
1

User-Aware and Flexible Proactive Caching using
LSTM and Ensemble Learning in IoT-MEC

Networks
The-Vi Nguyen, Nhu-Ngoc Dao, Van Dat Tuong, Wonjong Noh, and Sungrae Cho

Abstract—To meet the stringent demands of emerging IoT
applications such as smart home, smart city, and virtual real-
ity in 5G/6G Internet-of-Things (IoT) networks, edge content
caching for mobile/multi-access edge computing (MEC) has been
identified as a promising approach to improve the quality of
services in terms of latency and energy consumption. However,
the limitations of cache capacity makes it difficult to develop an
effective common caching framework that satisfies diverse user
preferences. In this paper, we propose a new content caching
strategy that maximizes the cache hit ratio through flexible pre-
diction in dynamically changing network and user environments.
It is based on a hierarchical deep learning architecture: long
short-term memory (LSTM)-based local learning and ensemble-
based meta-learning. First, as a local learning model, we employ
an LSTM method with seasonal-trend decomposition using loess
(STL)-based preprocessing. It identifies the attributes for demand
prediction on the contents in various demographic user groups.
Second, as a meta-learning model, we employ a regression-based
ensemble learning method, which uses an online convex optimiza-
tion framework and exhibits sublinear ‘regret’ performance. It
orchestrates the obtained multiple demographic user preferences
into a unified caching strategy in real-time. Extensive experiments
were conducted on the popular MovieLens datasets. It was
shown that the proposed control provides up to a 30% higher
cache hit ratio than conventional representative algorithms and
a near-optimal cache hit ratio within approximately 9% of the
optimal caching scheme with perfect prior knowledge of content
popularity. The proposed learning and caching control can be
implemented as a core function of the 5G/6G standard’s network
data analytic function (NWDAF) module.

Index Terms—Mobile/multi-access edge computing (MEC),
Internet-of-Things (IoT), demographic classification, hierarchical
learning, ensemble learning, LSTM learning, proactive caching

I. INTRODUCTION

W ITH the rapid development of Internet-of-Things (IoT),
the number of mobile users and IoT devices has rapidly

increased, and many internet services such as high-definition
video, online gaming, and virtual/augmented reality (VR/AR)

Manuscript received; revised; and accepted July 12 2021.
This work was supported by the National Research Foundation of Ko-
rea (NRF) grant funded by the Korean Government (MSIT) (No. NRF-
2017R1D1A1B03036526, 2020R1F1A1069119). and the National Research
Foundation of Korea (NRF) under Grant NRF-2019R1A2C1090447 funded
by the Korea Government (Ministry of Science and ICT). (Corresponding
author: Wonjong Noh and Sungrae Cho.)

T.-V. Nguyen, V. D. Tuong, and S. Cho are with the School of Computer
Science and Engineering, Chung-Ang University, Seoul 156-756, South Korea.
(e-mail: tvnguyen@uclab.re.kr, vdtuong@uclab.re.kr, srcho@cau.ac.kr)

N.-N. Dao is with the Department of Computer Science and Engineering,
Sejong University, Seoul 05006, South Korea. (e-mail: nndao@sejong.ac.kr)

W. Noh is with the School of Software, Hallym University, Chuncheon
24252, South Korea. (e-mail: wonjong.noh@hallym.ac.kr)

have been rapidly developed. Consequently, network traffic
is increasing exponentially, and the Ericsson mobility report
[1] forecasted that global traffic will grow by a factor of
around 4.5 from 2020 to 2026. With the rapid spread of
network traffic, the limited network capacity is becoming a
huge challenge for mobile network operators and users.

To address this issue, mobile/multi-access edge computing
(MEC) has been introduced and demonstrated as a promising
solution [2], [3]. MEC is a decentralized computing network
that distributes computing resources and application services
from the core network of a wireless network to the edge (ac-
cess) network. MEC does not use the costly and high-latency
backhaul links and ensures that applications run only on access
as much as possible. By this, MEC can significantly reduce
network traffic, network burden, and transmission costs [2].
However, to effectively utilize the advantages of MEC, many
advanced technologies such as resource allocation, multiple
access control, and mobility control should be developed.

Among them, a dynamic caching control at edge nodes
can be crucial for the quality-of-service (QoS) of the network
operators and users [4]. Generally, serving content directly
to the users from the content cloud server is impractical for
real applications [5], [6]. Therefore, by caching the popular
contents in the local cache of base-station (BS), content
acquisition latency and backhaul load can be dramatically
reduced [7]–[10]. This edge caching can also add an extra layer
of security that is useful for sensitive and private data [11].
With limited caching resources in the MEC-enabled IoT net-
works, for effective edge caching, the network resources such
as cache storage size, computing, energy, and communication
bandwidth should be carefully controlled. Recently, an effi-
cient caching control scheme for proactive caching has been
attracting enormous attention. It prefetches and caches popular
content or files into the caching resources that are configured
for mobile edge network nodes [12]. The technique evaluates
and selects the content that should be cached, updated, or
replaced, and the duration for which the content should be
cached by taking account of data quality, diversity, and end-
user mobility, etc. One of the criteria is content popularity,
which is commonly used as a very important factor for fast
content retrieval [11]. In this work, we develop a flexible
and efficient proactive caching scheme based on machine-
learning algorithms, which can be employed for the various
MEC services in 5G/6G IoT networks.

2

A. Related Work

Traditional caching schemes [13] updated cached con-
tent based on static rules such as first-in-first-out (FIFO),
least-frequently-used (LFU), and least-recently-used (LRU).
However, these schemes cannot efficiently adapt to dynamic
changes in the popularity of the content. Therefore, recent
studies have tried to develop dynamic caching schemes, which
are classified into two categories: stochastic optimization-
based and machine learning-based approaches [14].

1) Stochastic optimization-based caching approach: Some
content caching schemes, which have prior knowledge of
content popularity, have been developed using stochastic op-
timization approaches. According to [12], in random wireless
networks with spatially distributed network nodes, one widely-
used caching strategy is probabilistic content placement, re-
ferred to as geographic caching [15] or independent random
caching [16]. In [17], and [18], caching placements in random
wireless networks with Poisson distributed caching helpers
were studied in different scenarios. Unlike the conventional
optimization approaches that target the maximization of cache
hit probability [19], in [20], the authors studied ways to
optimize the probability of the average success of content
delivery in stochastic wireless caching helper networks in a
noise-limited regime. In [21], the optimal content placement
was determined by maximizing the density of successful
receptions. In [12], in contrast to the conventional cache hit
optimization in cache-enabled wireless networks, an alterna-
tive optimization approach for probabilistic caching place-
ment in stochastic wireless device-to-device (D2D) caching
networks was considered, considering the reliability of D2D
transmissions. Using tools from stochastic geometry, this
approach provides a closed-form approximation of cache-
aided throughput, which measures the density of successfully
served requests by local device caches and obtains the optimal
caching probabilities with numerical optimization. Golrezaei
et al. [8] introduced an architecture that combines content
caching at user devices and D2D communication to improve
content delivery without deploying additional infrastructures.
In [22], the authors formulated the content placement problem
to minimize the average download delay experienced by
users in a network. In [23], the edge caching problem was
formulated as a Stackelberg game between service providers
(leaders) and edge nodes (followers), where service providers
pay for the edge nodes’ storage and backhaul resources by
designed incentive mechanisms. With the same game theory,
Hamidouche et al. [24] introduced a many-to-many matching
game between small base stations and service providers’
servers for the caching problem aiming at reducing delay
experienced by users and the backhaul load. Knowing the de-
mand of users, Maddah-Ali et al. [25] exploited the broadcast
nature of the wireless medium by coded caching to improve
caching efficiency. The need to improve the downlink energy
efficiency of proactive content caching was conceptualized in
[26], which supposes that user requests can be predicted. In
many cases, the users’ content request was modeled using a
Zipf-like distribution [27], [28]. Based on this distribution, it
is observed that only a small percentage of the ranked content

are requested from the majority of users. However, using a
unified popularity distribution is unreasonable because of the
time-varying and dynamic nature of content popularity. Hence,
many content-popularity prediction schemes based on machine
learning have been proposed to handle this problem.

2) Machine-learning-based caching approach: Some con-
tent caching schemes without prior knowledge of content
popularity distribution have been developed using machine
learning techniques. Bharath et al. [29] presented a transfer
learning-based method to obtain a good estimate of content
popularity within a required training period. Doan et al.
[30] proposed a deep learning-based proactive caching with
content awareness, which deals with unpublished videos, i.e.,
newly uploaded videos with unavailable statistical information.
Yang et al. [31] proposed a regression-based online caching
scheme that considers users’ location to maximize the overall
cache hit ratio in a mobile edge network. Bastug et al. [9]
proposed a caching scheme based on collaborative filtering
(CF), which uses sparse training data to estimate content
popularity after the training phase. Thar et al. [32] employed
long short-term memory (LSTM) neural networks [33] that
is a promising approach in modeling time-series data in the
long term. It was used to learn and predict future content
popularity to support cache decisions. Sengupta et al. [34]
proposed a coded caching scheme that uses demand history to
estimate the popularity of files via a combinatorial multi-armed
bandit formulation. It combines the popularity estimation and
content placement schemes. In [35], the authors studied a
caching problem in terms of minimizing delay. A clustering
algorithm was used to cluster users based on content-based
similarity, and each user group is associated with a small
cell base station (SCBS). By using a reinforcement learning
algorithm, the SCBS learns the popularity of its user group
over time. The authors [36] modeled the caching problem
as a contextual multi-armed bandit problem that considers
user context information such as gender and age. By using
an exploitation and exploration strategy, they proposed an
online caching algorithm that quickly learns content popularity
by considering service differentiation. The algorithm learns
the popularity of files by observing the demands for cached
content and then updating the cached content at a fixed time.
It is an extension of the work in [37], which considered
context information such as the file request time and user
density. However, these studies consider the popularity of
independent content and ignore their similarity. Even though
the above studies addressed the time-varying nature of content
popularity, they did not consider the impact of user preference
on content popularity.

