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Abstract—One of the essential factors for enabling sixth-
generation systems is efficiently ensuring diverse quality-of-
service (QoS) performance metrics to support the upcoming
massive ultra-reliable low-latency communication (URLLC). This
work proposes efficient transmission control in intelligent re-
flecting surface (IRS)-assisted nonorthogonal multiple access
(NOMA) networks in the finite blocklength (FBL) regime that sta-
tistically guarantee stringent URLLC QoS requirements. Thus,
we formulate a nonconvex problem that maximizes the sum
effective capacity (SEC) while ensuring statistical delay QoS
constraints. To make the problem more tractable, we propose
a tight upper bound for the objective function based on Jensen’s
inequality and employ the concept of opportunistically minimiz-
ing an expectation. Then, we decompose the problem into two
subproblems: active beamforming at the base station and phase-
shift optimization at the IRS. Each subproblem is convexified
by employing slack variables, penalty functions, and linear
approximation, and solved using successive convex approxima-
tions. The subproblems are iteratively solved until convergence
using alternating optimization. The convergence to a suboptimal
stationary solution and the computing complexity of the proposed
algorithm are rigorously analyzed. Finally, extensive numerical
evaluations confirm that the proposed control in the FBL regime
significantly improves the SEC under various QoS parameters
compared to existing benchmark schemes. In particular, as the
number of antennas and IRS elements increases, the proposed
method becomes more efficient than the semi-definite relaxation-
based approach in terms of complexity and performance.

Index Terms—Finite blocklength coding, statistical quality-of-
service guarantee, ultra-reliable low-latency communication

I. INTRODUCTION

ULTRA-RELIABILITY low latency communication
(URLLC) is becoming increasingly critical in

upcoming sixth-generation communication systems due
to the exponential increase Internet of Things (IoT) devices
with strict latency and reliability requirements [1]. Some
representative URLLC services envisioned to support mission-
critical applications include autonomous driving, telesurgery
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systems, industrial automation, augmented reality, and virtual
reality. In URLLC systems, performance can be improved
in three ways: by improving throughput through resource
reuse, directly enhancing dependability, and directly reducing
latency [2]–[4]. Thus, paradigm-shifting technology, such as
nonorthogonal multiple access (NOMA), intelligent reflecting
surface (IRS)-enabled systems, and short-packet transmission,
can be considered.

Recently, NOMA technology was introduced to boost the
system capacity over orthogonal multiple access (OMA)
systems with restricted resources [5]. In contrast to OMA
methods, NOMA can reduce the transmission latency of
URLLC services by enabling multiple users to access the
same resource in the time, frequency, and spatial domains.
Specifically, power-domain NOMA employs the successive
interference cancellation (SIC) technique to decode the desired
signals at the receivers. In multi-antenna communications,
NOMA can be more efficient in exploiting limited spatial
degrees of freedom (DoFs) than space division multiple access
(SDMA), which is only applicable in the underloaded and
loaded scenarios when sufficient spatial DoFs are exploited
to mitigate the inter user-interference [6].

However, the random nature of the propagation environment
caused by multipath fading poses a significant challenge to
achieving high-reliability URLLC. The IRS is a potential
technique to address this challenge for URLLC [7]. Specif-
ically, the IRS is a meta-surface with a massive number of
reflecting components. By properly adjusting the phase shift of
all elements, the reflected signals can be added constructively
to the direct signal from the base station (BS) to improve
the received signal power for the intended users. Hence, the
signal-to-ratio is significantly enhanced. Even if the direct
link between transceivers is blocked or hindered, IRSs can
exploit the smart reflection to build a virtual line-of-sight link
between transceivers. Therefore, the IRS can reorganize the
wireless environment and convert random wireless channels
into partially predictable ones. Thus, the integration of IRSs
into a communication system improves reliability and reduces
packet retransmission and delay. In addition, most earlier
efforts optimized the Shannon capacity with assumptions of
an infinite blocklength and zero-error probability. If infinite
blocklength coding (IFBC) with vanishing error probability is
applied for URLLC applications, there are two problems. First,
the delay is underestimated because an extremely large code-
word incurs a large processing and transmission delay, which
is prohibitive in URRLC applications. Second, the reliability is
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overestimated because error-free transmission cannot be guar-
anteed for URLLC systems [8] Therefore, practical URLLC
systems must use finite blocklength (FBL) transmission [9].
Recent technology or communication protocols that operate
under the FBL regime must be studied to ensure URLLC
services [10]. Therefore, integrating the IRS and NOMA in
the FBL regime has merits for URLLC services.

A. Related Work and Motivation

Owing to the capability to improve spectral efficiency
considerably, a NOMA system can be used in conjunction with
an FBL code (FBC) to ensure the quality-of-service (QoS)
criteria for latency and reliability. In [11], a two-user downlink
NOMA system in the FBL regime was studied to optimize
the transmission rates and power distribution and investigate
the trade-offs between the transmission rate, decoding error
probability, and blocklength-based transmission delay. In [12],
a deep state-action reward-state-action learning strategy was
presented to optimize the uplink resource allocation in a
NOMA-aided URLLC system in the FBL regime. In a time-
varying network, the authors provided a reliable learning
technique to reduce the mean decoding error probability.

The topic of IRS-assisted URLLC systems for short-packet
communication is relatively new. Despite the interesting re-
sults on phase-shift control in IRS-aided communication, few
studies have investigated the performance of the URLLC
system in the FBL regime. The performance of the IRS-aided
URLLC system in a factory automation setting was analyzed
in terms of the average data rate and decoding error probability
[13], [14]. In [13], the authors analyzed the performance
with various cases, including Rayleigh, Rician, Nakagami-
m, and correlated fading channels under a limited channel
blocklength. In [14], the performance was assessed in the
presence of phase errors due to limited quantization levels
and hardware impairments in IRS components. Moreover, opti-
mization with various performance metrics for the IRS-assisted
URLLC system has also been considered. For instance, an
energy-efficiency maximization problem in a downlink IRS-
assisted URLLC system was considered in [15]. In [16],
the blocklength allocation and reflecting beamforming were
jointly optimized to minimize the total latency for all users
while guaranteeing their reliability.

The IRS can assist NOMA in improving communication
performance by facilitating the implementation of the NOMA
scheme via effectively aligning the direction of the user
channel vectors [26]. Due to the potential of the IRS and
NOMA, some research has focused on the integration of the
IRS and NOMA in URLLC networks [17]–[23]. In [17], the
authors proposed a resource allocation strategy for URLLC
services in IRS-aided NOMA networks. They aimed to maxi-
mize a weighted sum rate by jointly optimizing the reflection
coefficients of the IRS and transmission power allocation
of the BS. Moreover, the authors of [18] maximized the
sum throughput of all users in IRS-assisted NOMA-URLLC
networks using the same set of optimization variables. In [19],
the authors considered a STAR-IRS-aided uplink NOMA IoT
networks with FBL transmission. The authors investigated the

resource allocation design aiming to achieve high rate and low
error for rate-target and error-target IoT devices, respectively.
In [20], the authors proposed a joint optimization design,
where power allocation, transmission blocklength, receiving
beamforming, IRS reflection, and user pairing optimization
are jointly optimized to minimize the maximum decoding
error probability. In [21], the authors investigated an IRS-
asisted NOMA-based mobile edge computing (MEC) network
in the FBL regime. Accordingly, they formulated the energy
efficiency maximization problem under the constraints on the
codelength and maximum decoding error probability. In [22],
the authors proposed a spectral-efficient resource allocation
design for a simultaneous transmitting and reflecting (STAR)-
IRS-assisted multi-user multiple-input multiple-output (MU-
MIMO) downlink (DL) system subject to given QoS re-
quirements in terms of rate, latency, and reliability. In [23],
the authors investigated a resource allocation strategy for
an IRS-aided full-duplex (FD) NOMA URLLC system. The
sum rate maximization problem is formulated under given
latency and reliability requirements. However, most current
work on optimizing for IRS-aided NOMA-URLLC networks
(e.g., [15]–[21]) is based on alternating optimization (AO) and
semidefinite relaxation (SDR) methods. Nevertheless, Gaus-
sian randomization after using SDR is not guaranteed to obtain
a rank-one matrix and fails to generate a feasible solution in
some instances, which results in an impediment to the local
optimality of the overall algorithm.

In addition, existing studies (e.g., [11]–[18]) have only con-
sidered non-delay-sensitive-based performance metrics, such
as spectral efficiency and energy efficiency. In addition, the
current performance analysis based on only physical-layer
channel models can barely meet the delay-sensitive require-
ments of URLLC services [27]. For specific delay-sensitive
applications, arrival data must be stored in the queue buffer
until transmitted. In such cases, the system performance is
significantly influenced by the queuing behavior. Moreover,
due to the random variations in the wireless channel condi-
tions, statistically guaranteeing delay requirements should be
considered to provide a practical model for QoS. Therefore,
a new link-layer channel model, the effective capacity, was
introduced, which models the channel under the statistical
delay QoS constraints in terms of the queuing delay violation
probability [28]. Specifically, effective capacity determines
the maximum constant arrival rate that a service process can
support under statistical QoS constraints. The effective capac-
ity with statistical delay QoS guarantee in NOMA systems
was studied in [24], [25]. In [24], the authors proposed a
low-latency scheme in the FBL regime that combines the
advantages of NOMA and time-division multiple access. Two
scenarios were considered based on queuing behaviors that
address the error-probability minimization and effective ca-
pacity maximization problems. In addition, the authors of
[25] proposed two dynamic power allocation schemes under
the statistical delay QoS guarantee in an uplink NOMA
system with paired users. Specifically, they considered the sum
effective capacity (SEC) and effective energy efficiency under
statistical delay QoS constraints. However, these studies only
focused on the effective capacity under the statistical delay
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TABLE I
COMPARISON OF THE PROPOSED AND EXISTING STUDIES

Ref. URLLC NOMA IRS Multi-
antenna

BS

Imperfect
SIC

Statistical
delay QoS
guarantee

Performance metric Optimization method

[11] ✓ ✓ ✗ ✗ ✓ ✗ Throughput Closed-form solution
[12] ✓ ✓ ✗ ✗ ✗ ✗ Average decoding error probability Reinforcement learning

