
s(p

sum
g ) = V − α2g−1ρ2g−1

log(2)
(
ρ2g−1psumg + νm,2g−1

)
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−
ηm,2g−1β2g−1B2g−1H

max
2g−1e

−ηm,2g−1p
sum
g −ξ2g−1(

1 + e−ηm,2g−1psum
g −ξ2g−1

)2
−

ηm,2gβ2gB2gH
max
2g e−ηm,2gp

sum
g −ξ2g(

1 + e−ηm,2gpsum
g −ξ2g

)2 . (49)

Lemma 4. The function fs(p
sum
g ) is convex.

Proof. Please see Appendix D.

From the above lemma, as fs is convex on [2pm,2g, p
sum
g ],

f ′
s is increasing on this feasible region. Some specific cases

can occur, as follows.
• If f ′

s(2pm,2g) ≤ 0 ≤ f ′
s(P

max
g ), the optimal psumg can

be found by solving the equation f ′
s(p

sum
g ) = 0. This

equation can be solved using the bisection method.
• If f ′

s(2pm,2g) > 0, as f ′
2g−1 is increasing, f ′

s(p
sum
g ) ≥

f ′
s(0) > 0,∀psumg ∈ [2pm,2g, p

sum
g ], implying that fs is

strictly increasing on [2pm,2g, p
sum
g ], then psumg = 2pm,2g

is optimal.
• If f ′

s(P
max
g ) < 0, fs is strictly decreasing on

[2pm,2g, p
sum
g ], then psumg = Pmax

g is optimal.

C. Optimizing the Power Split Ratio in Each User Group
For a given power allocation P and subchannel assignment

χ, Problem (P2) can be equivalently reduced to the following
maximization problem:

min
ρ2g−1,
ρ2g

− α2g−1 log2

(
1 +

ρ2g−1pm,2g−1[
ρ2g−1 (pm,2g + Im,2g−1)

+ Jm,2g−1

])

− α2g log2

(
1 +

ρ2gpm,2g

ρ2gIm,2g + Jm,2g

)
−

β2g−1B2g−1H
max
2g−1

1 + e−a2g−1(PEH
m,2g−1−b2g−1)

−
β2gB2gH

max
2g

1 + e−a2g(PEH
m,2g−b2g)

(50)
s.t. ρ2g−1ρ2gIm,2g−1 + ρ2gJm,2g−1

≥ ρ2g−1ρ2gIm,2g + ρ2g−1Jm,2g, (51)
0 ≤ ρ2g−1 ≤ 1, 0 ≤ ρ2g ≤ 1, (52)

where P EH
m,k = (1− ρk)

(
|hm,k|2 (pm,2g−1 + pm,2g) +

σ2
)
,∀k ∈ {2g − 1, 2g}. Constraint (51) is rewritten from

Constraint (11) of (P1).
1) Optimizing ρ2g−1 for given ρ2g: Given a fixed ρ2g , the

optimization problem w.r.t. ρ2g−1 is written as follows:

min
ρ2g−1

fρ2g−1
(ρ2g−1)

∆
=

− α2g−1 log2

(
1 +

ρ2g−1pm,2g−1

ρ2g−1 (pm,2g + Im,2g−1) + Jm,2g−1

)
−

β2g−1B2g−1H
max
2g−1

1 + e−a2g−1(PEH
m,2g−1−b2g−1)

(53)

s.t. ρ2g−1 ∈ R2g−1. (54)

The feasible regionR2g−1 can be determined as follows. From
(51), we have

ρ2g−1 (ρ2gIm,2g + Jm,2g − ρ2gIm,2g−1) ≤ ρ2gJm,2g−1.
(55)

If ρ2gIm,2g + Jm,2g − ρ2gIm,2g−1 > 0, the upper bound of
ρ2g−1 can be derived from (55) as

ρ2g−1 ≤
ρ2gJm,2g−1

ρ2gIm,2g + Jm,2g − ρ2gIm,2g−1
. (56)

Combined with (52), the feasible region for
ρ2g−1 is R2g−1 =

[
0, ρmax

2g−1

]
where ρmax

2g−1
∆
=

min

{
ρ2gJm,2g−1

ρ2gIm,2g+Jm,2g−ρ2gIm,2g−1
, 1

}
. For the case

ρ2gIm,2g + Jm,2g − ρ2gIm,2g−1 ≤ 0, the inequality in
(55) implies that ρ2gJm,2g−1 ≥ 0, which holds for all
ρ2g−1 ∈ [0, 1]. Thus, the feasible region is R2g−1 = [0, 1].
After determining the feasible region for ρ2g−1, we can
derive the optimal solution. First, computing the first-order
derivative of fρ2g−1 w.r.t. ρ2g−1 yields

f ′
ρ2g−1

(ρ2g−1) =

−α2g−1

log(2)