B. Motivation, Contribution, and Organization

Due to the rapid emergence of new content genres and the
influence of interactive and real-time content platforms such
as YouTube and Facebook, user preferences for content are
dynamically changing in the short and long-term. Therefore,
despite the related studies discussed above, content caching for
MEC is still open problem in real-world scenarios. The main
contributions of this study can be summarized as follows:

3

• We proposed a novel proactive content caching con-
trol based on a hierarchical online learning architecture,
which enables a flexible caching control with dynamically
changing content popularity and diverse user preference.
The proposed learning consists of LSTM-based local
learning and ensemble-based meta-learning. Recently,
LSTM and ensemble learnings have been successfully
applied to many areas such as popularity prediction [12]
[38] and recommendation [39]. However, to the best of
our knowledge, there is no machine-learning-based work
on joint learning models based on LSTM learning and
ensemble learning to maximize the cache hit ratio in MEC
networks.

• As a local learning model, we proposed an LSTM method
with seasonal-trend decomposition using loess (STL)-
based preprocessing for each user group. It can decom-
pose time-specific attributes such as seasonality and trend
and can account for the time-variation in popularity. This
method identifies real-time content preference variations
in each user group.

• As a meta learning model, we developed a regression-
based ensemble framework that works online. It combines
the predictions observed from individual LSTM models
to obtain an overall prediction. For optimal ensemble
learning, we developed an online convex optimization ap-
proach that provides sublinear ‘regret’ performance, i.e.,
the time-averaged ‘regret’ approaches zero as the number
of optimization iterations increases. This proposed meta-
learning enables flexible caching with variations in the
demographics of user groups.

• We proposed a caching policy that exploits the proposed
hierarchical online learning. We also proposed an edge
caching architecture for MEC, which can be implemented
as a core function of the 5G/6G standard’s NWDAF
module.

The remainder of this paper is organized as follows. Sec-
tion II presents the system model and caching optimization
problem. Section III explains the time series preprocessing.
Section IV presents the proposed LSTM-ensemble-based hier-
archical online learning model and the corresponding caching
algorithm. Section V explains the proposed edge caching
architecture. Experimental results are presented in Section VI.
Finally, conclusions are presented in Section VII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

In Fig. 1, we consider an edge system consisting of a base
station and an MEC server (MECS), which are physically
co-located near the end-users and share the same power
supply at the cell site. The MECS serves the content requests
submitted by # mobile users (MUs). Here, MUs are uniformly
distributed within the coverage region of the BS, and the
MECS caches the content that can be downloaded by the
MUs in the coverage areas of the BS. By caching popular
contents in the MECS, the network latency can be reduced,
and the duplicated transmission from the content server can
be avoided. Equipped with a powerful computing capacity,

Fig. 1. System architecture of IoT-MEC learning and caching.

the MECS can perform computation-intensive tasks such as
training neural network models for content popularity predic-
tion. In our study, the MECS framework consists of artificial
intelligence modules based on LSTM and ensemble learning.
The proposed LSTM training module collects user experience
data and analyzes the time series of content usage on various
demographic user groups. Then, the outputs of the LSTM
module are incorporated by an ensemble learning algorithm to
predict content popularity. Utilizing this predicted popularity,
we further develop an algorithm for caching content at the
edge of the network. Camping on an edge, MUs can directly
exploit the contents of interest if they are already stored in the
edge; otherwise, the content must be retrieved from a remote
cloud server through a wired or wireless backhaul link.

B. Content and Service Model

Many edge caching applications can be supported in the
MEC-enabled IoT environments [40]–[42]. Also, video traffic
is becoming the main part of IoT network data in [40]–[44].
Therefore, in this work, we assumed a video caching as an IoT-
MEC service example. In the following, we show an example
of how the proposed video caching can support the IoT system.

Example 1. We consider a practice of smart home, in which
users enjoy movies, music videos, as shown in Fig. 1. We
propose a learning-based caching scheme at the edge node
exploiting users’ information, which can be gathered by an
IoT system in the smart home. In [45], the authors proposed
content caching for self-driving cars in MEC networks. In their
proposal, a CNN based-deep learning model [46] is applied
to automatically extract passengers’ information (age, gender,
and emotion) from their images captured by cameras on the
self-driving cars. Motivated by this study, we also apply this
way to extract user information (age, gender, etc) from the
cameras in the smart home. Also, some additional personal
information can be obtained by some incentive mechanisms
as in [47], [48]. Then, this information is used for clustering
user groups in the edge server. Accordingly, the video requests

4

of such groups are recorded, preprocessed and finally fed
into our proposed machine learning model for predicting
video popularity and caching. Through these processes, the
intelligent video caching at the MEC server provides fast and
high-quality video services that meet diverse preferences of
the users in the IoT environment.

In this work, to be more specific, we elaborate the pro-
posed caching control with the movie content from [49],
[50]. It enables to verify the performance of the proposed
algorithm using public and popular datasets. In the MovieLens
datasets [49], [50], each movie content includes information
such as gender, age, and occupation. Gender feature includes
two sub-features, female and male. Age feature includes seven
sub-features, which represent different age ranges. Occupation
feature contains twenty-one sub-features such as student, artist,
etc. Accordingly, we set I, J , and K to be the sets of user
groups associated with the gender, age, and occupation sub-
features, respectively. Let U = I ∪ J ∪ K denote the union
of these sets, which indicates the entire user groups. On the
other hand, movie genres are specified with a total of 18 movie
genres. For convenience, we let G = {1, 2, ..., 18} be the set
of indices representing each genre.

Remark 1. The proposed model is not only for video caching-
based IoT services, but also can be applied to all types (e.g.,
video, audio, web pages, data) of caching-based IoT services.

C. Cache Hit Optimization Problem

We consider a movie library F = {1, 2, ..., 5 , ..., �}, which
is located on the cloud server. Movies from this library can be
cached at an edge. Without loss of generality, we assume that
all movies have the same size, which is normalized to 1. The
cached entity at an edge has limited storage, which can cache
up to � movies. Let 2 (C)

5
∈ {0, 1} denote the cache decision

variable of movie 5 ∈ F at time slot C, where 2 (C)
5

= 1 if 5 is

stored locally, and 2
(C)
5

= 0 otherwise. When a request for a
movie 5 arrives at MECS, if the movie 5 has been stored in the
cached entity of an edge, then a cache hit occurs. Otherwise,
a cache miss occurs, and this movie must be fetched from the
movie’s cloud server.

A caching decision can be made to determine whether
a movie 5 should be stored in the local cache and which
existing movies should be removed from the cache storage.
We emphasize that the caching policy in our study depends
on past demand because future user demand has a close
relationship with current and previous demand. To describe
this dependence mathematically, we first define the demand
history matrix as follows.

Definition 1. (Demand History Matrix). For each user group
D ∈ U, the number of requests from users in this group for
a specific movie genre 6 ∈ G = {1, 2, ..., 18} at time slot

C ∈ {1, ...,)} is recorded, denoted as G (C)6,D . We define the matrix

G(1:))
D =

G
(1)
1,D · · · G

(1)
6,D · · · G

(1)
18,D

...
. . .

...
. . .

...

G
(C)
1,D · · · G

(C)
6,D · · · G

(C)
18,D

...
. . .

...
. . .

...

G
())
1,D · · · G

())
6,D · · · G

())
18,D

∈ R) ×18 (1)

This matrix represents the demand of users in group D for all
movie genres up to the current time slot) , where the Cth row
of G(1:))

D indicates the observed demand of users in group D
for 18 movie genres at the Cth time slot. Also, the 6th column
of G(1:))

D indicates observed demand of users in group D on a
specific movie genre 6 up to time slot) , which can be denoted
as - (1:))

6,D =

{
G
(1)
6,D , G

(2)
6,D , . . . , G

())
6,D

}
, i.e., a time series of demand

history on movie genre 6 of users in group D up to time slot
) . This time series will be used as the input the deep learning
model.

Definition 2. (Caching Policy). To define the caching policy
formally, we denote the vector c (C) =

[
2
(C)
1 , . . . , 2

(C)
5
, . . . , 2

(C)
�

]>
as the caching status of all movies at time slot C. In gen-
eral, the caching policy is represented by a function Z :(
c (C) , G(1:C)

D ,U
)
↦→ c (C+1) that maps from the current cache

status, the demand of users for movie genres in each group,
and the set of all user groups to the next cache status.
Specifically, this implies that based on the observed demand
history of all the user groups up to time slot C, a cache policy
updates the current cache status in time slot C to the next cache
status in time slot C + 1.