[13], [14] ✓ ✗ ✓ ✗ ✗ ✗ Average data rate/ error probability Performance analysis
[15] ✓ ✗ ✓ ✓ ✗ ✗ Energy efficiency AO, SCA, SDR
[16] ✓ ✗ ✓ ✗ ✗ ✗ Latency AO, SCA, SDR

[17], [18] ✓ ✓ ✓ ✗ ✗ ✗ Sum rate AO, SCA, SDR
[19] ✓ ✓ ✓ ✗ ✓ ✗ Sum rate AO, SCA, SDR,

penalty-based method
[20] ✓ ✓ ✓ ✓ ✗ ✗ Maximal decoding error probability SCA, SDR, Hungarian

matching-based method
[21] ✓ ✓ ✓ ✓ ✗ ✗ Energy efficiency AO, SDR, user clustering

algorithm
[22] ✓ ✓ ✓ ✓ ✓ ✗ Sum rate AO,SCA
[23] ✓ ✓ ✓ ✓ ✗ ✗ Sum rate AO, SCA, penalty-based

method
[24] ✓ ✓ ✗ ✗ ✗ ✓ Error probability/Effective capacity Lagrangian dual method
[25] ✗ ✓ ✗ ✗ ✗ ✓ Effective capacity Lagrangian dual method

This work ✓ ✓ ✓ ✓ ✓ ✓ Effective capacity AO, SCA, penalty-based
method

AO: alternating optimization algorithm, SCA: successive convex approximation algorithm, and SDR: semidefinite relaxation algorithm

QoS constraints for NOMA-URLLC systems without IRS
employment. In addition, the proposed solution is problem-
specific, which is challenging to extend to general scenarios,
such as multi-antenna and IRS-aided systems, which are
addressed in our study. Therefore, an efficient algorithm must
be developed for an optimal design in IRS-aided NOMA-
URLLC systems under statistical delay QoS constraints.

Moreover, most of the aforementioned works have assumed
that SIC can be performed perfectly, which is idealistic and
challenging to achieve in practical scenarios. In real-world
implementations, signal reception can be affected by various
impairments, e.g., fast varying channels, strong channel cor-
relation, and hardware issues, resulting errors in detecting the
transmitted symbols. Moreover, because recovery of each sym-
bol using SIC relies on prior decoding, errors will unavoidably
propagate and affect the overall system performance. There-
fore, considering SIC residual error propagation is important
in designing practical NOMA systems [29].

B. Contributions and Organization

To the best of our knowledge, the IRS-aided NOMA system
with an FBL for URLLC services is still in its early stages
and requires further investigation. The main contributions of
this study are summarized as follows. Table I summarizes the
differences between this work and existing studies.

• This paper develops a new efficient transmission control
that stochastically guarantees URLLC service require-
ments in IRS-aided NOMA networks with FBC.

• Considering the impact of the residual error by imperfect
SIC, we formulate a nonconvex problem that jointly
optimizes active beamforming and the IRS phase shift
to maximize the SEC for the given statistical delay
QoS constraints of the users, the blocklength, and the
decoding error probability. To make the problem more
tractable, we propose a tight upper bound for the objective
function based on Jensen’s inequality and employ the
concept of opportunistically minimizing an expectation.

We decompose the problem into subproblems: active
beamforming at the BS and phase-shift optimization at
the IRS. The subproblems are convexified by employing
linear approximation and solved using SCA and penalty-
based methods. These subproblems are iteratively solved
using the AO technique until convergence. Furthermore,
the convergence to a suboptimal stationary solution and
the computing complexity of the proposed algorithm are
rigorously analyzed.

• Finally, through extensive numerical experiments, we
evaluate the proposed control in the FBL regime and
confirm that it outperforms benchmark schemes in terms
of the SEC. Especially, when the numbers of antennas
and IRS elements are considerable, the proposed scheme
achieves more improvement compared to the SDR-based
scheme, which has been widely used to optimize active
and passive beamforming.

The remainder of this paper is organized as follows. Sec-
tion II establishes the system model, and Section III formulates
the optimization problem. Next, Section IV discusses the
proposed transmission controls and details the convergence
and complexity analysis. Finally, Sections V and VI present
the simulation results and conclusions, respectively.

II. SYSTEM MODEL

A. System Model
We consider an IRS-aided downlink MISO-NOMA system

where a BS equipped with M antennas serves two single-
antenna users Ui, i ∈ {1, 2} 1. In this system, the direct

1Our proposed system can be extended to a multi-user downlink NOMA
system. For the multi-user system, the users can be grouped into multiple
clusters. The BS employs orthogonal multiple access (OMA) schemes, such as
time-division multiple access (TDMA) or frequency-division multiple access
(FDMA) schemes, to send packages to different clusters [29], [30]. According
to [29], clusters of two users are preferable in practical downlink NOMA
systems with reduced SIC complexity, less processing overload, and feedback
overhead. In addition, this setting was implemented in LTE-A [30]. In this
regard, the extension for multi-user transmission based on hybrid OMA-
NOMA is interesting and will be left for future work.
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Fig. 1. System block diagram model of the joint active beamforming and
IRS phase-shift design in an IRS-aided NOMA URLLC system for the given
statistical delay QoS constraints.

link between the BS and users can be weak due to blockage
or distance. Therefore, the communication can be assisted
by an IRS with K phase shift elements. The IRS phase
shift configuration is controlled by a controller connected to
the BS through a strong link that provides sufficiently low
control overhead for the IRS configuration 2. The controller
has transmission/reception and signal processing capabilities
to receive and decode the configuration signal from BS. In
addition, we assumed that the perfect channel state information
(CSI) can be attained at the BS by conducting appropriate
channel estimation.3 The assumption of perfect CSI for various
IRS-aided systems has been considered in [13]–[18]. The

2According to [31], the IRS reflection matrix can be reconfigured multiple
times within the channel coherence time. Specifically, the switching frequency
of reflection elements made by positive-intrinsic-negative (PIN) diodes can
reach 5 megahertz (MHz), corresponding to the switching time of 0.2 µs,
much smaller than the typical coherence time on the order of ms. Therefore,
it is practical for the dynamical configuration of the IRS elements among
different time slots within the channel coherence time. In addition, it is
important to reduce configuration overhead between the BS and the IRS
controller, when the IRS has a large number of IRS elements. The authors in
[32] aimed to reduce IRS phase shifts feedback overhead by transmitting only
the factors (obtained by the tensor-based low-rank factorization approach)
to the IRS controller instead of transmitting full IRS phase shift vectors.
Once received the smaller factors, the IRS controller can reconstruct the
full IRS phase shift vector by adopting known multi-linear structure of
the selected low-rank tensor model. The proposed control allows significant
feedback overhead reduction, enabling frequent IRS phase shift feedback in
fast varying channels, where IRS configuration should catch up with the
change of environment.

3Because the IRS is not equipped with radio-frequency chains to transmit
or receive the pilot symbols, conventional channel estimation methods cannot
be applied to obtain the IRS-associated CSI. Many recent studies have been
devoted to IRS-channel estimation to address this issue, including compress
sensing [33], matrix factorization [34], and deep learning [35]. Specifically,
compress sensing exploits the channel sparsity to reduce training overhead.
Matrix factorization decomposes a cascaded channel with high dimensions
into sub-channels with low dimensions that are easier to estimate with lower
training overhead. Finally, deep learning model learns a non-linear function
that maps from a training input data to the output cascaded CSI.

perfect CSI acquisition is a challenging problem; however,
the results in this study can serve as theoretical performance
bounds for systems with imperfect CSI. We consider block
fading (i.e., where fading remains constant during a block
and varies independently from one block to another). We
also assume that the size of a fading block is equal to the
blocklength, taken as n symbols [36]. The channels from the
BS to the IRS, the IRS to Ui, and the BS to Ui are denoted by
A ∈ CK×M , hH

r,i ∈ C1×K , and hH
d,i ∈ C1×M , respectively.

In addition, we let Θ ∆
= diag(ejθ1 , . . . , ejθK ) ∈ CK×K denote

the IRS phase-shift matrix, where θk ∈ [0, 2π) is the phase
shift.

As illustrated in Fig. 1, at the BS, packets from each user in
the upper layer are assembled into frames and buffered at the
first-in-first-out (FIFO) queue, and then split into bit streams
for transmission over the wireless channel. In addition, the BS
exploits superposition coding and beamforming; therefore, the
transmit signal vector can be expressed as x = w1s1+w2s2,
where si is the transmit data symbol for Ui with E

{
|si|2

}
=

1, and wi ∈ CM×1 denotes the beamforming vector for Ui.
Then, the received signal for user Ui can be expressed as
follows:

yi = hH
i (w1s1 +w2s2) + ni, (1)

where ni ∼ CN (0, σ2) represents the additive white Gaussian
noise with zero mean and variance of σ2, and hH

i
∆
= hH

d,i +

hH
r,iΘA ∈ C1×M denote the combined channel including

direct and reflected channels for Ui.