[
E2g−1

ρ2g−1E2g−1 + Jm,2g−1
− F2g−1

ρ2g−1F2g−1 + Jm,2g−1

]
+

β2g−1B2g−1H
max
2g−1a2g−1G2g−1e

−a2g−1[(1−ρ2g−1)G2g−1−b2g−1](
1 + e−a2g−1[(1−ρ2g−1)G2g−1−b2g−1]

)2 ,

(57)

where E2g−1
∆
= pm,2g−1+pm,2g+Im,2g−1, F2g−1

∆
= pm,2g+

Im,2g−1, and G2g−1
∆
= |hm,2g−1|2

(
pm,2g−1+pm,2g

)
+σ2. The

following lemma demonstrates the convexity of the function
fρ2g−1

.

Lemma 5. The function fρ2g−1
(ρ2g−1) is convex.

Proof. The proof is similar to Lemma 4.

Using the above lemma, we provide the solution for both
feasible regions as follows:

• Feasible region 1: R2g−1 =
[
0, ρmax

2g−1

]
As fρ2g−1

is convex on R2g−1, f ′
ρ2g−1

is increasing on
R2g−1. Some specific cases can occur, as follows.
– If f ′

ρ2g−1
(0) ≤ 0 ≤ f ′

ρ2g−1
(ρmax

2g−1), the optimal ρ∗2g−1

can be found by solving equation f ′
ρ2g−1

(ρ2g−1) =
0. This equation can be solved using the bisection
method.

– If f ′
ρ2g−1

(0) > 0, we have f ′
ρ2g−1

(ρ2g−1) ≥
f ′
ρ2g−1

(0) > 0,∀ρ2g−1 ∈ R2g−1 (as f ′
2g−1 is increas-

ing). Thus, fρ2g−1 is strictly increasing, and ρ∗2g−1 = 0
is optimal.

– If f ′
ρ2g−1

(ρmax
2g−1) < 0 and fρ2g−1

is strictly decreasing,
then ρ∗2g−1 = ρmax

2g−1 is optimal.
• Feasible region 2: R2g−1 = [0, 1]

The solution for the second region R2g−1 = [0, 1] can be
obtained similarly.
– If f ′

ρ2g−1
(0) ≤ 0 ≤ f ′

ρ2g−1
(1), the optimal ρ∗2g−1 can

be found by solving equation f ′
ρ2g−1

(ρ2g−1) = 0 using
the bisection method.

– If f ′
ρ2g−1

(0) > 0, we have f ′
ρ2g−1

(ρ2g−1) ≥
f ′
ρ2g−1

(0) > 0,∀ρ2g−1 ∈ R2g−1 (as f ′
2g−1 is increas-

ing). Thus, fρ2g−1
is strictly increasing, and ρ∗2g−1 = 0

is optimal.
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– If f ′
ρ2g−1

(1) < 0 and fρ2g−1
is strictly decreasing, then

ρ∗2g−1 = 1 is optimal.
2) Optimizing ρ2g for a Given ρ2g−1: Finding the optimal

value of ρ2g is also performed similarly. Given a fixed ρ2g−1,
the optimization problem w.r.t. ρ2g is written as follows:

min
ρ2g

fρ2g
(ρ2g)

∆
=

− α2g log2

(
1 +

ρ2gpm,2g

ρ2gIm,2g + Jm,2g

)
−

β2gB2gH
max
2g

1 + e−a2g(PEH
m,2g−b2g)

(58)
s.t. ρ2g ∈ R2g. (59)

The feasible region R2g can be determined as follows. From
(51), we have

ρ2g (ρ2g−1Im,2g−1 + Jm,2g−1 − ρ2g−1Im,2g) ≥ ρ2g−1Jm,2g.
(60)

If ρ2g−1Im,2g−1 + Jm,2g−1 − ρ2g−1Im,2g > 0, the lower
bound of ρ2g can be derived from (60) as

ρ2g ≥
ρ2g−1Jm,2g

ρ2g−1Im,2g−1 + Jm,2g−1 − ρ2g−1Im,2g
. (61)

Combined with (52), the feasible region for ρ2g is R2g =[
ρmin
2g , 1

]
where

ρmin
2g

∆
=

ρ2g−1Jm,2g

ρ2g−1Im,2g−1 + Jm,2g−1 − ρ2g−1Im,2g
. (62)