Considering time sequence T = {) + 1,) + 2, ...,) + "},
where " is a finite positive number, we use the overall cache
hit ratio to measure the caching performance in T . For a given
caching policy Z , cache hit ratio is defined as the number of
cache hits over the number of requests across T

R(Z) =
∑
C ∈T

∑
5 ∈F 2

(C)
5
3
(C)
5∑

C ∈T #C
, (2)

where #C is the number of movie requests at time slot C, and
3
(C)
5

is the demand of the whole user population for movie 5

at time slot C. Table I briefly summarizes the notations used
in this paper.

The objective of this study is to find a caching policy Z

at the edge that maximizes the overall cache hit ratio over a
given time period T . The cache hit optimization problem can
be defined as

max
Z
R(Z)

s.t.
∑
5 ∈F

2
(C)
5
≤ �, ∀C ∈ T , (3)

2
(C)
5
∈ {0, 1}, ∀ 5 ∈ F , and C ∈ T , (4)

where (3) denotes the limited caching capacity at MECS and
(4) denotes the binary caching decision on movie 5 at time
slot C. In this work, as a solution, we propose a novel caching

5

TABLE I
TABLE OF NOTATIONS

Notation Description
5 , F Movie, movie library, respectively
2
(C)
5
∈ {0, 1} Cache decision variable at time slot C for

movie 5
� Cache capacity at edge
I, J, K ,U, and G Sets of users associated with gender features,

age features, occupation features, and the
union of the former sets, and the set of movie
genres, respectively

) , T Length of the time series of user group’s
demand, set of future time slots starting from
time slot) + 1 to) +" , respectively

G
(C)
6,D , Ḡ

(C)
6,D , and Ĝ (C)6,D Number of requests by users in group D

for movie genre 6 at time slot C , number
of requests by users in group D for movie
genre 6 at time slot C after preprocessing,
and predicted number of requests by users
in group D for movie genre 6 at time slot C
after postprocessing, respectively

-
(1:))
6,D , G(1:))

D Observed demand history of users in group
D on movie genre 6 at the beginning to
time slot) , matrix of user demands for
movie genres in group D up to time slot) ,
respectively

F
(C)
6,D , H

(C)
6 , Ĥ

(C)
6 Weight assigned for the demand of user

group D for movie genre 6 in the ensemble
model, average (actual) demand of all user
groups, predicted demand for movie genre 6
across user groups at time slot C , respectively

control that exploits the deep learning modules of LSTM and
ensemble learning.

III. TIME SERIES PREPROCESSING

Before training the deep learning model that learns user
preference for movie genres, it is necessary to preprocess the
raw data. In this section, we describe the data preprocessing
for a time series - (1:))

6,D associated with the demand of a movie
genre 6 ∈ G in a user group D ∈ U.

A. Seasonal and Trend Decomposition

To better understand a time series and make better predic-
tions from it, it is very helpful to extract some patterns such
as seasonal and trend components from the time series [51].
The seasonal components in time series are repeating patterns
or cycles; they repeat regularly over time, and are affected
by seasonal factors such as the hours in a day and days in a
week. The trend components refer to the long-term increase or
decrease in time series. According to [51], these seasonal and
trend components can be combined using one of the following
approaches:

G
(C)
6,D = (

(C)
6,D +) (C)6,D + ' (C)6,D , (5)

G
(C)
6,D = (

(C)
6,D ×) (C)6,D × ' (C)6,D , (6)

where G (C)6,D is an observation at time C of time series - (1:))
6,D ,

which consists of a seasonal component ((C)6,D , a trend compo-
nent) (C)6,D , and a residual or remainder component ' (C)6,D . The
time series decompositions in (5) and (6) are called additive
decomposition and multiplicative decomposition, respectively.

On the other hand, it is known that multiplicative de-
composition is more appropriate when the magnitude of the
seasonal variation is dependent on the level of the time series,
which is the average value of the series [51]. For example, as
shown in Fig. 2, our data has such a tendency, so we apply
multiplicative decomposition. However, instead of directly
using a multiplicative decomposition for our time series data,
by the following equivalent relation, we first use data log-
transform, and then utilize an additive decomposition.

G
(C)
6,D = (

(C)
6,D ×) (C)6,D × ' (C)6,D

⇔ log(G (C)6,D) = log(((C)6,D) + log() (C)6,D) + log(' (C)6,D).
(7)

Here, the log-transformation of G (C)6,D in time series - (1:))
6,D , G̃ (C)6,D ,

is defined by

G̃
(C)
6,D =

log

(
G
(C)
6,D

)
, min

(
-
(1:))
6,D

)
> 0,

log
(
G
(C)
6,D + 1

)
, min

(
-
(1:))
6,D

)
= 0,

(8)

The reason why we employ the log-transformation is that
it can stabilize the time series when it offers many small
observations, e.g., in Fig. 2, after the 300th day, there are
many days in which a movie genre has zero views. After
the log-transformation, we employ a widely used additive
decomposition method, STL [52]. The extracted seasonal and
trend components are exploited to normalize and deseasonalize
the time series.

Remark 2. Deep-learning-based prediction models, such as the
LSTM, often have difficultly capturing all the complex sea-
sonal cycles. To mitigate this problem, time series components,
e.g., seasonal and trend components, are modeled separately;
hence, the complexity of the model is reduced compared with
modeling the entire time series. In many previous studies [53],
[54], removing seasonality improved the prediction results of
the neural network model.

B. Moving-window Transformation, Time Series Normaliza-
tion, and Deseasonalization

1) Moving-window transformation: In this step, the time
series is transformed into multiple input and output frames,
which are later fed directly into the learning model as training
data. As illustrated in Fig. 3, by using the moving-window
strategy, an input window (window size of ?) initially covers
the first ? observed data points, and an output window (win-
dow size of @) covers the next @ points, which are represented
as dashed squares. Afterwards, two windows are moved (slid)
one time-step to the right, and new input and output windows
are generated, which are represented as lined squares. The
input and output windows are generated in this manner until
the last output window reaches the last observation point of
the time series. As our problem is one day ahead prediction,
we choose @ = 1. The result is represented by

(
^win
6,D , y

win
6,D

)
=

©«

G̃
(1)
6,D · · · G̃

(?)
6,D

G̃
(2)
6,D · · · G̃

(?+1)
6,D

...
. . .

...

G̃
() −?)
6,D · · · G̃

() −1)
6,D

,

G̃
(?+1)
6,D

G̃
(?+2)
6,D

...

G̃
())
6,D

ª®®®®®¬
, (9)

6

0 100 200 300 400

Time span (days)

0

1000

2000

3000

4000

5000
N

u
m

b
e

r
o

f
v
ie

w
s

(a)

0 100 200 300 400

Time span (days)

0

1000

2000

3000

4000

5000

N
u

m
b

e
r

o
f

v
ie

w
s

(b)

0 100 200 300 400

Time span (days)

0

1000

2000

3000

4000

N
u

m
b

e
r

o
f

v
ie

w
s

(c)

Fig. 2. Time series for the drama genre subjected to three specific groups of users in the Movielens 1M dataset [50]: (a) female group, (b) age group between
18 and 24 years, (c) student group.

0 20 40 60 80 100

Time span (days)

0

500

1000

1500

N
u

m
b

e
r

o
f

v
ie

w
s Output

window

Input

window

Output

window

Input

window

Moving

window

Fig. 3. Illustration of a time series and moving window transformation.

where each row of ^win
6,D and ywin

6,D shows the observations in
an input window and an output window, respectively.

2) Time-series normalization and deseasonalization: In
LSTM cells, when activation functions such as hyperbolic
tangents and sigmoids are used, saturation occurs when the
input is very positive or very negative. Therefore the output
is constant, which further increases the difficulty of gradient-
based learning [55]. Therefore, it is necessary to normalize
the input data so that they do not fall in this saturated range.
Even if LSTM is not used, normalization is important when the
time series have different amplitudes [56]. Therefore, within
moving-window processing, the trend value of the last data
point in each input window, provided by STL decomposition,
is used for local normalization. Specifically, it is subtracted
from each data point in the corresponding input and output
windows. This process is applied to each input and output
window separately [57]. Consequently, the data in (9) becomes

(
^norm
6,D , y

norm
6,D

)
=

©«

Ğ
(1)
6,D · · · Ğ

(?)
6,D

Ğ
(2)
6,D · · · Ğ

(?+1)
6,D

...
. . .

...

Ğ
() −?)
6,D · · · Ğ

() −1)
6,D

,

Ğ
(?+1)
6,D

Ğ
(?+2)
6,D

...

Ğ
())
6,D

ª®®®®®¬
, (10)

where on the Cth row of
(
^norm
6,D , y

norm
6,D

)
, each entry is defined

by Ğ (8)6,D := G̃ (8)6,D −) (?+C−1)
6,D ,∀8 ∈ {C, ..., C + ?}. Here,) (?+C−1)

6,D is
the trend value of the last data point in the Cth row of ^win

6,D .
Next, we process the deseasonalization on the normalized data,
which removes the seasonal patterns from the data. We can

remove the seasonal component on the current data point by
subtracting the value from the previous window. As a result,
the data can be expressed as follows:

(
^deseasonal
6,D , ydeseasonal

6,D

)
=

©«

Ḡ
(1)
6,D · · · Ḡ

(?)
6,D

Ḡ
(2)
6,D · · · Ḡ

(?+1)
6,D

...
. . .

...