B. Channel Coding Rate in Finite Blocklength Coding

The BS employs FBC for short-packet (message) trans-
mission to support the low-latency requirements for URLLC.
The blocklength of an information message is denoted by
n. A channel coding process is performed by encoding the
message into codewords of length n at the BS. Afterward,
at Ui, the received message is decoded into an estimated
message, possibly with an error denoted as ϵi. In the FBC, the
nonzero decoding error probability is nonnegligible; therefore,
Shannon’s capacity theory is inapplicable. Polyanskiy et al.
[37] proposed a new channel coding rate in the FBC, which
is approximated as follows:

R(n, ϵi) ≈ log2(1 + γi)︸ ︷︷ ︸
Shannon capacity

−
√
V (γi)/nQ

−1(ϵi)︸ ︷︷ ︸
channel dispersion

, (2)

where γi denotes the SINR for Ui, V (γi)
∆
= 1 − 1

(1+γi)2
,

and Q−1(·) represents the inverse function of the Q-function
Q(x) = 1√

2π

∫∞
x
e−t2/2dt. The notation R(n, ϵi) is used to

emphasize that this is an achievable rate with a blocklength
of n and a decoding error probability of ϵi. From (2), for
a given blocklength n and packet error probability ϵi, the
communication rate R(n, ϵi) corresponds to the Shannon
capacity minus a channel dispersion term (penalty), which is
proportional to 1/

√
n. According to [38], when SINR is higher

than 5 dB, the approximation V = 1− 1/(1 + γi)
2 ≈ 1. This
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approximation can be easily achieved in supporting URLLC.
Therefore, (2) becomes

R(n, ϵi) ≈ log2(1 + γi)−Q−1(ϵi)/
√
n. (3)

C. NOMA Transmission Scheme

In NOMA systems, users employ SIC to decode their
signals. We assumed that the decoding order is (U1, U2)

4.
Specifically, at the user U1, it decodes its signal while treating
the signal of U2 as interference, therefore, the SINR of user
U1 for decoding itself is written as follows:

γ1 =
|hH

1 w1|2

|hH
1 w2|2 + σ2

. (4)

Accordingly, decoding error probability of U1’s signal at U1 is
denoted as ϵ1. At user U2, it applies SIC to decode the signal
of U1 and removes it from the received signal. Accordingly,
the SINR of U2 for decoding U1’s signal can be expressed as

γ1→2 =
|hH

2 w1|2

|hH
2 w2|2 + σ2

. (5)

In the FBC regime, perfect SIC cannot be guaranteed, there-
fore, decoding error probability cannot be ignored. Then, the
decoding error probability of U1’s signal at U2 is ϵ̄1. The
decoding error probability of U2’s signal at U2 is as follows:

ϵ2 = P(D2→2 = 0) = P(D2→2 = 0|D1→2 = 1)P(D1→2 = 1)

+ P(D2→2 = 0|D1→2 = 0)P(D1→2 = 0), (6)

where (Di→j = 1) and (Di→j = 0) respectively denote
the event that Ui is successfully and unsuccessfully decoded
at Uj , ∀i, j ∈ {1, 2}, and P(·) denotes the probability of
an occurring event. Here, P(D2→2 = 0|D1→2 = 1)

∆
= ϵ̄2

indicates decoding error probability of U2’s signal at U2 given
successful SIC (i.e., (D1→2 = 1) occurs with probability
1 − ϵ̄1). In addition, P(D2→2 = 0|D1→2 = 0)

∆
= ϵ̃2 indicates

decoding error probability of U2’s signal at U2 given failed
SIC (i.e., (D1→2 = 0) occurs with probability ϵ̄1). Then, Eq.
(6) can be rewritten as ϵ2 = ϵ̄2(1− ϵ̄1) + ϵ̃2ϵ̄1.

In practice, SIC might be imperfect due to hardware limita-
tions, errors in data detection, and decoding [40]. Therefore, at
the user U2, the signal of U1 cannot be completely removed,
which remains as the residual interference. As reported in [40],
the residual interference can be modeled as a linear function
that effectively represents the linear relationship between the
residual interference and power of the received signal. Under
this model of imperfect SIC, the signal after SIC processing
and SINR at U2 are respectively given as follows:

y′2 = hH
2 w2s2 +

√
ϖhH

2 w1s1 + n2, (7)

γ2 =
|hH

2 w2|2

ϖ|hH
2 w1|2 + σ2

, (8)

4In NOMA transmission, since the reflected link depends on the unknown
IRS phase shift matrix, hence, optimizing decoding order is important for
enhancing system performance at cost of increasing complexity. A low-
complexity decoding order design in IRS-aided NOMA URLLC system is
an interesting topic and worth for further investigation in our future work.
For simplicity, according to [39], we replace the phase shift matrix by an
identity matrix so that two UEs can be sorted in ascending order.

where 0 ≤ ϖ ≤ 1 represents the level of imperfect SIC 5.
Specifically, ϖ = 0 indicates the perfect SIC and ϖ = 1
indicates no SIC. In this study, the negative impact of im-
perfect SIC can be alleviated by jointly optimizing the BS
beamforming and IRS phase shift matrix.

D. Effective Capacity

Wireless

Channel
Queue

Qi(t)Qth

i

Arrival Rate ra
i
(t)

Fig. 2. Queuing model for user i.

Fig. 2 illustrates a discrete-time queuing system for Ui.
Every time slot t, new data randomly arrive at the BS for
transmission to Ui. Arrival data are stored in queue Qi(t) and
await transmission. We let ({rai (t)}, {rsi (t)}) denote the ar-
rival and service processes, respectively. Queue Qi(t) evolves
according to the following equation:

Qi(t+ 1) = max{Qi(t)− rsi (t) + rai (t), 0}. (9)

When stochastic processes {rai (t)} and {rsi (t)} are stationary
and ergodic, and E{rai (t)} < E{rsi (t)}; thus, Qi(t) converges
to a steady state Qi(∞) [41]. This paper considers statistical
delay QoS constraints that restrict the buffer overflow probabil-
ity. According to the large deviation theory, the buffer overflow
probability is approximated as follows [42]:

Pr{Qi(∞) ≥ Qth
i } ≈ e−ζiQ

th
i , (10)

where Qth
i represents the queue length threshold, ζi represents

the delay QoS exponent or decay rate of the tail distribution of
the queue length. In (10), the statistical delay QoS guarantees
are characterized by the delay QoS exponent ζi (i.e., the
delay QoS exponent ζi controls the decay rate of the overflow
probability). Specifically, a higher value of ζi indicates a
stricter limitation on the probability of overflow (i.e., the QoS
requirement is more stringent). In contrast, a lower value of
ζi indicates a looser QoS requirement. According to [43],
the following is required to ensure the target buffer overflow
probability in (10)

Λa(ζi) + Λs(−ζi) = 0, (11)

where Λa(ζi) = limT→∞
1
T log(E{eζi

∑T
t=1 rai (t)}) and

Λs(ζi) = limT→∞
1
T log(E{eζi

∑T
t=1 rsi (t)}) are the Gärtner-

Ellis limits of the arrival and service processes, respectively.

5By sampling over a long training period, the residual interference can be
approximated using the Gaussian distribution according to the central limit
theorem. The coefficient ϖ can be obtained at the BS by comparing residual
interference power and received signal power [40]. In our work, we note that
the SIC is only performed once at user U2, which does not cause excessive
accumulated residual interference. Moreover, with the advancements in SIC
technology and hardware capabilities, the value of residual interference can
be significantly small [19].
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When the arrival rate is constant 6 (i.e., rai (t) = rai ), we have
Λa(ζi) = ζir

a
i . Substituting into (11), we have [46]

rai = −Λs(−ζi)
ζi

∆
= EC(ζi), (12)

which is called the effective capacity. Intuitively, the effective
capacity is a valuable concept that determines the maximum
constant arrival rate that a service process can support under
a queuing constraint specified by the delay QoS exponent ζi.

E. Effective Capacity in the Finite Blocklength Coding Regime

This section introduces the concept of effective capacity
with a non-vanishing error probability in FBC. The achievable
rate in (3) can be attained with a probability of 1−ϵi. With the
decoding error probability ϵi, an error occurs, retransmission
is required, and the achievable rate is zero. Accordingly, the
service rate (in bits per n channel uses) can be written as
follows:

rsi =

{
nR(n, ϵi), with probability (1− ϵi)

0, with probability ϵi.
(13)

Inspired by [47], we obtain the following result for the
effective capacity by inserting the above service rate into (12).

Proposition 1. For a given SINR γi, decoding error probabil-
ity ϵi, blocklength n, and delay QoS exponent ζi, the effective
capacity in bits per channel use is given by

EC(ζi, n, ϵi) = −
1

nζi
log

(
E
{
ϵi + (1− ϵi)e−ζinR(n,ϵi)

})
,

(14)

where E{·} is the expectation with respect to the channel state.

Proof. We have:

EC(ζi, n, ϵi)
(a)
= − lim

T→∞

1

ζiT
log(E{e−ζi

∑T
t=1 rsi (t)})

= − lim
T→∞

1

ζiT
log

(
E

{
T∏

t=1

e−ζir
s
i (t)

})
(b)
= − lim

T→∞

1

ζiT
log

(
T∏

t=1

E
{
e−ζir

s
i (t)
})

(c)
= − lim

T→∞

1

ζiT
log
(
E
{
e−ζir

s
i (t)
})T

= − lim
T→∞

1

ζi
log
(
E
{
e−ζir

s
i (t)
})

(d)
= − lim

T→∞

1

ζi
log
(
E
{
e−ζinR(n,ϵi)

})
, (15)

where (a) is obtained from (12). The equalities (b) and (c)
are obtained by the fact that the service process changes
independently from one block to another and follows the

6By the original concept of the effective capacity (EC) [44], we employed
a queueing model where the data packets arrive at the buffer with a constant
rate, while the data packets departure at random rate due to the time-varying
wireless channel. However, in practice, it can be applied to the random arrival
process with changing rate. In this case, its constant arrival rate can be applied
by changing it to a constant value based on minimum envelope rate [45] of
the arrival process with changing arrival rate, which is compared with the EC
we found in this work.

same distribution. The effective capacity in (14) follows by
normalizing the expression (d) with n to obtain a unit of bits
per channel use, which completes the proof.

Effective capacity has the following properties.

Proposition 2. (i) For a given SINR γi, decoding error prob-
ability ϵi, blocklength n, the effective capacity EC(ζi, n, ϵi) is
a monotonically decreasing function of ζi, with ζi ∈ [0,∞).
(ii) When ζi → 0, we obtain limζi→0EC(ζi, n, ϵi) = (1 −
ϵi)E{R(n, ϵi)}, where R(n, ϵi) is given in (3). In addition, if
ϵi → 0, then EC = E{R}, where R = log2(1 + γi) is the
ergodic capacity.
(iii) When ζi →∞, we obtain limζi→∞EC(ζi, n, ϵi) = 0.
(iv) For a given SINR γi, blocklength n, and delay QoS expo-
nent ζi, the effective capacity EC(ζi, n, ϵi) is a quasiconcave
function of ϵi.

Proof. (i) The effective capacity is a monotonically decreasing
function of ζi ∈ [0,∞), which can be checked in [44].
(ii) When ζi → 0, we have

lim
ζi→0

EC(ζi, n, ϵi) = − lim
ζi→0

log
(
E
{
ϵi + (1− ϵi)e−ζinR(n,ϵi)

})
nζi

(a)
= − lim

ζi→0

d[log(E{ϵi+(1−ϵi)e
−ζinR(n,ϵi)})]

dζi

d[nζi]/dζi

=
(1− ϵi) limζi→0 E{R(n, ϵi)e−ζinR(n,ϵi)}
limζi→0 E

{
ϵi + (1− ϵi)e−ζinR(n,ϵi)

}
= (1− ϵi)E{R(n, ϵi)}, (16)

where (a) follows by the L’Hospital’s rule for the indeterminate
form 0

0 , when ζi → 0.
(iii) When ζi →∞,

lim
ζi→∞

EC(ζi, n, ϵi)

= − lim
ζi→∞

log
(
E
{
ϵi + (1− ϵi)e−ζinR(n,ϵi)

})
nζi

= 0. (17)

(iv) The proof is similar to [48, Proposition 1].