For ρ2g−1Im,2g−1+Jm,2g−1−ρ2g−1Im,2g ≤ 0, this case can-
not occur because we always have ρ2g−1Im,2g−1+Jm,2g−1−
ρ2g−1Im,2g = ρ2g−1

σ2

|hm,2g−1|2 +
ϖ2

|hm,2g−1|2 −ρ2g−1
σ2

|hm,2g|2 >

0, as |hm,2g−1|2 < |hm,2g|2. Thus, we can conclude that the
feasible region for ρ2g is R2g = [ρmin

2g , 1]. Next, taking the
first-order derivative of fρ2g

(ρ2g) w.r.t. ρ2g yields

f ′
ρ2g

(ρ2g) =
−α2g

log(2)

[
E2g

ρ2gE2g + Jm,2g
− Im,2g

ρ2gIm,2g + Jm,2g

]
+

β2gB2gH
max
2g a2gG2ge−a2g [(1−ρ2g)G2g−b2g](

1 + e−a2g [(1−ρ2g)G2g−b2g ]
)2 ,

(63)

where E2g
∆
= pm,2g + Im,2g and G2g

∆
= |hm,2g|2

(
pm,2g−1 +

pm,2g

)
+ σ2. Similarly, we can prove that the function

fρ2g (ρ2g) is convex. The proof is omitted here for brevity.
Using the convexity of the function fρ2g (ρ2g), we provide the
solution for the feasible region R2g = [ρmin

2g , 1]. As fρ2g
is

convex onR2g , f ′
ρ2g

is increasing onR2g . Some specific cases
can occur, as follows.

• If f ′
ρ2g

(ρmin
2g ) ≤ 0 ≤ f ′

ρ2g
(1), the optimal ρ∗2g can

be found by solving the equation f ′
ρ2g

(ρ2g) = 0. This
equation can be solved using the bisection method.

• If f ′
ρ2g

(ρmin
2g ) > 0, we have f ′

ρ2g
(ρ2g) ≥ f ′

ρ2g
(ρmin

2g ) >
0,∀ρ2g ∈ R2g (as f ′

2g−1 is increasing). Thus, fρ2g
is

strictly increasing, then ρ∗2g = ρmin
2g is optimal.

• If f ′
ρ2g

(1) < 0 and fρ2g
is strictly decreasing, then ρ∗2g =

1 is optimal.
Finally, we discuss the distributed implementation of Algo-
rithm 2. As shown in Algorithm 2, except for the update

of subchannel assignment, the AO-based algorithm in Step 2
can be implemented parallelly and distributedly for each user
group. The proposed energy-efficient control with SWIPT-
NOMA is summarized in Algorithm 2, and its flow chart is
illustrated in Fig. 2.

Algorithm 2 Proposed energy-efficient control with SWIPT-
NOMA
Input: 1. The initial matching states for user groups are set

unmatched.
2. Initialize a feasible point (P 0,ρ0), set the iteration

index τ = 0; tolerance ε > 0.
3. Compute the objective value in (P2), i.e.,

U(P0,ρ0,χ0)
Output: The solution (χ∗,P ∗,ρ∗).

1: Step 1: Subchannel assignment
2: For given (P ,ρ), obtain the matching state χ using

Algorithm 1.
3: Step 2: Joint power allocation and PS ratio
4: Repeat
5: for g ∈ G
6: For a given

(
ρτ2g−1, ρ

τ
2g

)
and current matching state,

update
(
pτ+1
m,2g−1, p

τ+1
m,2g

)
with solutions given in

Subsection IV-B;
7: For a given

(
pτ+1
m,2g−1, p

τ+1
m,2g

)
and current matching

state, update
(
ρτ+1
2g−1, ρ

τ+1
2g

)
with solutions in

Subsection IV-C;
8: end for
9: Update U(Pτ+1,ρτ+1,χτ+1)

10: τ ← τ + 1;
11: Until |U(Pτ+1,ρτ+1,χτ+1)− U(Pτ ,ρτ ,χτ )| < ε.

D. Theoretical Analysis

1) Convergence analysis: To analyze the stability of the
proposed matching algorithm (Algorithm 1), we first define
stable matching [35] and prove that Algorithm 1 converges to
stable matching.

Definition 2 ( [35], p. 21 ). Given a matching φ, a user group
g and subchannel block the matching φ if they prefer to be
matched with each other, but are not matched under φ (i.e.,
m ≻g φ(g) and g ≻m φ(m)). The pair (g,m) is called a
blocking pair.

Definition 3 ( [35], p. 21 ). A matching φ is stable if no
blocking pair exists.