Ḡ
() −?)
6,D · · · Ḡ

() −1)
6,D

,

Ḡ
(?+1)
6,D

Ḡ
(?+2)
6,D

...

Ḡ
())
6,D

ª®®®®®¬
,

(11)
where on the Cth row of

(
^deseasonal
6,D , ydeseasonal

6,D

)
, each entry is

defined by Ḡ (8)6,D := Ğ (8)6,D − ((8−1)
6,D ,∀8 ∈ {C, ..., C + ?}, C ≥ 2. Here,

(
(8−1)
6,D is the seasonal value of the data point in the (8 − 1)th

row of ^norm
6,D .

IV. HIERARCHICAL LSTM-ENSEMBLE LEARNING BASED
PROACTIVE CACHING

A. User Group’s Behavior and LSTM-Ensemble Learning

1) User group’s behavior: In addition to the specific pref-
erence of each user group for each movie genre, it can be
observed that each user group has its specific preference for
watching time, i.e., the period during which they often enjoy
the movie, depending upon the hour or the day. For example,
based on the preference for days of a week, student groups
watch movies during a week, while teacher groups enjoy
movies only at the weekend. Based on the time of the day,
student groups watch movies often in the evening and early
morning, while teacher groups often watch movies in the
evening. Thus, it can be seen that different groups tend to have
different preference in watching time. Therefore, leveraging
user preferences for movie genre and time will improve the
prediction performance of the neural networks. Based on this
observation, we build an LSTM model for each group instead
of using a single LSTM model for the entire user population.
Then, the resulting predictions for each group are averaged to
obtain the prediction across the user population.

2) Introduction to LSTM-based Ensemble Learning:
LSTMs are variants of recurrent neural networks (RNNs)
which are designed for learning long-term dependencies [33].
LSTMs consist of a chain of repeating modules (cells) of
neural networks. Due to the self-contained memory-cell state
and the gating mechanism, the LSTM network can learn
the long-term dependencies in the series. Specifically, an

7

LSTM cell is composed of a cell state, forget gate, input
gate, and output gate at time C. Cell status 2 (C) refers to
the cell information to be transferred to the subsequent cells
in the long-term. Forget gate with sigmoid function decides
to remove irrelevant information from the previous cell state
2 (C−1) , whose output is denoted as 5 (C) . Input gate decides
what new information will be used to update the cell state
2 (C) , whose output is denoted as 8 (C) . Output gate decides what
will be output based on the updated cell state and the output
of the sigmoid function, whose output is denoted as > (C) . The
following formulas show how a single LSTM cell works to
map an input Ḡ (C)6,D to an output B̂ (C+1)6,D :
• Forget gate:

5 (C) = sigmoid
(
, 5 ·

[
Ḡ
(C)
6,D , ℎ

(C−1)] + 1 5) , (12)

• Input gate:

8 (C) = sigmoid
(
,8 ·

[
Ḡ
(C)
6,D , ℎ

(C−1)] + 18) , (13)

• Cell state:

2̃ (C) = tanh
(
,2 ·

[
Ḡ
(C)
6,D , ℎ

(C−1)] + 12) ,
2 (C) = 5 (C) � 2 (C−1) + 8 (C) � 2̃ (C) ,

(14)

• Output gate:

> (C) = sigmoid
(
,> ·

[
Ḡ
(C)
6,D , ℎ

(C−1)] + 1>) ,
ℎ (C) = > (C) � tanh(2 (C)),

B̂
(C+1)
6,D = ℎ (C) ,

(15)

where the subscripts 5 , 8, > and 2 stand for forget gate, input
gate, output gate, and cell state, respectively. Accordingly,
(, 5 , 1 5), (,8 , 18), (,>, 1>), and (,2 , 12) are the pairs of
weight and bias, respectively. The notation ‘tanh’ denotes the
hyperbolic tangent function, ‘sigmoid’ denotes the logistic
sigmoid function, and � denotes the Hadarmard product (i.e.,
element-wise product).

On the other hand, ensemble learning is a learning technique
that trains multiple learners and combines them. Here, the
term “learner” refers to a model generated from training data
using a learning framework such as a neural network or a
decision tree. There are different ways to combine a set of
learners, such as bagging, boosting, and stacking [38]. In this
study, we utilize the stacking ensemble method in which a
learner is trained to combine the individual learners. Here,
each learner is called a first-level learner and the combiner is
called a second-level learner or meta-learner. In the stacking
procedure, first-level learners are trained on the training data,
and then the meta-learner is trained using the predictions of
the first-level learners. In this study, because we aim to predict
demand for each movie genre 6 (18 movie genres in total)
across user groups, we utilize 18 stacking models. In Fig. 4,
we illustrate an ensemble procedure for predicting the user
demand for a specific movie genre 6 across user groups. In
each user group, an LSTM based first-level learner is trained
on the preprocessed data to predict user demand for genre 6.
Then, the predictions of first-level learners across user groups
(for the same movie genre 6) are aggregated as an input dataset

for meta-leaner learning, to predict the demand for genre 6
over user groups. Here, the meta-learning uses a regression
model to learn the optimal weights for combining the first-
level predictions.

B. LSTM-based First-level Learner Training

In this subsection, we describe the proposed first-level
learning in detail.

1) Data preparation: After the data preprocessing (see
Section III), the preprocessed data (11) according to each genre
6, and user group D, is partitioned into two parts. We train an
LSTM-based first-level learner on the first part. After training,
the learner predicts the future value on the remaining part.
Specifically, they are expressed as follows

(
^!() "6,D , y!() "6,D

)
=

©«

Ḡ
(1)
6,D · · · Ḡ

(?)
6,D

Ḡ
(2)
6,D · · · Ḡ

(?+1)
6,D

...
. . .

...

Ḡ
(<−?)
6,D · · · Ḡ

(<−1)
6,D

,

Ḡ
(?+1)
6,D

Ḡ
(?+2)
6,D

...

Ḡ
(<)
6,D

ª®®®®®¬
,

(16)

(
˜̂ !() "
6,D , ỹ!() "6,D

)
=

©«

Ḡ
(<−?+1)
6,D · · · Ḡ

(<)
6,D

Ḡ
(<−?+2)
6,D · · · Ḡ

(<+1)
6,D

...
. . .

...

Ḡ
() −?)
6,D · · · Ḡ

() −1)
6,D

,

Ḡ
(<+1)
6,D

Ḡ
(<+2)
6,D

...

Ḡ
())
6,D

ª®®®®®¬
,

(17)
Here, the training data size <− ? of the first partition occupies
a proportion of U of the total data size) − ?, i.e., < − ? =

bU() − ?)c, where bGc denotes floor function that returns the
greatest integer number less than or equal to G. Therefore, in
the experimental evaluation,

< = bU · () − ?)c + ? (18)

In other words, < is determined by taking the inte-
ger part of the proportion U of the total data points in(
^34B40B>=0;6,D , y34B40B>=0;6,D

)
plus the input window size ?.

2) LSTM training and prediction: Let LD denote the LSTM
neural network associated with user group D. For the user
group D, we define each first-level learner for each genre 6
as

q6,D = LD

(
^!() "6,D , y!() "6,D

)
, (19)

which is trained on ^!() "6,D using the LSTM model LD . After
training with LSTM models in group D, each learner q6,D
predicts the future user demand for movie genre 6 within time
slots C = {< + 1, ...,)} as

ŝ6,D = q6,D

(
˜̂ !() "
6,D

)
, (20)

where the vector ŝ6,D = [B̂ (<+1)6,D , ..., B̂
())
6,D]>.

3) Postprocessing of predicted results: Postprocessing is
conducted to reverse the effects of the preprocessing per-
formed on the predicted vector ŝ6,D =

[
B̂
(<+1)
6,D , . . . , B̂

())
6,D

]>
. The

postprocessing proceeds in the reverse order of preprocessing
as follows [57]. The reseasonalization step includes introduc-
ing the last seasonal component to the generated predicted

8

User group 1

LSTM based first-level learner

Online-learning based meta learner

…

LSTM

cell

,
()

,
()

()

Previous demand

for genre g

()
()

()

()
(:)

()
…

,
()

()

Predicted &

actual demand

()
(:)

()
…

User group 2

LSTM

cell

,
()

,
()

,
()

LSTM

cell

,
()

,
()

,
()

User group

… …

…

…

()

() ()

()

() ()

()

()

… … …

Environment

Player

()
=
1

,
()

Fig. 4. Ensemble procedure for predicting user demand on movie genre 6 across user groups.

values. Next, in the renormalization step, the generated pre-
dictions are transformed back to their original scale by adding
the last value of the trend inside an input window and finally
taking the exponent of the values. After the postprocessing
step, we obtain a prediction vector at the original scale, i.e.,
x̂6,D =

[
Ĝ
(<+1)
6,D , . . . , Ĝ

())
6,D

]>
.

C. Meta-Learner Training

In this subsection, we describe the proposed ensemble
learning in detail.