According to Proposition 2, the effective capacity is no
more than (1 − ϵi)E{R(n, ϵi)}, for ζi ≥ 0. When no delay
QoS constraint is imposed (i.e., ζi = 0) the effective capacity
is equal to the average transmission rate averaged over all
channel states. In addition, when ζi = 0 and ϵi = 0 (achieved
by Shannon’s communication theory, where the decoding error
probability can be made arbitrarily small by choosing the
packet length sufficiently large), then the effective capacity
becomes the ergodic capacity. In contrast, the effective capac-
ity decreases when the QoS delay exponent ζi increases from
zero to ∞ (i.e., the delay QoS constraints are stricter). In the
simulation section, the ergodic capacity can be applied as an
upper bound for the effective capacity without decoding error
probability and delay QoS constraints.

III. PROBLEM FORMULATION

For a given delay QoS constraint specified by ζ
∆
= {ζ1, ζ2},

decoding error probability ϵ
∆
= {ϵ1, ϵ2} and finite block-

length n, we aim to find optimal beamforming vectors w
∆
=
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{w1,w2} and optimal IRS phase shift matrix Θ that maximize
sum effective capacity (SEC), which is formulated as follows:

P1 : max
w,Θ

SEC(ζ, n, ϵ)
∆
= EC(ζ1, n, ϵ1) + EC(ζ2, n, ϵ2)

s.t. γ1 ≤ γ1→2, (18)

|hH
i w2|2 ≤ |hH

i w1|2, ∀i ∈ {1, 2} (19)

∥w1∥2 + ∥w2∥2 ≤ Pmax, (20)

|ejθk | = 1, ∀k ∈ {1, . . . ,K} (21)

where the constraint in (18) ensures successful SIC decoding
at U2 [49]. Typically, to successfully perform SIC at U2, the
SINR at U2 for decoding U1’s signal should be no less than
that at U1; otherwise U1’s signal cannot be correctly decoded
and cannot be completely removed at U2. In other words, the
signal strength of U1 received at U2 should be kept sufficiently
high so that U1’s signal can be perfectly decoded [6]. The
constraint in (19) ensures the rate fairness among users for
the given decoding order [49]. Specifically, this constraint
indicates that it avoids allocating most of resources to U2

(with no interference due to SIC), which guarantees that the
received signal power of U2 is lower than that of U1, leading
to a reasonable achievable rate for U1. The constraint in (20)
indicates the transmission power budget. Finally, the constraint
in (21) represents the unit-modulus constraint on each IRS
phase-shift element.

A. Problem Reformulation

Problem P1 is equivalently rewritten as follows:

P1.1 : min
w,Θ

−SEC(ζ, n, ϵ) s.t. (18)− (21).

Solving the optimization problem P1.1 is difficult because the
objective function contains expectations over channel states.
Moreover, the optimization variables are coupled with the
objective function and constraints. To address these challenges,
we first transform the objective function using the following
proposition, providing a tractable upper bound function.

Proposition 3. The objective function of Problem P1.1 has
the following upper bound:

− SEC(ζ, n, ϵ)
≤ (α1 + α2) [log (α1z1 + α2z2)− log (α1 + α2)] , (22)

where αi =
1

nζi
, zi = E

{
ϵi + (1− ϵi)e−nζiR(n,ϵi)

}
.

Proof. We obtain the following:

− SEC(ζ, n, ϵ) = 1

nζ1
log
(
E
{
ϵ1 + (1− ϵ1)e−nζ1R(n,ϵ1)

})
+

1

nζ2
log
(
E
{
ϵ2 + (1− ϵ2)e−nζ2R(n,ϵ2)

})
. (23)

To determine the upper bound for the right-hand side (RHS)
of (23), we apply the well-known Jensen’s inequality for the
logarithm function, given by

α1 log(z1) + α2 log(z2)

α1 + α2
≤ log

(
α1z1 + α2z2
α1 + α2

)
, (24)

where the weights are αi > 0. The RHS of (24) can be
simplified by applying the rule log(a/b) = log(a) − log(b),
and (24) becomes the following:

α1 log(z1) + α2 log(z2)

α1 + α2
≤ log (α1z1 + α2z2)− log (α1 + α2) .

(25)

By applying the inequality (25), the upper bound of
(23) can be obtained by setting αi = 1

nζi
, zi =

E
[
ϵi + (1− ϵi)e−nζiR(n,ϵi)

]
, completing the proof.

Remark. The equality in (22) holds when
z1 = z2, that is E

{
ϵ1 + (1− ϵ1)e−nζ1R(n,ϵ1)

}
=

E
{
ϵ2 + (1− ϵ2)e−nζ2R(n,ϵ2)

}
. In the special case when

ϵ1 = ϵ2 and ζ1 = ζ2, then the above equality holds if
E
{
e−nζ1R(n,ϵ1)

}
= E

{
e−nζ2R(n,ϵ2)

}
. This means that the

achievable rates R(n, ϵ1) and R(n, ϵ2) are equal on average
(over the channel states). This outcome can be achieved when
rate fairness among users is maintained using the constraint
in (19).

According to Proposition 3, instead of minimizing the
objective function of Problem P1.1, we minimize its upper
bound, as displayed on the RHS of (22). After removing the
scalar terms irrelevant to the optimization variables and noting
that the function log(·) is monotonically increasing, we try to
solve the following problem

P1.2 : min
w,Θ

E {f(w,Θ)} s.t. (18)− (21),

where f(w,Θ)
∆
= 1

nζ1

{
ϵ1 + (1− ϵ1)e−nζ1R(n,ϵ1)

}
+

1
nζ2

{
ϵ2 + (1− ϵ2)e−nζ2R(n,ϵ2)

}
.

However, solving Problem P1.2 is still challenging because
the objective function is stochastic with the expectation op-
erator. To address this difficulty, we employed the concept
of opportunistically minimizing an expectation (see [50], Sec-
tion 1.8), which intuitively states that an optimal control for
any given channel state is the optimal control that minimizes
the expected objective function. This concept is presented in
the following proposition.

Proposition 4. For any given channel state h
∆
= (h1,h2),

we assumed that there exists a solution {w⋆,Θ⋆} minimizing
f(w,Θ). Thus, {w⋆,Θ⋆} is also the solution minimizing
E {f(w,Θ)}.

Proof. For any given channel state h, f(w⋆,Θ⋆) ≤ f(w̃, Θ̃),
for any random control {w̃, Θ̃} taken in response to state
h. By taking the expectation, we obtain E {f(w⋆,Θ⋆)} ≤
E
{
f(w̃, Θ̃)

}
. It follows that {w⋆,Θ⋆} is a minimizer of

E {f(w,Θ)}, completing the proof.

Applying this concept, for given channel state h, we must
determine the optimal solution {w⋆,Θ⋆} minimizing the
following problem

P1.3 : min
w,Θ

f(w,Θ) s.t. (18)− (21).

To solve Problem P1.3, we adopt the AO technique that
addresses the coupling of optimization variables. Specifically,
the variables w and Θ are alternately optimized while the
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others are fixed. The solution approach is presented in the
subsequent section.

IV. PROPOSED SOLUTION

A. Optimization of Active Beamforming at the Base Station

In this section, active beamforming at the BS is optimized
for a given IRS phase shift. Problem P1.3 with respect to w
can be rewritten as follows:

P2 : min
w

1

nζ1

[
ϵ1 + (1− ϵ1)δ1e

−nζ1 log2

(
1+

|hH
1 w1|2

|hH
1 w2|2+σ2

)]

+
1

nζ2

[
ϵ1 + (1− ϵ2)δ2e

−nζ2 log2

(
1+

|hH
2 w2|2

ϖ|hH
2 w1|2+σ2

)]
s.t. (18), (19), (20),

where δ1
∆
= eQ

−1(ϵ1)
√
nζ1 , and δ2

∆
= eQ

−1(ϵ2)
√
nζ2 are

constants. Then, Problem P2 is rewritten as follows:

P2.1 : min
w,α

f2.1(w,α)
∆
=

1

nζ1

[
ϵ1 + (1− ϵ1)δ1e−nζ1 log2(1+α1)

]
+

1

nζ2

[
ϵ2 + (1− ϵ2)δ2e−nζ2 log2(1+α2)

]
s.t.

|hH
1 w1|2

β1
≥ α1, (26)

|hH
1 w2|2 + σ2 ≤ β1, (27)

|hH
2 w2|2

β2
≥ α2, (28)

ϖ|hH
2 w1|2 + σ2 ≤ β2, (29)

(18), (19), (20) (30)

where α1, α2,β1, and β2 are the new variables, and α
∆
=

{α1, α2, β1, β2} represents the set of these variables. The
equivalence of the two problems, P2 and P2.1, can be demon-
strated by the following lemma.

Proposition 5. Problems P2 and P2.1 are equivalent.