The following theorem states that the final matching φ
obtained from Algorithm 1 is stable.

Theorem 1 (Convergence). Algorithm 1 converges to a stable
matching φ within a finite number of iterations.

Proof. First, we can observe that Algorithm 1 eventually
converges to matching after a finite number of iterations
because the number of user groups and subchannels is finite,
and no user group proposes more than once to any subchannel.
In addition, the outcome is matching because at each step, each
user group is matched with at most one subchannel, and each
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Fig. 2. Flow chart of Algorithm 2.

subchannel is matched with at most one user group. Second,
we prove that the final matching φ generated by the algorithm
is stable. Suppose that a user group g and subchannel m are
not matched under φ, but g prefers to be matched with m
instead of the currently assigned partner under φ. This case
implies that m is acceptable to g. Then, g proposes to m before
proposing to the current partner. As g was not matched with m
when the algorithm ended, this implies that g was rejected by
m. Therefore, m must have been matched with g̃, providing
better utility than that offered by g. Therefore, m and g do
not block the matching φ. In other words, the matching φ is
stable, which completes the proof.

Next, we discuss the optimality of the matching algorithm,
which can be observed using the concept of weak Pareto op-
timality [38]. The optimality properties of the stable matching
hold for the proposing side (i.e., user groups). For every g,
we let ug(φ)

∆
= Φg(φ(g)) denote the utility of user group g

achieved by the matching φ and u
∆
= [u1, . . . , ug, . . . , uN ]T .

The definition of weak Pareto optimality is presented as
follows.

Definition 4 ( [39] ). A matching φ is weak Pareto optimal
if no other matching φ′ exists with u(φ′) ≥ u(φ), where the
inequality is component-wise and strict for at least one user.

Theorem 2 (Weak Pareto optimal). The stable matching φ
obtained from Algorithm 1 is weak Pareto optimal.

Proof. We assume a matching φ′ exists, providing better
utility than φ. Then, there is a user group g matched with
a subchannel m under φ, i.e., φ(g) = m, and another
subchannel m′ is matched with g under φ′ (i.e., φ′(g) = m′).
By this assumption, we have ug(φ

′) > ug(φ), which is
equivalent to Φg(m

′) > Φg(m) (i.e., m′ ≻g m). Under
the matching φ, we suppose that m′ is matched with some
user group g̃. Because m is matched with g under φ′,
Φm′(g) = Φm′(φ′(m′)) > Φm′(φ(m′)) = Φm′(g̃), (i.e.,
g ≻m′ g̃). Then, we have m′ ≻g m and g ≻m′ g̃ under

φ. Thus, (g,m′) is a blocking part under φ, contradicting the
assumption that φ is stable.

The convergence and optimality analysis of Algorithm 2 is
presented in the following.

Theorem 3 (Local optimality). Algorithm 2 converges to
a local optimal power allocation, PS ratio, and matching
solution.

Proof. From Theorem 1, the convergence of the matching-
based algorithm (Algorithm 1) was proved. The convergence
of Algorithm 2 also depends on Step 2. Next, we prove the
convergence of the iterative procedure in Step 2. We recall that
U(χ,P ,ρ) =

∑N
g=1 Ug(χg,pg,ρg). For each user group g

and given χg from the matching-based subchannel assignment
algorithm, at iteration t, we have

Ug(χg,p
τ
g ,ρ

τ
g)

(a)

≥ Ug(χg,p
τ+1
g ,ρτ

g)
(b)

≥ Ug(χg,p
τ+1
g ,ρτ+1

g ),
(64)

where relation (a) is due to pτ+1
g being the minimizer of Ug

for a given (χg,ρ
τ
g) and relation (b) is due to ρτ+1

g being
the minimizer of Ug for a given (χg,p

τ
g). Thus, we have

U(χ,pτ ,ρτ ) ≥ U(χ,pτ+1,ρτ+1). This outcome implies
that the objective function U is non-increasing after each
iteration. Moreover, the lower bound of the utility exists due
to the limited resources. Hence, Algorithm 2 is guaranteed to
converge.

2) Performance Analysis of Lyapunov Optimization: We
analyze the performance of the proposed algorithm based on
the Lyapunov optimization, including the performance gap
between the optimal transmit power and the transmit power
obtained by the proposed algorithm, the queue stability, and
the upper bound of the long-term average data queue length.