1) Data Preparation: As shown in Fig. 4, the prediction
vectors of the first-level learners associated with the same
movie genre are aggregated and used to form the input data
for the meta-learner, as follows(

^<4C06 , y<4C06

)
=

([
{x̂6,D}D∈U

]
,

[
H
(<+1)
6 , . . . , H

())
6

])
, (21)

where ^<4C06 and y<4C06 are the input and output for training
the meta-learner, respectively; H

(C)
6 is the average (actual)

demand of all user groups for movie genre 6 at time C, which
is computed by

H
(C)
6 =

1
|U|

∑
D∈U

G
(C)
6,D , ∀C ∈ {< + 1, ...,)},∀6 ∈ G, (22)

where |U| indicates the number of user groups in U, which
is thirty including two gender groups, seven age groups, and
twenty-one occupation groups for the MovieLens datasets;
G
(C)
6,D is the actual demand of a user group D for movie genre
6 at time C. We also denote x (C)6 = [G (C)6,D]D∈U to represent the
collection of actual demands for genre 6 across user groups
(illustrated in Fig 4).

2) Stacking regression model: Here, a second-level learner
is trained to combine the prediction values. At each time step
C, for a given movie genre 6, weighted averaging is performed
to predict the number of views for the specific movie genre
across user groups in U, as follows

Ĥ
(C)
6 =

∑
D∈U

F
(C)
6,D Ĝ

(C)
6,D , ∀6 ∈ G. (23)

9

By denoting the vectors w (C)6 = [F (C)6,D]D∈U and x̂ (C)6 =

[Ĝ (C)6,D]D∈U , (23) becomes

Ĥ
(C)
6 =

(
w (C)6

)>
x̂ (C)6 , ∀6 ∈ G. (24)

Normally, the parameter vector w (C)6 is estimated by minimiz-
ing the sum of square errors

min{
w (C)6 ,∀C ∈{<+1,...,) }

})∑
C=<+1

(
H
(C)
6 − Ĥ (C)6

)2
. (25)

If the all values of H
(C)
6 over C ∈ [< + 1, . . . ,)] are all

exploited together, common convex optimization solvers can
be employed to solve (25). However, for a sequential pre-
diction problem, when predicting the value of Ĥ

(C)
6 , it is

reasonable to assume that only the information on H (C)6 over C ∈
[< + 1, . . . , C − 1] is available at the time C. Therefore, solving
Problem (25) in an offline learning fashion is intractable. To
resolve this issue, we apply online convex optimization (OCO)
theory [58]–[60]. The fundamental framework of OCO [58] is
described in the following.

Definition 3. (Online convex optimization framework).
In the online convex optimization problem, there is a convex
set C ⊆ R |U | , a sequence of convex functions {; (C) }, where
; (C) : C → R. At each time step C, an online algorithm A
chooses a vector w (C) ∈ C. After that, the cost of ; (C) (w (C)) is
revealed.

The OCO problem is naturally considered as a repeated
game [58]. In particular, we build our linear regression model
using the following game framework repeated between a
player (learner) and environment (see the online-learning
based meta-learner in Fig. 4). At each round C, an instance
described by a feature vector x̂ (C)6 arrives. A player proposes a
model parameter vector w (C)6 by using an algorithm, denoted

by A, and predicts Ĥ (C)6 =

(
w (C)6

)>
x̂ (C)6 . Then, the environ-

ment reveals the true value H
(C)
6 , and a loss (cost) function

of the form ; (C) (w) :=
(
w>x̂ (C)6 − H (C)6

)2
. The algorithm A

chooses w (C)6 based on the previous information including
; (<+1:C−1) :=

[
; (<+1) , ..., ; (C−1)] (this will be explained later).

To measure the performance of the algorithm A, we use a
standard measure, called regret. The regret is the difference
between the accumulative loss of the algorithm and that of
the best single solution in hindsight. Here, the “hindsight”
knows all the loss functions and the best single solution over
all rounds. For our problem, it can be defined as follows.

Definition 4. (Regret).
The player suffers a loss, which is the discrepancy between
the predicted and true value

; (C) (w (C)6) =
((
w (C)6

)>
x̂ (C)6 − H (C)6

)2
. (26)

The accumulative loss that the player with the algorithm A
suffers after) − < rounds is defined by

!A =

)∑
C=<+1

((
w (C)6

)>
x̂ (C)6 − H (C)6

)2
. (27)

The loss of a specific vector w6 is defined by

!w6
=

)∑
C=<+1

(
w>6 x̂

(C)
6 − H (C)6

)2
. (28)

Then, the player aims to minimize the regret, which is given
by

Regret = !A −min
w6

!w6
. (29)

The regret is the difference between the suffered loss and
minimum loss, which is obtained by the best vector w6. We
could have chosen this vector if we knew the data offline.

Our goal is to find the algorithm A that possesses a se-
quence of model parameters {w (C)6 } that minimizes the player’s
regret. In general, the algorithm A generates the sequence
{w (C)6 } as

w (C+1)6 = arg min
wg

(
; (C) (w6)

)
. (30)

In this study, we utilize a typical example of algorithm A,
follow-the-proximally-regularized-leader (FTRL-Proximal) al-
gorithm [61], [62] that updates the model’s parameter itera-
tively

w (C+1)6 = arg min
wg

{(
h (<+1:C)
6

)>
w6 +

1
2

C∑
B=<+1

f (B) ‖w6 − w (B)6 ‖22

+ _1‖w6‖1 +
1
2
_2‖w6‖22

}
, (31)

where h (<+1:C)
6 =

∑C
B=<+1 h

(B)
6 , with h (B)6 = ∇; (B) (w (s)

g) =

2
(
(w (B)6)>x̂ (B)6 − H (B)6

)
x̂ (B)6 denotes the gradient vector of the

loss function with respect to w (B)6 at time B; f (B) is the learning
rate schedule such that

∑C
B=<+1 f

(B) = 1
[(C)

. It applies the
linearization form of the loss function added with the ℓ1 and
ℓ2 regularization terms to handle the over-fitting problem and
model complexity [63]. The notations ‖ · ‖1 and ‖ · ‖2 denote
the ℓ1-norm and ℓ2-norm, respectively.

By definition, we have ‖w6 − w (B)6 ‖22 =

(
w6 − w (B)6

)> (
w6 −

w (B)6

)
= ‖w6‖22 − 2

(
w (B)6

)>
w6 + ‖w (B)6 ‖22. Substituting this into

problem (31), we have the following equivalent problem

w (C+1)6 = arg min
wg

{(
h (<+1:C)
6 −

C∑
B=<+1

f (B)w (B)6

)>
w6+

+ 1
2

(
_2 +

C∑
B=<+1

f (B)
)
‖w6‖22 + _1‖w6‖1

+ 1
2

C∑
B=<+1

f (B) ‖w (B)6 ‖22

}
.

(32)

10

Let : (C) = h (<+1:C)
6 − ∑C

B=<+1 f
(B)w (B)6 , then the relationship

between : (C) and : (C−1) is represented as follows

: (C) = : (C−1) + h (C)6 −
(1
[(C)
− 1
[(C−1)

)
w (C)6 . (33)

This means that we only need to store : (C−1) and use it to
update : (C) at the beginning of the round C. Then, problem (32)
can be rewritten as

w (C+1)6 = arg min
w6

{(
: (C)

))
w6 +

1
2

(
_2 +

C∑
B=<+1

f (B)
)
‖w6‖22

+ _1‖w6‖1

}
, (34)

where the last component of problem (32) is omitted in prob-
lem (34) since it is a constant with respect to w6. Problem (34)
can be decoupled into |U| per-coordinate-based problems as
follows

F
(C+1)
6,D = arg min

F6,D

{
o
(C)
D F6,D +

1
2

(
_2 +

C∑
B=<+1

f
(B)
D

)
(F6,D)2

+ _1 |F6,D |
}
, ∀D ∈ U, (35)

where F
(C)
6,D , ℎ (C)6,D , and o

(C)
D is the Dth component of the

vector w (C)6 = [F (C)6,D]D∈U , h (C)6 = [ℎ (C)6,D]D∈U and : (C) =

[o (C)D]D∈U , respectively. Let
∑C
B=<+1 f

(B)
D = 1

[
(C)
D

, where [(C)D =
U

V+
√∑C

B=<+1 (ℎ
(C)
6,D)2

, where U, V are chosen to obtain good learn-

ing performance [61]. The solution of F (C+1)6,D can be obtained
in closed using the following theorem.

Theorem 1. The closed-form solution of problem (35) can be
represented as follows

F
(C+1)
6,D =

0 if |o (C)D | ≤ _1,

o
(C)
D − sgn(o (C)D)_1

1
[
(C)
D

+_2
otherwise,

∀D ∈ U.

(36)

Proof. Because problem (35) is a convex and unconstrained
problem, the optimal value F (C+1)6,D can be obtained by setting
the first-order derivative of the corresponding objective func-
tion to zero as follows:

o
(C)
D +

(
_2 +

C∑
B=<+1

f
(B)
D

)
F
(C+1)
6,D + _1q = 0, ∀D ∈ U (37)

where q is defined as

q =

−1 if F (C+1)6,D < 0,
1 if F (C+1)6,D > 0,

[−1, 1] if F (C+1)6,D = 0,
(38)

to denote the subdifferential of the non-differential function
|F6,D | at F6,D = 0. Then, solving for F (C+1)6,D , for all D, we
obtain the solution to problem (35) as expressed in (36). �

We propose the Algorithm 1, which captures the ensemble
learning with FTRL algorithm presented above.