Proof. We demonstrate that (w⋆,α⋆) is optimal for Prob-
lem P2.1 if and only if w⋆ is optimal for Problem P2 and
the constraints in (26) to (29) hold with equality at (w⋆,α⋆).
We first prove that for the given optimal solution (w⋆,α⋆) for
Problem P2.1, the constraints in (26) to (29) hold with equality
at (w⋆,α⋆). By contradiction, we suppose that, without loss
of generality, at least one constraint (e.g., constraint (26))
holds with strict inequality. Hence, we can increase α⋆

1 to
α̃1 = α⋆

1 +∆α⋆
1 with ∆α⋆

1 > 0 such that |hH
1 w⋆

1 |
2

β1

⋆

= α̃1. We
can see that α̃1 is feasible since it satisfies (26). Substituting
α̃1 into the first term of the objective of Problem P2.1 implies

1

nζ1

[
ϵ1 + (1− ϵ1)δ1e−nζ1 log2(1+α̃1)

]
=

1

nζ1

[
ϵ1 + (1− ϵ1)δ1e−nζ1 log2(1+α⋆

1+∆α⋆
1)
]

<
1

nζ1

[
ϵ1 + (1− ϵ1)δ1e−nζ1 log2(1+α⋆

1)
]
, (31)

which implies that the feasible point (w⋆, α̃1, α
⋆
2, β

⋆
1 , β

⋆
2)

has a lower objective value than (w⋆, α⋆
1, α

⋆
2, β

⋆
1 , β

⋆
2). Thus,

(w⋆, α⋆
1, α

⋆
2, β

⋆
1 , β

⋆
2) is not an optimal solution, contradicting

the optimality assumption. The rest of the constraints can
be proved using the same argument. Therefore, the optimal
solution must satisfy the constraints in (26) to (29) with
equality. In addition, the optimal w⋆ for Problem P2.1 yields
the same objective value for Problem P2. Thus, it is also
optimal for Problem P2. Conversely, if w⋆ is optimal for
Problem P2 and the constraints (26) to (28) hold with equality,
then (w⋆,α⋆) is optimal for Problem P2.1, where α⋆ is
obtained from the equalities (26) to (29), which completes
the proof.

It is observed that the constraints in (26), (28), (18), and (19)
in Problem P2.1 are non-convex. By applying SCA method,
we solve the nonconvex problem by successively solving the
approximated convex problems. We start with the following
lemma.

Lemma 1. (i) With x ∈ R, y > 0, the lower bound for the
convex function f1(x, y) = x2/y around (x̄, ȳ) is given as
follows:

x2

y
≥ 2x̄

ȳ
x− x̄2

ȳ2
y. (32)

(ii) With z ∈ C, y > 0, the lower bound for the function
f2(z, y) = |z|2/y around (z̄, ȳ) is given as follows:

|z|2

y
≥ 2ℜ{z̄∗z}

ȳ
− |z̄|

2

ȳ2
y, (33)

where |z|, z∗, ℜ{z}, and ℑ{z} are the modulus, complex
conjugate, real part, and imaginary part of z, respectively.
(iii) With z ∈ C, the lower bound for the function f3(z) = |z|2
around z̄ is given as follows:

|z|2 ≥ 2ℜ{z̄∗z} − |z̄|2. (34)

(iv) With x ∈ R, y ∈ R, the upper bound for the function
f4(x, y) = xy around the point (x̄, ȳ) is given as

xy =
1

4
[(x+ y)2 − (x− y)2] (35)

≤ 1

4
[(x+ y)2 − 2(x− y)(x̄− ȳ) + (x̄− ȳ)2]. (36)

Proof. (i) The result follows by applying the first-order Taylor
expansion of the function f1(x, y) around (x̄, ȳ), as follows:

f1(x, y) ≥ f1(x̄, ȳ) +
∂f1(x̄, y)

∂x
(x− x̄) + ∂f1(x, ȳ)

∂y
(y − ȳ).

(37)

(ii) The result follows by applying identity |z|2 = (ℜ{z})2 +
(ℑ{z})2 and Property (i).
(iii) The result follows by applying Property (ii) with y = ȳ =
1.
(iv) The result follows by applying inequality −(x − y)2 ≤
−2(x− y)(x̄− ȳ) + (x̄− ȳ)2.
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Approximation for (26): Because the RHS of (26) is convex,
we need to obtain the concave lower bound for the left-hand
side (LHS). Using Lemma 1 (ii), we obtain

|hH
1 w1|2

β1
≥

2ℜ
{(

hH
1 w

(κ1)
1

)∗
hH
1 w1

}
β
(κ1)
1

− |h
H
1 w

(κ1)
1 |2(

β
(κ1)
1

)2 β1,

(38)

where w
(κ1)
1 and β

(κ1)
1 represent the values of w and β1,

respectively, obtained at the (κ1 − 1)-th iteration of the
SCA. Thus, at (w

(κ1)
1 , β

(κ1)
1 ), the constraint in (26) can be

approximated as follows:

2ℜ
{(

hH
1 w

(κ1)
1

)∗
hH
1 w1

}
β
(κ1)
1

− |h
H
1 w

(κ1)
1 |2(

β
(κ1)
1

)2 β1 ≥ α1. (39)

Approximation for (28): Using Lemma 1 (iii), the constraint
in (28) can be approximated at w(κ1)

2 :

2ℜ
{(

hH
2 w

(κ1)
2

)∗
hH
2 w2

}
β
(κ1)
2

− |h
H
2 w

(κ1)
2 |2(

β
(κ1)
2

)2 β2 ≥ α2. (40)

Approximation for (18): We rewrite the constraint as

|hH
1 w1|2

(
|hH

2 w2|2 + σ2
)
≤ |hH

2 w1|2
(
|hH

1 w2|2 + σ2
)
,

(41)

which is equivalent to

|hH
1 w1|2 ≤ a, (42)

|hH
2 w2|2 + σ2 ≤ b, (43)

|hH
2 w1|2 ≥ c, (44)

|hH
1 w2|2 + σ2 ≥ d, (45)

ab ≤ cd, (46)

where a, b, c, and d are the new variables, and β
∆
= {a, b, c, d}

represents the set of these variables. The first two constraints
are convex, and the remaining are nonconvex. These noncon-
vex constraints can be approximated using Lemma 1 (iii) and
(iv), respectively, as follows:

2ℜ
{(

hH
2 w

(κ1)
1

)∗
hH
2 w1

}
− |hH

2 w
(κ1)
1 |2 ≥ c, (47)

2ℜ
{(

hH
1 w

(κ1)
2

)∗
hH
1 w2

}
− |hH

1 w
(κ1)
2 |2 ≥ d− σ2, (48)

(a+ b)2 − 2(a− b)(a(κ1) − b(κ1)) + (a(κ1) − b(κ1))2 (49)

+ (c− d)2 − 2(c+ d)(c(κ1) + d(κ1)) + (c(κ1) + d(κ1))2 ≤ 0,

where a(κ1), b(κ1), c(κ1), and d(κ1) represent the values of
a, b, c, and d, respectively, obtained at the (κ1−1)-th iteration.

Approximation for (19): Using Lemma 1 (iii) yields convex
approximations, as follows:

|hH
i w2|2 ≤ 2ℜ

{(
hH
i w

(κ1)
1

)∗
hH
i w1

}
− |hH

i w
(κ1)
1 |2,

∀i ∈ {1, 2}. (50)

Therefore, the approximated convex problem for the Problem
P2.1 at the κ1-th iteration of the SCA is

P2.2 : min
w,α,β

f2.2(w,α,β)
∆
= f2.1(w,α)

s.t. (20), (27), (29), (39), (40), (42), (43), (47)− (50).

Because Problem P2.2 is convex, it can be solved using the
CVX solver [51]. The active beamforming design under the
SCA framework is summarized in Algorithm 1.

Algorithm 1 Active Beamforming Design

Initialization: Initialize feasible points (w(0),α(0),β(0)), set
the iteration index κ1 = 0, and tolerance ε1 > 0.

1: Repeat
2: Solve Problem P2.2 to obtain the solution (w⋆,α⋆,β⋆);
3: Update w(κ1+1) ← w⋆,α(κ1+1) ← α⋆,β(κ1+1)) ←

β⋆;
4: κ1 ← κ1 + 1;
5: Until Convergence for the given tolerance ε1.

The feasibility and convergence of Algorithm 1 are ana-
lyzed in the following proposition.

Proposition 6. We let y ∆
= {w,α,β}, Xκ1 , and X denote the

set of optimization variables, feasible set for Problem P2.2,
and feasible set for Problem P2.1, respectively. In addition,
{y(κ1)} represents the sequence produced by Algorithm 1.
Hence,
(i) Xκ1 ⊆ X .
(ii) For any κ1 ≥ 0, y(κ1) is a feasible point of Problem P2.1.
(iii) The sequence of the objective obtained from Algorithm 1
is non-increasing and bounded below; thus, it is convergent.
(iv) Let ȳ be the limit point of the sequence {y(κ1)}, and
assume that Xκ1 satisfies the Slater condition, then ȳ is a
Karush-Kuhn-Tucker (KKT) point of Problem P2.1.

Proof. (i) We focus on the constraint in (26) and its convex
approximation (39). Similar arguments are applied to the other
constraints. For ease of notation, let define the LHS of (26)
and (39) as Γ1(y), and Γ

(κ1)
1 (y), respectively. Thus, these

constraints are rewritten as follows:

Γ1(y) ≥ α1, (51)

Γ
(κ1)
1 (y) ≥ α1. (52)

From (38), Γ1(y) ≥ Γ
(κ1)
1 (y),∀y. Therefore, for any feasi-

ble point ŷ satisfying (52), we consistently have Γ1(ŷ) ≥
Γ
(κ1)
1 (ŷ) ≥ α1. It follows that ŷ is also feasible for (51).

(ii) This result immediately follows from (i) because y(κ1) ∈
Xκ1 ⊆ X .
(iii) The LHS of (28) and (40) are denoted as Γ2(y) and
Γ
(κ1)
2 (y), respectively. First, we prove that the sequence of
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the objective is non-increasing. We obtain the following:

f2.2(y
(κ1+1)) =

1

nζ1

[
ϵ1 + (1− ϵ1)δ1e−nζ1 log2(1+Γ1(y

(κ1+1)))
]

+
1

nζ2

[
ϵ1 + (1− ϵ2)δ2e−nζ2 log2(1+Γ2(y

(κ1+1)))
]

(a)

≤ 1

nζ1

[
ϵ1 + (1− ϵ1)δ1e

−nζ1 log2

(
1+Γ

(κ1)
1 (y(κ1+1))

)]
+

1

nζ2

[
ϵ1 + (1− ϵ2)δ2e

−nζ2 log2

(
1+Γ

(κ1)
2 (y(κ1+1))

)]
(b)

≤ 1

nζ1

[
ϵ1 + (1− ϵ1)δ1e

−nζ1 log2

(
1+Γ

(κ1)
1 (y(κ1))

)]
+

1

nζ2

[
ϵ1 + (1− ϵ2)δ2e

−nζ2 log2

(
1+Γ

(κ1)
2 (y(κ1))

)]
(c)
=

1

nζ1

[
ϵ1 + (1− ϵ1)δ1e−nζ1 log2(1+Γ1(y

(κ1)))
]

+
1

nζ2

[
ϵ1 + (1− ϵ2)δ2e−nζ2 log2(1+Γ2(y

(κ1+1)))
]

= f2.2(y
(κ1)), (53)

where (a) is obtained because Γm(y) ≥ Γ
(κ1)
m (y),m ∈ {1, 2},

(b) follows because (w(κ1+1),α(κ1+1)) is the optimal solution
to Problem P2.2 at the κ1-th iteration, and (c) is obtained be-
cause Γm(y(κ1)) = Γ

(κ1)
m (y(κ1)),m ∈ {1, 2}. In addition, the

sequence {f2.2(y(κ1))} is bounded below by (20). Therefore,
it is convergent.
(iv) From (iii), we obtain limκ1→∞ f2.2(y

(κ1)) = f2.2(ȳ).
There exists a subsequence of

{
y(κ1)

}
converging to the limit

point ȳ. According to [52, Theorem 1], ȳ is a KKT point for
P2.2, then it is also a KKT point for P2.1, which completes
the proof.