Theorem 4. Suppose that Problem (P1) is feasible,
E {L(Ω(0))} <∞ at initial time slot t = 0, and E{P0(t)} ≥
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TABLE II
SIMULATION PARAMETERS

Parameter Value

Bandwidth B 10 MHz
Path loss at distance d with carrier frequency fc PLfc(d) = 22.7 + 26 log10(fc) + 36.7 log10(d) dB

Battery energy availability threshold θi 10 mJ
Maximum battery capacity Bmax

i 100 mJ
Maximum power budget Pmax

g 15 dBm
Maximum harvested power at GUE Hmax

k 20 mW
Non-linear EH circuit specifications (ak, bk) [40] (150, 0.014)

Pmin > 0, where P0(t) =
∑N

g=1 P0,g(t). Then, we obtain the
following:
(a) The long-term averaged transmit power at the source

obtained by solving (P2) is upper bounded by the sum
of the minimum transmit power P opt

0 of Problem (P1)
and a positive constant, as follows:

lim sup
T→∞

1

T

T−1∑
t=0

E {P0(t)} ≤ P opt
0 +

ξ

V
, (65)

(b) All queues Yi(t), Zi(t), and Qi(t) are mean rate stable,
and Constraints (21), (22), and (25) are satisfied, respec-
tively.

(c) The long-term averaged data queue length is upper-
bounded by

lim sup
T→∞

1

T

T−1∑
t=0

∑
i∈N

E{Qi(t)} ≤
ξ + V (P opt

0 − Pmin)

ζ
.

(66)

Proof. Please see Appendix E.

From the above theorem, two observations are further
analyzed.

• Observation 1: Based on the result in (b), if Problem
(P2) is feasible and obtains an optimal solution, then all
queues are mean rate stable, which immediately implies
that the long-term average Constraints (21), (22), and (25)
in Problem (P1) are all guaranteed. The Constraints (21)
and (22) are satisfied due to Lemma 1.

• Observation 2: Based on the result in (a), we can de-
sign a control algorithm that can ensure nearly-optimal
power consumption arbitrarily close to P opt

0 by setting a
large value for parameter V (i.e., by making ξ

V small).
However, according to (c), the bound of the long-term
average queue backlog increases linearly in V , leading to
the performance-backlog tradeoff of [O( 1

V ),O(V )]. This
case is further verified in the simulation.

3) Complexity Analysis: The complexity of Algorithm 2
depends on the complexity of the bisection algorithm (for
determining the optimal power allocation and PS ratio) and
the matching algorithm (Algorithm 1) for subchannel as-
signment. First, the complexity of the bisection algorithm
is O (log((Rup −Rlower)/ϵ)), where Rup and Rlower de-
note the upper and lower bounds for the initial interval,
respectively, and ϵ denotes the predefined accuracy. Ac-
cordingly, for each user group g, the bisection algorithm

for determining psumg , ρ2g−1 and ρ2g has the complexi-
ties of O

(
log(Pmax

g /ϵ)
)
,O (log(1/ϵ)), and O (log(1/ϵ)),

respectively. Therefore, over N groups, the complexity is
O
(
N
[
log(Pmax

g /ϵ) + 2 log(1/ϵ)
])

. Second, for the sub-
channel assignment algorithm, the complexities for sort-
ing the preference list of a user group and subchannel
are O (M logM) and O (N logN), respectively. The total
length of the input preferences in Algorithm 1 is 2NM .
According to [41], the complexity for Algorithm 1 is
O(NM). Then, the total complexity for the Algorithm 2
is O

(
N
[
log(Pmax

g /ϵ) + 2 log(1/ϵ)
]
+NM

)
. Critically, the

joint optimization of power allocation and the PS ratio is
performed in a distributed manner for each user group; hence,
parallel computing can be used to accelerate the computing
process, particularly in large-scale systems.
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Fig. 3. Convergence behavior of Algorithm 2.

V. EVALUATIONS

A. Simulation Parameters and Comparison Schemes

This section evaluates the proposed scheme in terms of the
time average transmit power consumption and achievable rate.
We first consider the system of one GBS located at the origin
and six GUEs, including three inner and three outer users
located inside circles of radii of 10 and 15 m, respectively.
They are partitioned into N = 3 pairs, each including one
inner and one outer user. The total bandwidth B = 10
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Fig. 4. Data queue dynamics versus time.
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Fig. 5. Average data and battery queue length versus the Lyapunov parameter V .

MHz is equally divided into M = 3 subchannels so that the
bandwidth of each subchannel is Bc = B/M = 10/3 MHz.
The subchannels for outer and inner users are assumed to
undergo Rayleigh and Rician fading, respectively. Simulation
parameters were selected according to [42], as summarized in
Table II.