Algorithm 1 Ensemble algorithm with Per-Coordinate FTRL-
Proximal method
1: Input: Parameters U, V, _1, _2,:

>
6 = n>6 = 0 ∈ R|U|

2: Output: Ensemble weight vector w () +1)6

3: for C = < + 1, ...,) do
4: Receive data x̂ (C)6 ;
5: For D ∈ U, compute F (C)6,D based on (36);
6: Predict Ĥ (C)6 = (w (C)6)> x̂

(C)
6 ;

7: Observe the true value H (C)6 ;
8: for D ∈ U do
9: ℎ

(C)
6,D = 2((w (C)6)> x̂

(C)
6 − H

(C)
6) Ĝ

(C)
6,D ;

10: f
(C)
6,D = 1

U

√
=
(C−1)
6,D + (ℎ (C)6,D)2 −

√
=
(C−1)
6,D ;

11: o
(C)
6,D = o

(C−1)
6,D + ℎ (C)6,D − f

(C)
6,DF

(C)
6,D ;

12: =
(C)
6,D = =

(C−1)
6,D + (ℎ (C)6,D)2;

13:
end for

14:
end for

On the other hand, by the Corollary 1 in [64], the upper
bound for the regret of the proposed ensemble learning can
be presented as in the following theorem:

Theorem 2. Let C ⊆ R |U | be the convex set of problem (31).
Define � = maxw,w′∈C ‖w − w′‖. Let {; (C) }

C=1 be a sequence
of convex loss functions such that ‖∇; (C) (G)‖ ≤ �, for all
C ∈ {1, . . . , } and all G ∈ C. Then, the upper bound on the
regret is as follows

'46A4C ≤ ��
√

2 (39)

The bound on the regret guarantees that algorithm 1
asymptotically converges to the optimal solution, i.e.,
lim →∞

Regret

= 0. In other words, over the long-term
average, the accumulative loss that the player suffers under
the algorithm A asymptotically approaches the loss of the
best weight vector in hindsight.

D. Edge Proactive Caching Algorithm

In this section, we present the caching algorithm, as de-
scribed in Algorithm 2. The MECS sets a monitoring T =

{)+1, ...,)+"}, i.e., the duration for evaluating the prediction
algorithm. At each time slot C ∈ T , the MECS records
requested movies up to time slot C − 1 and extracts genres
from these movies. Movies with the same genre, 6 ∈ G, are
stored and sorted in ascending order of view count in a list
denoted as L6. Training and test data for the first level learner,(
^!() "6,D , y!() "6,D

)
,

(
˜̂ !() "
6,D , ỹ!() "6,D

)
, are archived using the

data preprocessing procedure in Section IV-B. The train data(
^!() "6,D , y!() "6,D

)
is used for training first-level learners and

the test data
(

˜̂ !() "
6,D , ỹ!() "6,D

)
is used for generating training

data for meta learners, where the predictions from the first-
level learners are considered as the inputs. Specifically, the
training phase includes two parts: first-level learner training
and meta-leaner training. In the first part, for user group D,
for each movie genre 6, one LSTM-based first-level learner
q6,D is trained using its associated training set ^!() "6,D . In the
second part, one meta-learner k6 is trained for each movie
genre 6 using the prediction from the first-level learner q6,D

11

Algorithm 2 Proposed Edge Caching Algorithm
1: Input: Demand matrix G(1:))

D in (1)
2: Output: Overall cache hit
3: for C =) + 1, . . . ,) +" do

% Generating list of popular movies in the previous time slots
4: Record requested movies up to time slot C−1, extract associated genres

in G;
5: Store movies with the same genre 6 ∈ G in list L6;
6: Compute the total number of views for each movie in the list, and

then sort them in ascending order of view count;

% Training and Predicting Phase
% First-level learner training

7: Obtain
(
^!()"

6,D , y!()"
6,D

)
,

(
˜̂ !()"
6,D , ỹ!()"

6,D

)
from G(1:C−1)

D

in Section IV-B;
8: for D ∈ U do
9: for 6 ∈ G do

10: Train first-level learner using LSTM model in (19):
q6,D = LD

(
^!()"

6,D , y!()"
6,D

)
;

end for
11:

end for

% Meta-learner training
12: for 6 ∈ G do
13: �6 = ∅;
14: for D ∈ U do
15: x̂6,D = q6,D (˜̂ !()"

6,D);
16: �6 = �6 ∪

([
x̂6,D

]
D∈U , y

<4C0
6

)
, where y<4C0

6 is defined
17: in (21);
18:

end for
19: Train meta-learner k6 by Algorithm 1 for stacking regression

model to the new dataset �6: k6 = L(�6) , where L denotes the
regression model in (23).

20:
end for

21: Predict Ĥ (C)6 = k6

([
Ĝ
(C)
6,D

]
D∈U

)
, for 6 ∈ G;

% Caching Phase

22: Calculate E6 =
Ĥ
(C)
6∑

6∈G Ĥ
(C)
6

, ∀6 ∈ G;

23: for 6 ∈ G do
24: Calculate #6 = �E6 , ∀6 ∈ G;
25: Cache a set of movies of length #6 from the top of list L6;

end for
26: Observe the user requests, compute cache hit and cache miss;
27: Update G(1:C)

D , for D ∈ U.
28:

end for

on the test data ˜̂ !() "
6,D as an input feature, and the average

(actual) demand for movie genre 6 over user groups as a
target output. As a result of the training phase, the trained
meta-learner k6 predicts the user demands for different move
genres, Ĥ (C)6 = k6

([
Ĝ
(C)
6,D

]
D∈U

)
. Then, the percentage of user

demands for a specific genre over all other movie genres is
calculated according to Ĥ (C)6 as follows

E6 =
Ĥ
(C)
6∑

6∈G Ĥ
(C)
6

, ∀6 ∈ G. (40)

If the cache size is �, the number of movies to be cached for
each genre 6 can be calculated as #6 = �E6. Then, #6 movies
from the top of the list L6 are extracted and stored in a local
cache of MECS. Finally, the user request demand matrix G(C)D
for D ∈ U is updated after new user requests are observed.

V. LSTM-ENSEMBLE-LEARNING BASED EDGE CACHING
ARCHITECTURE

This section describes the caching architecture in edge
computing, and how the proposed learning-based caching
algorithm works with MECS. They are shown in Fig. 5.

A. Cloud-Edge Computing Architecture

The proposed overall MEC framework consists of three
layers: User& IoT-device layer, MEC layer, and Cloud layer.

1) User & IoT-device layer: This layer includes IoT devices
such as cameras/sensors deployed in the smart home and all
possible cache service users: 5G/6G radio users, Wi-Fi users,
and 3rd-party wired and wireless users. By using CNN-based
deep learning model as decribed in [45], [46], users’ infor-
mation such as age, gender, etc. can be obtained from facial
images captured by the cameras in the house. This information
and related additional information (e.g., occupation, etc) are
compressed and sent to the edge node. Through the User
Interface, users send their service requests to a MECS and
receive the services from the Local Cache.

2) MEC layer: This layer has BSs (e.g., edge node) that
are equipped with MECSs. This layer plays the role of data
analysis, AI/ML processing, policy management, and storage.
Data analysis, AI/ML processing, and policy management
can be core components of network data analytic function
(NWDAF) at MEC, which is a big data processing module
in 5G/6G networks [65].
• Data Analyzing: Its main components are Content

Database (DB), Request DB, and User DB modules.
The content-related information (e.g., contents list, cloud
server id, etc.), user-related information (e.g., user ID,
age, gender, occupation, etc.), and user’s request informa-
tion (e.g., watching time, movie name, movie genre, etc.)
are saved in the Content DB, Request DB, and User DB,
respectively. The collected data is classified and analyzed
according to the purpose of each DB.

• AI/ML Processing: Its main components are Preprocess-
ing, Learning DB, and Learning Kernel modules. First,
the Preprocessing is responsible for data preparation for
the generation of training and testing data. According
to the purpose of AI/ML analysis, Preprocessing forms
different groups or clusters based on the collected user
information such as age, gender, occupation, etc. Once
user groups are generated, time-series data for each group
is extracted. The Preprocessing decomposes, normalizes,
and deseasonalizes the time-series data. This process was
mentioned in Section III. Second, the Learning DB is
responsible for creating, managing and storing various
training data and test data for the Learning Kernel.
Third, the Learning Kernel is responsible for predict-
ing the popularity of movie genres across groups of
users. The proposed LSTM and ensemble learning models
learn complex patterns of user preferences in various
user groups. Although content popularity prediction is a
computation-intensive tasks, it can be efficiently handled
with the strong computing capability of the MECS. This
is described in detail in Section IV.

12

Fig. 5. LSTM-Ensemble-based IoT-MEC caching architecture.

• Policy: The main component is a Cache Controller
module, which is responsible for determining whether
or not to cache contents by the popularity prediction.
Caching usually consists of content placement phase and
content delivery phase. This paper focuses on the content
placement phase.

• Storage: The main component is a Cache Agent module,
which is responsible for replacing contents interacting
with Cloud Server, and Local Cache. According to the
caching policy based on LSTM-ensemble-based learning
at the MECS, the contents with high predicted popularity
will be pre-cached before user requests arrive. If the
requested content already exists in the Local Cache of the
MECS, then it can be served directly without retrieving
from the Cloud Server. The details of the caching scheme
are provided in Subsection IV-D.

3) Cloud layer: This layer has content cloud servers that
store all contents, which can be requested from the users.
This layer also includes 5G/6G core networks and 3rd-party
networks.