Algorithm 2 Feasible Point Search Algorithm

Initialization: Randomly initialize points (w(0),α(0),β(0)),
set the iteration index κ′ = 0, and tolerance ε′ > 0.

1: Repeat
2: Solve Problem P2.3 to obtain the solution

(w⋆,α⋆,β⋆, e⋆);
3: Update w(κ′+1) ← w⋆,α(κ′+1) ← α⋆,β(κ′+1)) ←

β⋆;
4: κ′ ← κ′ + 1;
5: Until e⋆ below the given tolerance ε′.

It is important to initialize a feasible point for the iterative
algorithm, which is a nontrivial task. In the following, we
propose an initialization scheme that provides a feasible point,
inspired the feasibility search algorithm adopted in [53]. Let
e ≥ 0 denote an infeasibility indicator, which indicates how
far the constraints in Problem P2.2 are from being satisfied.
The feasible point search problem can be stated at the κ′-th
iteration, as follows:

P2.3 : min
w,α,β,e

e

s.t. Cm ≤ e,∀m, and e ≥ 0. (54)

where Cm represents the m-th constraint of Problem P2.2 with
all terms being moved to the LHS. The above optimization
problem is convex, therefore it can be solved efficiently using
CVX solver. The proposed feasible point search algorithm is
summarized in Algorithm 2. Interestingly, the initial points in
Algorithm 2 can be generated randomly. When e = 0, two
problems P2.2 and P2.3 have the same feasible set. Then, the
output of this algorithm can be considered as an initial feasible
input for Algorithm 1.

B. IRS Phase-Shift Optimization

This section solves the IRS phase-shift matrix for a given
w. First, the combined channel hi can be rewritten as follows:

hH
i = hH

d,i + ϕHHi ∈ C1×M , (55)

where Hi
∆
= diag

(
hH
r,i

)
A ∈ CK×M and ϕ

∆
=

[ϕ1, ..., ϕK ]H ∈ CK×1 denotes a vector whose elements are
collected from the diagonal entries of the matrix Θ (i.e.,
ϕk = ejθk ). We defined ai,l

∆
= Hiwl ∈ CK×1, bi,l

∆
=

hH
d,iwl ∈ C,∀i, l ∈ {1, 2}. Then,

|hH
i wl|2 =

∣∣∣(hH
d,i + ϕHHi

)
wl

∣∣∣2 = |bi,l + ϕHai,l|2. (56)

The Problem P1.3 with respect to ϕ is written as follows:

P3 : min
ϕ

1

nζ1

[
ϵ1 + (1− ϵ1)δ1e

−nζ1 log2

(
1+

|ϕHa1,1+b1,1|2

|ϕHa1,2+b1,2|2+σ2

)]

+
1

nζ2

[
ϵ1 + (1− ϵ2)δ2e

−nζ2 log2

(
1+

|ϕHa2,2+b2,2|2

ϖ|ϕHa2,1+b2,1|2+σ2

)]

s.t.
|ϕHa1,1 + b1,1|2

|ϕHa1,2 + b1,2|2 + σ2
≤ |ϕHa2,1 + b2,1|2

|ϕHa2,2 + b2,2|2 + σ2
,

(57)

|ϕHai,2 + bi,2|2 ≤ |ϕHai,1 + bi,1|2, ∀i ∈ {1, 2}
(58)

|ϕk| = 1, ∀k ∈ {1, . . . ,K} (59)

Problem P3 is equivalently formulated as follows:

P3.1 : min
ϕ,ϑ

f3.1(ϕ,ϑ)
∆
=

1

nζ1

[
ϵ1 + (1− ϵ1)δ1e−nζ1 log2(1+ϑ1)

]
+

1

nζ1

[
ϵ1 + (1− ϵ2)δ2e−nζ2 log2(1+ϑ2)

]
s.t.

|ϕHa1,1 + b1,1|2

η1
≥ ϑ1, (60)

|ϕHa1,2 + b1,2|2 + σ2 ≤ η1, (61)

|ϕHa2,2 + b2,2|2

η2
≥ ϑ2, (62)

ϖ|ϕHa2,1 + b2,1|2 + σ2 ≤ η2, (63)
(57), (58), (59), (64)

where ϑ
∆
= {ϑ1, ϑ2, η1, η2} is the set of new variables.

Similarly, at the κ2-th iteration of the SCA, the nonconvex
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constraints in (60), (62), and (58) can be respectively approx-
imated:

2ℜ
{(

(ϕ(κ2))Ha1,1 + b1,1

)∗ (
ϕHa1,1 + b1,1

)}
η
(κ2)
1

− |(ϕ
(κ2))Ha1,1 + b1,1|2(

η
(κ2)
1

)2 η1 ≥ ϑ1, (65)

2ℜ
{(

(ϕ(κ2))Ha2,2 + b2,2

)∗ (
ϕHa2,2 + b2,2

)}
η
(κ2)
2

− |(ϕ
(κ2))Ha2,2 + b2,2|2(

η
(κ2)
2

)2 η2 ≥ ϑ2, (66)

|ϕHai,2 + bi,2|2

≤ 2ℜ
{(

(ϕ(κ2))Hai,1 + bi,1

)∗ (
ϕHai,1 + bi,1

)}
− |(ϕ(κ2))Hai,1 + bi,1|2, ∀i ∈ {1, 2} (67)

The constraint (57) can be approximated as follows:

|ϕHa1,1 + b1,1|2 ≤ p, (68)

|ϕHa2,2 + b2,2|2 + σ2 ≤ q, (69)

2ℜ
{(

(ϕ(κ2))Ha2,1 + b2,1

)∗ (
ϕHa2,1 + b2,1

)}
− |(ϕ(κ2))Ha2,1 + b2,1|2 ≥ r, (70)

2ℜ
{(

(ϕ(κ2))Ha1,2 + b1,2

)∗ (
ϕHa1,2 + b1,2

)}
− |(ϕ(κ2))Ha1,2 + b1,2|2 ≥ s− σ2, (71)

(p+ q)2 − 2(p− q)(p(κ2) − q(κ2)) + (p(κ2) − q(κ2))2

+ (r − s)2 − 2(r + s)(r(κ2) + s(κ2)) + (r(κ2) + s(κ2))2 ≤ 0.
(72)

where p, q, r, and s are the new variables, and χ
∆
= {p, q, r, s}

represents the set of these variables. Hence, the approximate
convex problem for Problem P3.1 at the κ2-th iteration is:

P3.2 : min
ϕ,ϑ,χ

f3.2(ϕ,ϑ,χ)
∆
= f3.1(ϕ,ϑ)

s.t. (59), (61), (63), (65)− (72),

This problem is still non-convex because the constraint in (59)
is non-convex. Therefore, the penalty method is employed to
address the nonconvexity of the constraint in (59). We first
relax this constraint to an inequality; thus, it is convex. Next,
we introduce a penalty term −µ

∑K
k=1(|ϕk|2 − 1) to enforce

the inequality to the equality, where µ > 0 represents the
penalty factor. Therefore, Problem P3.2 becomes

P3.3 : min
ϕ,ϑ,χ

f3.2(ϕ,ϑ,χ)− µ
K∑

k=1

(|ϕk|2 − 1)

s.t. (61), (63), (65)− (72), (73)

|ϕk|2 ≤ 1,∀k ∈ {1, ...,K}. (74)

The term −µ|ϕk|2 in the objective of Problem P3.3 is not
convex. Thus, we again apply Lemma 1 (iii) to convexify
this term, resulting the following problem

P3.4 : min
ϕ,ϑ,χ

f3.2(ϕ,ϑ,χ)− µ
K∑

k=1

(2ℜ{(ϕ(κ2)
k )∗ϕk} − |ϕ(κ2)

k |2)

s.t. (73), (74). (75)

This problem is convex, hence it can be solved using the CVX
solver [51]. The algorithm for solving Problem P3 is presented
in Algorithm 3. The convergence analysis for this algorithm
is similar to the previous part, which is omitted.

Algorithm 3 IRS Phase Shift Design

Initialization: Initialize feasible points (ϕ(0),ϑ(0),χ(0)), set
the iteration index κ2 = 0, and tolerance ε2 > 0.

1: Repeat
2: Solve Problem P3.4 to obtain solution (ϕ⋆,ϑ⋆,χ⋆);
3: Update ϕ(κ2+1) ← ϕ⋆,ϑ(κ2+1) ← ϑ⋆,χ(κ2+1)) ←

χ⋆;
4: Until Convergence for the given tolerance ε2.

C. Alternating Optimization-based Algorithm, Convergence
and Complexity Analysis

Algorithm 4 presents the unified algorithm based on the
AO framework that jointly optimizes the active beamforming
and IRS phase shift. In addition, the convergence analysis for
Algorithm 4 is presented in Proposition 7.

Algorithm 4 Alternating Optimization-based Algorithm for
Unified Solution
Initialization: Randomly initialize ϕ(0), find a feasible point

w(0) using Algorithm 2, set the iteration index κ0 = 0
and tolerance ε0 > 0.

1: Repeat
2: For a given IRS phase-shift matrix ϕ(κ0) obtained at the

previous iteration, obtain w(κ0+1) using Algorithm 1.
3: For a given active beamforming w(κ0+1), obtain the

IRS phase shift ϕ(κ0+1) using Algorithm 3.
4: κ0 ← κ0 + 1;
5: Until Convergence for the given tolerance ε0.