To validate the performance of the proposed scheme, we
used the following two comparison schemes:

• OMA-Controlled-SWIPT-Lyapunov: In this scheme, the
total bandwidth is divided into six orthogonal subchan-
nels, each assigned to each user. The proposed Lyapunov
optimization method was also applied to determine the
solution.

• OMA-Fixed-SWIPT: In this scheme, we used the same
OFDMA using SWIPT. Here, PS ratio is fixed, and the
power allocation at every time slot is determined by
setting the service data rate to be the rate of arrived data.

B. Simulation Results

Fig. 3 shows the convergence behavior of the proposed
algorithm, with λi ∈ {3, 5} (Mbps) and U is the value of
the objective function in (P2). As can be seen, Algorithm 2
converges after a small number of iterations, which demon-
strates the effectiveness of the proposed algorithm.

Fig. 4 shows the data queue dynamics over time under the
proposed control scheme. We consider two specific values of
the control parameter V ∈ {0.1, 5} with λi = 3 (Mbps) and
Pmax
g = 15 (dBm). In Fig. 4(a), for small value V , the system

focuses on stabilizing the data queue. Therefore, over time,
both queues have small variations and fluctuate around 1 Mb.
In contrast, in Fig. 4(b), for a larger value of V , the variation
is greater, especially for the outer user’s queue, because with
a high value of V , the system focuses on minimizing power
consumption rather than stabilizing the data queue. As a result,
the outer user, allocated with low power, can experience a
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Fig. 6. Average transmit power consumption and achievable rate versus the minimum energy battery threshold θi.

0.
1

0.
5 1 5 10 20 30 40 50 60 70 80

V

0

5

10

15

20

25

A
v
e

ra
g

e
 p

o
w

e
r 

c
o

n
s
u

m
p

ti
o

n
 (

m
W

)

Proposed

OMA-Controlled-SWIPT-Lyapunov

OMA-Fixed-SWIPT

(a) Power consumption

0.
1

0.
5 1 5 10 20 30 40 50 60 70 80

V

2

4

6

8

10
A

v
e

ra
g

e
 a

c
h

ie
v
a

b
le

 r
a

te
 (

M
b

p
s
)

Proposed

OMA-Controlled-SWIPT-Lyapunov

OMA-Fixed-SWIPT

(b) Achievable rate

Fig. 7. Average transmit power consumption and achievable rate versus the Lyapunov parameter V .

lower service rate leading to an increase in the queue length
over a period.

In Fig. 5(a), the average data queue length w.r.t. V is
evaluated under various data arrival rates. We set the values
of arrival rate λi ∈ {3, 5} (Mbps) and Pmax

g = 15 (dBm).
The average data queue length of the inner and outer users
increases as V increases. This fact matches with Theorem 4
in Section IV-D. Moreover, for the same value of V , a higher
arrival rate causes a higher average data queue length. In Fig.
5(b), the average battery queue length w.r.t. V is evaluated
under various data arrival rates λi ∈ {3, 5} (Mbps). The
average battery queue length of the inner and outer users
decreases as V increases because a higher value of V implies
lower allocated power. As a result, lower energy is charged to
the users’ battery. Moreover, for the same value of V , a higher
arrival rate causes a higher average battery queue length.

Fig. 6(a) shows the impact of the minimum battery energy

threshold θi on the average transmit power consumption with
λi ∈ {3, 5} (Mbps) and V = 5. We can observe that the
average transmit power consumption for inner and outer users
increases as θi increases. Fig. 6(b) shows the impact of the
minimum battery energy threshold on the average achievable
rate. The result reveals that as θi increases, the average
achievable rate of outer users increases, while that of inner
users is constant. With the fixed value of θi, the outer users
can archive a higher rate, while the inner users lose their
achievable rate. This is because as shown in Fig. 6(a), more
transmit power should be allocated to outer users to satisfy
the minimum battery energy level and data queue stability.

Next, we validate the performance of the proposed algo-
rithm compared with two baseline schemes. In Fig. 7, the
average power consumption and achievable rate are evaluated
w.r.t. V . We set λi = 3 (Mbps) and Pmax

g = 15 (dBm).
Fig. 7(a) reveals that, the average power consumption of
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the proposed control and OMA-Controlled-SWIPT-Lyapunov-
based control decreases as V increases, whereas that of the
OMA-Fixed-SWIPT-based method is constant. This outcome
is because the two former methods employ the Lyapunov
optimization method to maintain low power consumption with
a high value of V , whereas the latter method, which does not
rely on the value of V , only allocates power based on the
arrival rate to ensure the rate and battery energy requirements.
In Fig. 7(b), the achievable rate decreases as V increases, a
direct result of decreasing the transmit power consumption
from Fig. 7(a). Moreover, in both figures, we can see that
the proposed scheme outperforms the two baseline schemes
in terms of average transmit power consumption and the
achievable rate with a large value of V .