B. Main Interfaces and Procedures

The activities of the main modules in the proposed proactive
caching framework are summarized in Fig. 5. 1 - 3 : The
user information, content request information, content server
information are periodically or aperiodically monitored and
stored in the User DB, Request DB, and the Content DB,
respectively. 4 - 6 : After each time slot, the Content DB,
Request DB, and User DB send the collected information
to the Preprocessing Module for AI/ML processing. 7 : The
Preprocessing delivers its preprocessed data to the Learning

13

Whether

requested

content has

been cached?

Yes

No

Users request

contents

Serve requested

contents from local

cache

Fetch requested

contents from

cloud server

Update the request

to User, Content,

Request DB

Phase III: Content delivery
t=t+1

Add new contents to

local cache

Is the cache

space

enough?

Cache

replacement

Phase II: Update local cache

Yes

No

Popularity prediction

Fetch contents with highest

popularity from cloud sever

Data preprocessing and

Learning DB Construction

Phase I: Preprocessing and

prediction phase
t = T+M?

Yes

No

End task

Initialization: T+M time slots

Fig. 6. LSTM-Ensemble-based IoT-MEC caching architecture flow chart.

DB. 8 : Training or testing data is forwarded to the Learning
Kernel. 9 : The predicted popularity information of each
content genre is delivered to the Cache Controller. 10 : The
Cache Controller decides which content should be cached
based on the popularity of the genres and the ranks in the
popular content list. Then, it delivers its control to the Cache
Agent. 11 : If the requested content is not in the Local Cache,
the Cache Agent retrieves the contents from the Cloud Server
and stores it in the Local Cache. 12 : The Cache Agent stores
or deletes the contents in/from the Local Cache. 13 : The
stored content is delivered to users through the User Interface
module. 14 : The users demand their contents to the Cache
Controller through the User Interface module. Combining
with Algorithm 2, overall flows in the proposed proactive
caching framework can be summarized as a flow chart in Fig.
6.

VI. PERFORMANCE EVALUATION

A. DataSets and Hyperparameter Setting

1) Dataset Analysis: To evaluate the proposed algorithm,
we conducted our experiments on two real-world datasets
including the MovieLens 100K [49] and MovieLens 1M [50].
They are popular movie datasets released by the GroupLens
research, for movie recommendations [66]. The MovieLens

100K dataset consists of 100, 000 ratings from 943 users on
1682 movies, collected from 1997 to 1998. The MovieLens
1M dataset consists of 1, 000, 209 ratings from 6040 users
on approximately 3900 movies, collected from 2000 to 2003.
The datasets include anonymous user ID, movie ID, movie
genre, and timestamp. Additionally, they include demographic
information of users, such as gender, age, and occupation.
This additional information aids the segregation of users into
different user groups for user preference prediction. We also
assumed that the caching entity at MECS updates its cache
content daily. Content can be refreshed during off-peak hours
(such as at night) in a day without affecting normal network
activities. To simulate the movie requests, we assumed that
movies on a day (corresponding to a timestamp of the dataset)
are those requested by the users.

Remark 3. In our experiments, the main reason that we chose
these datasets [49], [50] is that they include various users’
demographic information such as age, gender, and occupation.
Also, as stable benchmark datasets, they have been widely
used in recent studies [36], [45], [67].

2) Hyperparameter Setting: For model hyperparameter tun-
ing, it is important to choose the appropriate hyperparameters
for the LSTM model. As shown in Table II, the hyperpa-
rameters were chosen automatically based on the Bayesian

14

D
ra

m
a

C
om

ed
y

Act
io
n

Thr
ille

r

R
om

an
ce

H
or

ro
r

Adv
en

tu
re

Sci
-F

i

C
hi
ld
re

n

C
rim

e
W

ar
D
oc

M
us

ic
al

M
ys

te
ry

Ani
m

at
io
n

W
es

te
rn

Fan
ta

sy

Film
-N

oi
r

Movie Genres

0

2000

4000

6000

8000

10000

12000

14000

N
u
m

b
e
r

o
f
v
ie

w
s

Male

Female

Fig. 7. Movie genre distribution of gender group in the 100K dataset.

optimization method for hyperparameter tuning [68]. The
hyperparameter values were between the minimum and max-
imum values.

TABLE II
HYPERPARAMETER SETTINGS

Hyperparameter Minimum value Maximum value
Batch size 10 50
Number of epochs 200 250
Number of hidden layers 1 1
Number of neurons 50 100
Dropout 0.0001 0.1
L2-regularization parameter 5 × 10−4 5 × 10−3

B. User Group’s Preference
Fig. 7 illustrates the preference on different movie genres

in two gender groups. It can be seen that male viewers prefer
action and science fiction movies, while female viewers favor
drama and romance movies. In addition, we can see that male
viewers watch movies more often than female viewers. The
aforementioned diversity in the preference of movie genres in
these user groups varies the popularity of a movie across user
groups.

Moreover, the popularity of a movie changes over time
because different user groups watch it at different times during
a day or week. To demonstrate this fact, we investigated the
educator group and the student group based on the MovieLens
100K dataset [49]. In Fig. 8(a), it can be observed that the
watching time of the student group tends to be in the early
morning and evening, while the watching time of the educator
group in Fig. 8(b) tends toward the evening. Here, it can be
seen that different groups tend to have different preferences
in watching time. Therefore, the patterns in user preferences
can be leveraged to improve the prediction performance of the
neural networks.

C. Prediction Evaluation
To evaluate the accuracy of the proposed prediction method,

we can apply commonly-used metrics, such as root mean

0 5 10 15 20

Hour

0

500

1000

1500

2000

T
o

ta
l
v
ie

w
s

(a) Student group

0 5 10 15 20

Hour

0

200

400

600

800

1000

1200

1400

T
o

ta
l
v
ie

w
s

(b) Educator group

Fig. 8. Total of views in hour basis subjected to the student group and
educator group in the 100K dataset.

squared error (RMSE), mean absolute error (MAE), mean
absolute percentage error (MAPE), symmetric mean absolute
percentage error (sMAPE), or mean absolute scaled error
(MASE) [69]. However, the first two metrics are scale-
dependent measures, which depend on the scale of the data;
the next two pose infinite or undefined problems because they
involve division by a value equal or close to zero. For our
datasets, there are numerous zero observations; thus, we did
not use these metrics for our evaluation. The final metric,
MASE, is one of the best candidates as it overcomes the
aforementioned issues.

"�(� =

1
=

∑=
C=1 |�C − .C |

1
<−(

∑<
C=(+1 |.C−(− .C |

, (41)

where .C represents actual observation at time C, and �C refers
to the prediction at time C. The parameters = and < are the
number of predicted values in the test set and the number
of observations in the training set, respectively. The seasonal
period of a time series is represented as (. In this experiment,
(indicates weekly the seasonal period, i.e., (= 7.

MASE is a scale-independent metric that measures the
possible improvement by the proposed prediction method com-
pared to a benchmark prediction method. Here, the benchmark
prediction method is the seasonal naı̈ve method [51], in which
the prediction value is equal to the last observation, i.e., �C =
.C−(, where (is a seasonal period. MASE is the mean absolute
error between the predicted value and actual observation in the

15

5 10 15

Time span (days)

0

5

10

15

20

N
u

m
b

e
r

o
f

v
ie

w
s

Actual

Forecast

(a) Drama

5 10 15

Time span (days)

0

5

10

15

20

N
u

m
b

e
r

o
f

v
ie

w
s

Actual

Forecast

(b) Comedy

5 10 15

Time span (days)

0

10

20

30

40

50

N
u

m
b

e
r

o
f

v
ie

w
s

Actual

Forecast

(c) Action

Fig. 9. Actual and predicted values for 17 days for three movie genres with the highest view counts over user population (Movielens 100K): (a) Drama, (b)
Comedy, and (c) Action.

5 10 15

Time span (days)

0

10

20

30

40

50

N
u

m
b

e
r

o
f

v
ie

w
s Actual

Forecast

(a) Drama

5 10 15

Time span (days)

0

20

40

60
N

u
m

b
e

r
o

f
v
ie

w
s Actual

Forecast

(b) Comedy

5 10 15

Time span (days)

0

10

20

30

N
u

m
b

e
r

o
f

v
ie

w
s Actual

Forecast

(c) Action

Fig. 10. Actual and predicted values for 17 days for three movie genres with the highest view counts over user population (Movielens 1M): (a) Drama, (b)
Comedy, and (c) Action.

2 4 6 8 10 12 14 16

Time span (days)

0

0.05

0.1

0.15

0.2

0.25

0.3

M
e
a
n
 A

b
s
o
lu

te
 S

c
a
le

d
 E

rr
o
r

(M
A

S
E

)

Drama

Comedy

Action

(a) MovieLens 100K

2 4 6 8 10 12 14 16

Time span (days)

0

0.05

0.1

0.15

0.2

0.25

0.3

M
e

a
n

 A
b

s
o

lu
te

 S
c
a

le
d

 E
rr

o
r

(M
A

S
E

)

Drama

Comedy

Action

(b) MovieLens 1M

Fig. 11. Cumulative Mean Absolute Scaled Error (MASE) for three movie genres (drama, comedy, action).

test set, scaled by the mean absolute error between seasonal-
naı̈ve based predicted values and observations in the training
set. When MASE < 1, the proposed method, on average, is
better than the seasonal-naı̈ve-based method, and when MASE
> 1, the proposed method is worse than the seasonal-naı̈ve-
based method [69].