Proposition 7. The sequence of the objective obtained from
Algorithm 4 is non-increasing and bounded from below, which
converges to a suboptimal point.

Proof. We have the following:

f(w(κ0),ϕ(κ0)) = f2.1(w
(κ0),α(κ0)) ≥ f2.1(w(κ0+1),α(κ0+1))

= f(w(κ0+1),ϕ(κ0)) = f3.1(ϕ
(κ0),ϑ(κ0))

≥ f3.1(ϕ(κ0+1),ϑ(κ0+1)) = f(w(κ0+1),ϕ(κ0+1)).

In addition, the objective function is bounded from below
due to the constraints in (20) and (21); thus, the sequence of
objectives is convergent. The solution is suboptimal because
Problem P1.3 is nonconvex.
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For the proposed method, the worst-case complexity
of Algorithms 1, 2, and 3 is O

(
M3.5 log(1/εc)I1

)
,

O
(
M3.5 log(1/εc)I2

)
, and O

(
K3.5 log(1/εc)I3

)
, respec-

tively, where εc, I1, I2, and I3 denote the accuracy of the
interior point algorithm adopted in the CVX solver [51] and
the number of iterations for Algorithms 1 2, and 3, respec-
tively. Finally, the overall complexity of the joint active beam-
forming and IRS phase-shift algorithm (i.e., Algorithm 4)
is O

(
M3.5 log(1/εc)I2 +

(
M3.5I1 +K3.5I3

)
log(1/εc)I0

)
,

where I0 denotes the number of iterations in Algorithm 4.
In existing studies, the SDR method is common for solving

active beamforming and IRS phase-shift subproblems, which
can be conducted by formulating Problems P2 and P3 as
semidefinite programming problems. The rank-one constraints
are relaxed, followed by Gaussian randomization to recover
the rank-one solution. According to [54], the total complexity

of the joint optimization algorithm is O
(
M4.5 log(1/εc)I2 +(

M4.5I1 +K4.5I3
)
log(1/εc)I0

)
, which is higher than that of

the proposed algorithm. The complexity can be prohibitively
high when K and M are large. Moreover, Gaussian ran-
domization technique is not guaranteed to have a rank-one
solution and fails to generate a feasible solution in specific
scenarios [55]. For comparison, in the simulation, the SDR-
based algorithm is added as a benchmark scheme.

V. NUMERICAL RESULTS

This section provides numerical examples to validate
the performance of the proposed algorithm in IRS-assisted
NOMA-URLLC networks under statistical delay QoS con-
straints. For the evaluation, we consider a BS with M = 6
antennas located at (0 m, 0 m), a single-antenna U2 located at
(10 m, 1 m), and a single-antenna U1 at (15 m, 5 m). An IRS
with K = 30 reflection elements is located at (12 m, 5 m)
to assist in downlink communication between the BS and
users. We assume that the direct channel between the BS
and user (i.e., hd,i) follows Rayleigh fading7 , which is
determined by hd,i = Ld,i(d)h̄d,i with the distance-dependent
pathloss Ld,i(d) = 32.6 + 36.7 log10(d) dB and non-line-of-
sight (NLoS) component h̄d,i ∼ CN (0, I). The IRS-assisted
channels A, hr,1, and hr,2 were assumed to follow Rician
fading. We also assumed that the BS and IRS were equipped
with a uniform linear array of antennas and IRS elements,
respectively. Therefore, they can be modeled as follows:

A = LA(d)

(√
δ

δ + 1
aK(ψ)aM (ς)H +

√
1

δ + 1
Ā

)
, (76)

hr,i = Lr,i(d)

(√
δ

δ + 1
aK(ϱi) +

√
1

δ + 1
h̄r,i

)
,∀i (77)

7In this study, we assume that the direct links between the BS and users
are severely affected by the blockages, such as buildings and trees in the
urban areas. In this case, NLoS links are dominant compared to the LoS
ones. Therefore, it is practical to assume that there are only NLoS direct
links, which is an ideal case for the IRS implementation that provides the
configuration links to enhance the transmission. Moreover, our system model
can be easily extended to the case where both NLoS and LoS direct links
coexist, which is modeled by the well-known Rician fading model.

where L(d) = 35.6 + 22.0 log10(d) dB, and L(d) =
{LA(d), Lr,i(d)} are the corresponding pathlosses. In addi-
tion, δ represents the Rician factor δ = 10, (aK ,aM ) denotes
the set of steering vectors, (ψ, ς, ϱi) indicate the angular
parameters, and Ā and h̄r,i denote the NLoS components
whose elements are distributed as CN (0, 1). The transmission
bandwidth and noise power are set to 1 MHz and σ2 =
−70 dBm [56], respectively. In addition, unless otherwise
stated, we assume that the level of imperfect SIC is ϖ = 0.
We compare the performance of the proposed algorithm with
the following benchmark schemes:

• Upper bound 1 (also referred to as “UB 1 (ζi = 0,
n = ∞, ϵi = 0)”): In this scheme, Shannon’s capacity
for Ui is adopted (i.e., no decoding error (ϵi = 0)
and has an infinite blocklength (n = ∞)). In addition,
we assumed no delay QoS constraints (i.e., ζi = 0).
This approach provides an upper bound on the effective
capacity according to Proposition 2 (ii).

• Upper bound 2 (also referred to as “UB 2 (ζi = 0)”):
In this scheme, we consider communication with finite
blocklength, therefore, we adopt the channel coding rate
in FBC (i.e., R(n, ϵi) given in Eq. (3)). According to
Proposition 2 (ii), when ζi = 0 (i.e., statistical delay
QoS guarantee is not considered), the effective capacity
is equal to (1− ϵi)E{R(n, ϵi)}.

• SDR-based algorithm [17]: This scheme also employed
the AO algorithm to decompose the primal problem
into subproblems to address the coupling of variables.
Each subproblem was converted into the rank-constrained
semidefinite programming form. Then, the SDR method
was adopted to solve the problem.

• Proposed without IRS (also referred to as “Proposed
w/o IRS”): This scheme adopts the proposed scheme
without the IRS.

• FDMA: This scheme adopts the frequency division mul-
tiple access (FDMA), where each user is allocated half
of the bandwidth. Two users transmit their signal simul-
taneously to the BS over two equal adjacent frequency
resource blocks. Accordingly, the achievable rate for user
i is formulated as follows:

RFDMA
i =

1

2
log2

(
1 +
|hH

i wi|2
1
2σ

2

)
, i ∈ {1, 2}. (78)

• TDMA: This scheme adopts the time division multiple
access (TDMA), where each user is allocated half of
the transmission time. Two users transmit their signal
to the BS consecutively over two equal adjacent time
slots. It is noted that by considering the “time-selective”
property of the IRS [57], the phase shift matrix can be
set differently for two users over two time slots, denoted
as Θi. Accordingly, the achievable rate for user i is
formulated as follows:

RTDMA
i =

1

2
log2

(
1 +

2|h̃
H

i wi|2

σ2

)
, i ∈ {1, 2}, (79)

where h̃
H

i
∆
= hH

d,i + hH
r,iΘiA ∈ C1×M .
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Fig. 3. Tightness evaluation for the approximation
in (22) with different values of delay QoS expo-
nent.

Fig. 4. Box plot verifying received SINR of two
users with different values of delay QoS exponent.
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Fig. 5. Convergence behavior of the proposed algo-
rithm.
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Fig. 7. Overflow probability vs. buffer overflow
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i for different values of QoS exponent.
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A. Accuracy of Approximation in (22)

In Fig. 3, we investigate the tightness of the approximation
derived in (22), where the objective function of Problem P1.1
is approximated by the function on the RHS of the inequality
in (22). In this figure, the curves “Obj.” and “Approx.” indicate
the objective function and the approximation function, respec-
tively. By varying maximum transmit power with delay QoS
exponent ζi ∈ {10−2, 10−3}, it can be seen that the two curves
overlap each other. Therefore, this figure numerically verifies
that the approximation function is suitable for optimization
instead of the complicated objective function in Problem P1.1.

B. Evaluation of SINR Values

In this part, we verify that the attained SINR values are
above the threshold of 5dB, which confirms the approximation
in (3). In the numerical experiment, we set ϵi = 10−5, n =
200. As shown in Fig. 4, the distribution of the SINR values
for 2 users over two values of delay QoS parameter ζi ∈
{10−3, 10−2}. It can be seen that all SINR values of 2 users
are above 5dB, confirming the approximation in (3).

C. Convergence Behavior of AO-based Algorithm 4

Fig. 5 shows the convergence behavior of the proposed al-
gorithm for different values of power budget Pmax ∈ {15, 20}
(dBm). The objective function of the overall algorithm is the
objective function of Problem P1.3. The convergence tolerance
is set as 10−3. As shown in Fig. 5, the objective value,
obtained by Algorithms 4, decreases rapidly and saturates as
the number of iterations increases. Specifically, the algorithm
converges after 5 iterations regardless of the BS transmit
power.

D. Influence of Delay QoS Exponent on the Buffer Overflow
Probability

This part presents the influence of QoS exponent on the
buffer overflow probability. In the numerical experiment, we
set ϵi = 10−5, n = 200. First, we repeat the simulation 1000
times. For each simulation, we randomly generate channel
realizations for each time block and compute the constant
arrival rate based on EC expression in (14). Then, we simulate
the queue using the queueing model given in (9). Next, for a
given Qth

i , the probability Pr{Qi(∞) ≥ Qth
i } is estimated by

counting frequency of the event (Qi(∞) ≥ Qth
i ) over 1000
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Fig. 11. SEC vs. delay QoS exponent.

times of simulation. Theoretically, for large Qth
i , we rewrite

the approximation in (10), as follows:

Pr{Qi(∞) ≥ Qth
i } ≈ e−ζiQ

th
i , (80)

To verify the accuracy of the approximation given in (80),
the obtained simulated overflow probability is compared with
the theoretical one given in the RHS of (80). In Figs. 6 and
7, we denote simulated overflow probability by ‘Simulated’,
while the theoretical one given by e−ζiQ

th
i is denoted by ‘The-

oretical’. From both figures, we observe that the ‘Theoretical’
curve is an upper bound. The reason for this is explained as
follows. According to [44], for smaller Qth

i , the following
approximation is more accurate than (80), which is given by
Pr{Qi(∞) ≥ Qth

i } ≈ λe−ζiQ
th
i , where λ = Pr{Qi(∞) > 0}

is the probability that the queue is not empty. Because λ < 1,
hence λe−ζiQ

th
i < e−ζiQ

th
i . Therefore, the simulation result is

lower than the theoretical one. In addition, because λ < 1, we
can observe that there exists a gap between two curves. Fig.
6 illustrates the overflow probability against the delay QoS
exponent for Qth

i = 500. It can be seen that the overflow
probability decreases as the delay QoS exponent increases.
Fig. 7 illustrates the overflow probability (in logarithm scale)
against the queuelength threshold Qth

i . According to (80),
we know that log(Pr{Qi(∞) ≥ Qth

i }) = −ζiQth
i , which is

theoretically linear in Qth
i with slope −ζi. We can see that

the logarithmic buffer overflow probabilities decrease almost
linearly and close to the theoretical value. Therefore, both
results show the consistency with the theoretical analysis.