VI. CONCLUSIONS

This paper proposes a new resource allocation scheme
for SWIPT-NOMA-based GCNs. We first formulated a non-
convex problem that minimizes transmit power consumption
while supporting the minimum downlink user rate, down-
link data queue stability, and user battery queue stability.
We transformed the problem into a Lyapunov-drift-penalty
minimization problem and decomposed it into the subchannel
assignment, power allocation, and PS ratio subproblems. We
found the low-complexity solutions to these subproblems
and a nearly optimal solution using an AO-based framework
and the bisection method. We proved the solution’s conver-
gence, optimality, and polynomial computation complexity.
Last, through simulations, we demonstrated that the proposed
control outperforms benchmark controls regarding transmit
power consumption and the achievable rate. Owing to the low-
complexity and optimality of proposed solution, the proposed
controls can be efficiently applied to large-scale and distributed
GCN 6G environments.

APPENDIX A
PROOF OF LEMMA 1

Proof. According to the update of (27), we have

Yi(t+ 1)− Yi(t)

=

{
Rreq

i −Rm,i(t), if Yi(t) ≥ Rm,i(t)−Rreq
i

−Yi(t), if Yi(t) < Rm,i(t)−Rreq
i

≥ Rreq
i −Rm,i(t). (67)

Summing both sides of (67) over t ∈ {0, 1, ..., T −
1}, dividing by T , taking the expectation, and letting
T go to infinity yields limT→∞

E{Yi(T )}
T ≥ Rreq

i −
limT→∞

1
T

∑T−1
t=0 E {Ri(t)} . If the virtual queue Yi(t) is

mean rate stable, i.e., limT→∞
E{Yi(T )}

T = 0, we have
limT→∞

1
T

∑T−1
t=0 E {Ri(t)} ≥ Rreq

i . The same arguments
can be made for the virtual queue Zi, which completes the
proof.

APPENDIX B
PROOF OF LEMMA 2

Proof. Squaring the update equations in (15), (19), (27), and
(28), and applying the inequality max{a − b, 0}2 ≤ (a − b)2

yields

Q2
i (t+ 1)−Q2

i (t)

2
≤

R2
m,i(t) +A2

i (t)

2
+Qi(t) [Ai(t)−Rm,i(t)] , (68)

[Bmax
i −Bi(t+ 1)]2 − [Bmax

i −Bi(t)]
2

2
≤

Ci(t)
2 + (EHm,i(t))

2

2
+ [Bmax

i −Bi(t)][Ci(t)− EHm,i(t)],

(69)

Y 2
i (t+ 1)− Y 2

i (t)

2
≤

(Rreq
i )2 +R2

m,i(t)

2
+ Yi(t) [R

req
i −Rm,i(t)] , (70)

Z2
i (t+ 1)− Z2

i (t)

2
≤ Bi(t)

2 + (EHm,i(t))
2 +

θ2i
2

+ Zi(t)[θi −Di(t)]. (71)

Combining the inequalities from (68) to (71), we can obtain
the upper bound in (32) with constant β specified in (32). This
statement completes the proof.

APPENDIX C
PROOF OF LEMMA 3

Proof. Taking the first-order derivative of F (pm,2g)
with respect to (w.r.t.) pm,2g yields F ′(pm,2g) =
(α2g−1 − α2g) ρ2g−1ρ2g. Thus, if (α2g−1−α2g)ρ2g−1ρ2g > 0
then F ′(pm,2g) > 0 (i.e., F (pm,2g) is strictly increasing on[
0, psumg /2

]
). Moreover, if (α2g−1 − α2g)ρ2g−1ρ2g = 0, then

F (pm,2g) = α2g−1ρ2g−1νm,2g − α2gρ2gνm,2g−1, which is a
constant. Otherwise, it is strictly decreasing.