E. Influence of the Delay QoS Exponent, Decoding Error
Probability, and Blocklength on the SEC

Fig. 8 presents the SEC as a function of the decoding error
probability with the delay QoS exponent ζi ∈ {10−2, 10−3}.
The blocklength is fixed at n = 100. As expected, with
the ideal scenario (ζi = 0, n = ∞, ϵi = 0), the upper
bound performs the best because no delay QoS requirement
exists, and the transmission is performed under an infinite
blocklength with zero decoding probability. According to
Proposition 2 (ii), UB1 scheme is the ergodic capacity, which
does not depend on the value of the error probability; hence,

its performance remains unchanged over all values of ϵi.
In contrast, for UB2 scheme, we considered FBC without
delay QoS guarantees (i.e., ζi = 0). In fact, the performance
achieved by the UB2 scheme is lower than UB1 scheme
and varies with error probability. Because there is no delay
QoS constraint, UB 2 scheme can achieves better performance
than the other schemes, which can be viewed as an upper
bound. Furthermore, for the cases ζi ∈ {10−2, 10−3}, as the
error probability increases, SEC increases then decreases after
a threshold. This is because using a robust coding scheme
with a small decoding error probability requires a small data
transmission rate, leading to a small effective capacity. In
contrast, if a higher transmission rate with relatively weak
channel coding is favored, then the error probability can be
increased, leading to retransmission, which again reduces the
effective capacity. Second, SEC with ζi = 10−3 is higher than
that with ζi = 10−2 because a lower effective capacity can be
achieved when a stricter QoS delay constraint is applied. Third,
the proposed scheme can achieve better performance than the
proposed one without the IRS scheme because the proposed
approach exploits the IRS, which improves the signal qual-
ity through passive beamforming. In addition, the proposed
scheme is superior to the TDMA and FDMA, because NOMA
is employed to serve multiple users in the same resource
block, offering higher spectral efficiency. Moreover, we can
see that TDMA scheme achieves better performance than
its counterpart FDMA, because the time selective property
of the IRS is exploited in TDMA. This result reveals the
importance of integrating IRS and NOMA in URLLC services.
Moreover, the proposed scheme slightly outperforms the SDR-
based scheme.

Fig. 9 illustrates the SEC against the decoding error
probability with various blocklength values when n ∈
{100, 200, 500}, whereas the delay QoS exponent is fixed at
ζi = 10−3. It can be seen that all curves are quasiconcave
and each curve achieves the maximum value at a unique ϵ∗i ,
as theoretically demonstrated in Proposition 2 (iv). When
blocklength is longer, ϵ∗i is smaller, and the SEC attained
at ϵ∗i becomes higher. Therefore, if the channel code lowers
error decoding, then increasing blocklength is a useful way to
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increase the SEC.
Fig. 10 illustrates the SEC as a function of the blocklength

for ζi ∈ {10−2, 10−3}, whereas the decoding error proba-
bility is fixed at ϵi = 10−5. When ζi = 10−2, the SEC
initially increases as the blocklength increases. However, as
the blocklength increases beyond a specific threshold, the SEC
decreases. This is because the blocklength is the coherence
duration on which the fading state remains constant (i.e.,
a longer blocklength corresponds to slower fading). In the
case of slow-fading, strong attenuation may persist, causing
a long duration of low-rate transmission, resulting in a buffer
overflow [47]. In such cases, the systems are more conservative
and support lower arrival rates to avoid buffer overflow. In
contrast, when ζi = 10−3 (i.e., a looser QoS delay constraint),
the SEC increases as the blocklength increases.

Fig. 11 illustrates the influence of the delay QoS exponent
on the SEC, where n = 200 and ϵi = 10−5. The SEC
decreases as the delay QoS exponent increases, which is
consistent with the results in Proposition 2 (i). Under a
stringent delay QoS requirement, a small effective capacity
can be supported by a low-rate transmission. In addition,
the proposed scheme outperforms the SDR, proposed scheme
without the IRS, TDMA, and FDMA schemes under all values
for the delay QoS exponents.

Fig. 12 presents the SEC against the number of IRS
elements when n = 200, ϵi = 10−5, ζi = 10−3. A larger
number of IRS elements leads to a higher SEC for the IRS-
aided schemes, whereas the SEC of the proposed scheme
without the IRS remains unchanged. This is because, as the
number of IRS elements increases, more phase shifters for
the incoming signals can improve the spatial diversity. The
system can exploit the additional DoFs to enhance the signal
power, which ultimately improves the performance system.
In addition, TDMA and FDMA schemes offer the lowest
performance for a low value of K. However, as K ≥ 40, the
TDMA scheme outperforms the proposed scheme without the
IRS, highlighting the benefit of IRS phase shift optimization
with a large number of IRS elements. The proposed scheme
outperforms the SDR, proposed without the IRS, TDMA, and
FDMA schemes for the overall values of K. Moreover, the
performance gain of the proposed scheme over the SDR is

pronounced with a higher number of IRS elements because
with a higher K, the probability of obtaining a rank-one
solution in the Gaussian randomization is lower.

Fig. 13 depicts the SEC as a function of the number of
antennas when n = 200, ϵi = 10−5, ζi = 10−3. The SEC of
the proposed scheme is higher than that of the SDR, proposed
scheme without the IRS, TDMA and FDMA schemes. In
addition, we notice that more antennas provide higher diversity
gain, leading to a higher transmission rate. Thus, this result
implies a higher effective capacity. It is also observed that the
performance gap between the proposed and SDR schemes is
greater with an increase in the number of antennas.

Fig. 14 illustrates the effect of the maximum transmit
power on the SEC for different values of delay QoS exponent
ζi ∈ {10−2, 10−3}, whereas the blocklength and decoding
error probability are fixed at n = 200 and ϵi = 10−5,
respectively. In all cases of QoS constraints, the SEC increases
as the maximum transmit power increases. As expected, UB1
perform the best. In addition, with a higher QoS exponent (i.e.,
stricter QoS constraint), lower SEC can be achieved.

Fig. 15 illustrates the effect of of imperfect SIC process on
the SEC. As can be seen from the figure, when the imperfect
SIC level increase, the performance of our proposed scheme is
lower than the OMA schemes, which highlights the importance
of reducing the interference caused by imperfect SIC.

Moreover, we also verify the performance of the proposed
scheme compared with the SDMA scheme under a multi-
user setup. Specifically, we consider the scenario, where
the number of users N ≥ 2 and the number of antennas
M = 3. It is noted that our proposed scheme can be easily
extended to the hybrid NOMA-TDMA scheme, where the
users are grouped into clusters with two users. We specifically
investigate the channel correlation in each cluster, where the
channel correlation coefficient between two channel vectors
of two users, denoted as h1 and h2, can be measured by
ρ =

|hH
1 h2|

∥h1∥∥h2∥ , where ρ = 0, 0 < ρ < 1, and ρ = 1
indicate that the two channel vectors are mutually orthogonal,
correlated at a certain level, and highly correlated (i.e., same
direction), respectively [58]. As can be seen in Fig. 16, for the
case ρ = 0, which is favorable for SDMA, the performance
is superior to the proposed scheme as N ≤ 6. In contrast,
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as N ≥ 8 becomes large, the proposed scheme outperforms
the SDMA scheme. For the case ρ = 1, which is favorable
for NOMA, the proposed scheme outperforms the SDMA
scheme over all values of N . Next, for the case where ρ
is randomly taken in the interval [0, 1], the proposed scheme
outperforms the SDMA scheme as N ≥ 8. For all cases, it can
be seen that the proposed scheme shows better performance
than the SDMA scheme as the number of users N is much
larger than the number of antennas, i.e., N > M . This is
because SDMA users suffer from intense interference with
insufficient spatial DoFs. In contrast, for NOMA, users can be
grouped into clusters. In each cluster, the superimposed of two
users is transmitted through beamforming to carry out NOMA.
Intra-cluster interference can be canceled out using SIC and
inter-cluster interference can be mitigated by transmitting over
orthogonal time slots.

VI. CONCLUSIONS

This work developed optimal transmission schemes maxi-
mizing the SEC in the FBL regime, which can statistically
guarantee URLLC QoS in IRS-assisted NOMA networks. We
formulated a nonconvex problem that jointly optimizes active
beamforming and the IRS phase shift while ensuring the delay

QoS constraints. To make the problem tractable, we derived a
tight upper bound of the objective function and employed the
concept of opportunistically minimizing an expectation. Then,
we decomposed the problem into subproblems: active beam-
forming at the BS and phase-shift optimization at the IRS. The
subproblems were solved using the SCA and AO techniques
until convergence. The convergence to a suboptimal station-
ary solution and the computing complexity of the proposed
algorithm were rigorously analyzed. Finally, through extensive
numerical experiments, we evaluated the proposed control in
the FBL regime and confirmed significant improvement in
terms of SEC compared to the existing benchmark schemes.
As the number of antennas and IRS elements increases, the
performance and complexity gain becomes clearer. As future
works, we will investigate more enhanced and lower com-
plexity EC maximization transmission controls that consider
imperfect CSI, various IRS types such as active IRS and
STAR-IRS [59], and new access schemes such as RSMA and
hybrid OMA-NOMA/RSMA.
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