APPENDIX D
PROOF OF LEMMA 4

Proof. Computing the second-order derivative of fs(p
sum
g )

w.r.t. psumg yields

fs
′′(psumg )

=
α2g−1ρ

2
2g−1

log(2)
(
ρ2g−1psumg + νm,2g−1

)2

+

[
η2m,2g−1β2g−1B2g−1H

max
2g−1e

−ηm,2g−1p
sum
g −ξ2g−1

×
(
1− e−ηm,2g−1p

sum
g −ξ2g−1

)]
(
1 + e−ηm,2g−1psum

g −ξ2g−1
)3

+

[
η2m,2gβ2gB2gH

max
2g e−ηm,2gp

sum
g −ξ2g

×
(
1− e−ηm,2gp

sum
g −ξ2g

)]
(
1 + e−ηm,2gpsum

g −ξ2g
)3 (72)

From the second term of (72), we can see that 1 −
e−ηm,2g−1p

sum
g −ξ2g−1 ≥ 0 if PEH

m,2g−1 ≥ b2g−1, and 1 −
e−ηm,2g−1p

sum
g −ξ2g−1 < 0, otherwise. The second case cannot

be used since PEH
m,2g−1 is so small that satisfy the minimum

battery energy requirement. We also have a similar result
for the last term of (72). Therefore, we can conclude that
fs

′′(psumg ) ≥ 0, i.e., fs(psumg ) is convex.
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APPENDIX E
PROOF OF THEOREM 4

Before proving this theorem, we first provide a related lemma.

Lemma 6. [33], [43] Suppose that a point λ = {λi}i∈N is
strictly interior to capacity region Λ1, and λ+ ζ is still in Λ
for a ζ > 0. If Problem (P1) is feasible, then for any κ > 0, a
stationary randomized policy (χ∗(t),P ∗(t),ρ∗(t)) exists that
is independent of the queues, such that

E {P ∗
0 (t)|Ω(t)} = E {P ∗

0 (t)} ≤ P opt
0 + κ,

E{R∗
m,i(t)|Ω(t)} = E{R∗

m,i(t)} ≥ E{A∗
i (t)}+ ζ,

(73)

E
{
Rreq

i −R∗
m,i(t)|Ω(t)

}
= E

{
Rreq

i −R∗
m,i(t)

}
≤ κ,

E {θi −D∗
i (t)|Ω(t)} = E {θi −D∗

i (t)} ≤ κ,
(74)

where P ∗
0 (t), A∗

i (t), R
∗
m,i(t), and D∗

i (t) are the resulting
values under the policy.

Applying this lemma, we can prove the theorem as follows.
(a) From Lemma 6, we consider the policy
(χ∗(t),P ∗(t),ρ∗(t)) that satisfies (73)-(74). Then,
substituting these inequalities into the right-hand-side of
(32) and taking κ→ 0 yields

∆(Ω(t)) + V E {P0(t)|Ω(t)} ≤ ξ + V P opt
0 − ζ

∑
i∈N

w1,iQi(t)

≤ ξ + V P opt
0 . (75)

Taking expectation and summing over t ∈ {0, 2, ..., T − 1}
yields

E {L(Ω(T ))} − E {L(Ω(0))}+ V

T−1∑
t=0

E {P0(t)}

≤ T
(
ξ + V P opt

0

)
. (76)

By rearranging and dividing both sides of the above inequality
by TV , and letting T →∞, we obtain (65).

(b) We first demonstrate that limT→∞
E{Qi(T )}

T = 0 and
similarly, for Yi(t) and Zi(t). From (76), neglecting the non-
negative term V

∑T−1
t=0 E {P0(t)} yields

E {L(Ω(T ))} ≤ T
(
ξ + V P opt

0

)
+ E {L(Ω(0))} . (77)

By the definition of L(Ω(t)) in (29) and because E{Q2
i (t)} ≥

E{Qi(t)}2, we have
w1,i

2
E {Qi(T )}2 ≤ T

(
ξ + V P opt

0

)
+ E {L(Ω(0))} . (78)

Taking the square root and dividing both sides of the above
inequality by T yields

E {Qi(T )}
T

≤ 1

T

√
2T
(
ξ + V P opt

0

)
+ 2E {L(Ω(0))}

w1,i
. (79)

With T → ∞ and 0 < w1,i < ∞, we obtain
limT→∞

E{Qi(T )}
T = 0 because E {L(Ω(0))} <∞.

(c) From the first inequality in (75), taking the iter-
ated expectation and applying telescoping sums over t ∈

1The capacity region is defined as all data arrival rates, which ensures the
existence of a policy that stabilizes the networks [43], [44].

{0, 1, . . . , T − 1} for some T > 0 [33], we obtain the
following:

E {L(Ω(T ))} − E {L(Ω(0))}+ V

T−1∑
t=0

E {P0(t)}

≤ T
(
ξ + V P opt

0

)
− ζ

T−1∑
t=0

∑
i∈N

E{Qi(t)}.

Dividing both sides by ζT , where T →∞, we have

lim sup
T→∞

1

T

T−1∑
t=0

∑
i∈N

E{Qi(t)} ≤
ξ + V (P opt

0 − Pmin)

ζ
. (80)
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