In our experiment, we applied the LSTM neural network
for making a prediction one day ahead, which uses seven
days’ observation history, i.e., the size of the input window
equals 7, and the size of the output window equals 1. In
each user group, the prediction model was performed over

the time series of each movie genre. In both MovieLens 100K
and 1M datasets, within the) time slots from the beginning,(
^!() "6,D , y!() "6,D

)
accounts for a proportion of U of the data

points (see Eq. (18)), and
(

˜̂ !() "
6,D , ỹ!() "6,D

)
accounts for the

remaining proportion of (1 − U) of the data points, where
U ∈ {0.6, 0.7, 0.8}. Figs. 9-11, and 14 illustrate experimental
results with U = 0.8. In addition, Fig. 13 was added to illustrate
the caching performance with different proportions of U.

Figs. 9 and 10 show the predicted user demand in compar-
ison to the actual user demand for 17 days for both datasets.

16

20 40 60 80 100 120 140 160 180

Cache size

0

10

20

30

40

50

C
a

c
h

e
 h

it
 r

a
ti
o

Optimum

Proposed

LRU

FIFO

Random

(a) MovieLens 100K

50 150 250 350 450

Cache size

0

10

20

30

40

50

C
a
c
h
e
 h

it
 r

a
ti
o

Optimum

Proposed

LRU

FIFO

Random

(b) MovieLens 1M

Fig. 12. Cache ratio vs cache size with different datasets: (a) MovieLens 100K, (b) MovieLens 1M.

20 40 60 80 100 120 140 160 180

Cache size

5

10

15

20

25

30

35

40

45

C
a

c
h

e
 h

it
 r

a
ti
o

Optimum

 = 0.8

 = 0.7

 = 0.6

120 140
25

30

(a) MovieLens 100K

50 150 250 350 450

Cache size

0

10

20

30

40

50

C
a

c
h

e
 h

it
 r

a
ti
o

Optimum

 = 0.8

 = 0.7

 = 0.6

350 400
30

40

(b) MovieLens 1M

Fig. 13. Cache ratio vs cache size with different proportions of training set: (a) MovieLens 100K, (b) MovieLens 1M.

We show the results of the three movie genres that attract
much attention from the viewers: drama, comedy, and action.
It can be observed that the error between the predicted and
actual demands for different movie genres is relatively small
in Fig. 9 and Fig. 10. This reveals the potential advantages of
our edge caching algorithm with respect to the change in user
preference over time.

In Fig. 11, we show the cumulative MASE error of our
proposed prediction algorithm for the above three movie
genres to each date over 17 days. We can observe that the
error values are less than 1, i.e., the proposed method is better
than naı̈ve seasonal prediction on both datasets.

D. Caching Performance Results

To evaluate the performance of the proposed caching algo-
rithm, we compared it with four prevalent schemes.
• Optimum: The optimal policy with perfect prior infor-

mation about the popularity of movies provides the best
cache decision.

• Least recently used (LRU) [70]: The reactive caching
policy fetches a movie from the content server and caches
it in the event of a cache miss. In case the cache is

full, LRU replaces the movie that has been least recently
requested to make room for newly requested movies.

• First-in-first-out (FIFO) [71]: The reactive caching policy
fetches movies from the content server and caches it in
the event of a cache miss. In case the cache is full, FIFO
replaces the movie that has been stored for the longest
time in the cache to make room for newly requested
movies.

• Random: This caching policy caches movies randomly.

In Figs. 12(a) and (b), we show the overall cache hit ratio
of our proposed policy with different cache sizes in 100K and
1M datasets, respectively. In Fig. 12(a), the cache size varies
from 20 to 180 movies out of the total 1682 movies, which
corresponds to 1.18% - 10.7% of the total number of movies.
The cache size in Fig. 12(b) varies from 50 to 450 movies
out of the total 3952 movies, which corresponds to 1.26% -
11.39% of the total number of movies.

It can be observed in both the figures that the cache hit ratio
of all the policies increases as the cache size increases and the
proposed caching policy shows better performance than other
policies. In Fig. 12(a), the proposed caching policy achieves
approximately 14%, 15%, and 25% higher cache hit ratio

17

20 40 60 80 100 120 140 160 180

Cache size

2500

3000

3500

4000

4500
B

a
c
k
h

a
u

l
lo

a
d

Optimum

Proposed

LRU

FIFO

Random

(a) MovieLens 100K

50 150 250 350 450

Cache size

4000

5000

6000

7000

8000

9000

B
a

c
k
h

a
u

l
lo

a
d

Optimum

Proposed

LRU

FIFO

Random

(b) MovieLens 1M

Fig. 14. Backhaul load vs cache size with different datasets: (a) MovieLens 100K, (b) MovieLens 1M.

than LRU, FIFO, and Random, respectively. In Fig. 12(b), the
proposed caching policy can archive approximately 15%, 16%,
and 30% higher cache hit ratio than those with LRU, FIFO,
and Random, respectively. This is because the proposed policy
can predict user demand and popularity for movie genres using
information from long-term history and decide to cache those
movies that meet most of the users’ preferences. However,
LRU, FIFO, and Random do not consider the popularity of
movies or predict the future popularity of movies. Moreover,
compared to the optimal policy, the proposed method achieves
near-optimal cache hit ratio of within 11% and 9% for the
100K and 1M datasets, respectively. In addition, Figs. 13(a),
(b) were sketched to illustrate the influence of these propor-
tions on the cache hit ratio on both datasets. It can be seen
that the cache hit ratio with higher proportion of U = 0.8 is
slightly higher than that of U = 0.6 and U = 0.7. However,
in general, excessive use of training data can lead to longer
training time or overfitting problems.

If a movie is stored in a cached entity, it can be served
to the users directly without any traffic on the backhaul link.
Otherwise, the movie has to be retrieved from the content
server, which adds to the backhaul load. In Fig. 14, we show
the comparison between the backhaul load of our proposed
caching algorithm and that of the benchmark algorithms in
terms of varying cache sizes based on the two datasets. It
can be observed that when the cache sizes increases, the
backhaul load decreases for all algorithms. In Fig. 14(a), the
backhaul load of the proposed algorithm is approximately
14%, 15%, and 30% lower than those of LRU, FIFO, and
Random algorithm, respectively. In Fig. 14(b), the backhaul
load of the proposed algorithm is approximately 14%, 15%,
and 27% lower than those of LRU, FIFO, and Random
algorithm, respectively. Moreover, our algorithm can approach
near-optimal backhaul-load reduction within 12%, and 10%
for the 100K and 1M datasets, respectively.

VII. CONCLUSIONS

In this paper, we proposed an efficient content caching
policy in edge networks that implements dynamic prediction.

It exploits a hierarchical deep learning architecture: LSTM-
based local learning and ensemble-based meta-learning. First,
as a local learning model, we employed the LSTM method
using STL-based preprocessing. It identified real-time content
preferences in each demographic user group. Second, as a
meta-learning model, we employed a regression-based ensem-
ble method. For optimal ensemble learning, we developed an
online convex optimization approach that provides sublinear
‘regret’ performance. It effectively orchestrated the obtained
multiple demographic user preferences into a unified caching
strategy. Extensive experiments were conducted on the popular
MovieLens dataset to verify the caching performance of the
proposed algorithm against various benchmark algorithms,
including an optimal caching algorithm with perfect prior
knowledge of content popularity. The proposed control pro-
vides up to a 30% higher cache hit ratio than conventional
representative algorithms. Moreover, the proposed control has
a near-optimal cache hit ratio within approximately 9% of the
optimal caching scheme. The proposed learning and caching
control algorithms can be implemented as a core function of
the 5G/6G standard. As part of our future work, we will study
advanced caching algorithms that consider the popularity of
cold-start content [72] and on-device coded caching algorithms
that leverage distributed learning techniques in a dynamically
changing network.

REFERENCES

[1] “Ericsson mobility report,” Report, Ericsson, Nov. 2020. [Online].
Available: https://www.ericsson.com/en/mobility-report/dataforecasts

[2] P. Mach and Z. Becvar, “Mobile edge computing: A survey on archi-
tecture and computation offloading,” IEEE Commun. Surv. Tut., vol. 19,
no. 3, pp. 1628–1656, 2017.

[3] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella,
“On multi-access edge computing: A survey of the emerging 5G network
edge cloud architecture and orchestration,” IEEE Commun. Surv. Tut.,
vol. 19, no. 3, pp. 1657–1681, 2017.

[4] X. Wang, M. Chen, T. Taleb, A. Ksentini, and V. C. Leung, “Cache in the
air: Exploiting content caching and delivery techniques for 5g systems,”
IEEE Communications Magazine, vol. 52, no. 2, pp. 131–139, 2014.

[5] J. Yao, T. Han, and N. Ansari, “On mobile edge caching,” IEEE
Communications Surveys & Tutorials, vol. 21, no. 3, pp. 2525–2553,
2019.

18

[6] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358,
2017.

[7] A. S. Gomes, B. Sousa, D. Palma, V. Fonseca, Z. Zhao, E. Monteiro,
T. Braun, P. Simoes, and L. Cordeiro, “Edge caching with mobility pre-
diction in virtualized lte mobile networks,” Future Generation Computer
Systems, vol. 70, pp. 148–162, 2017.

[8] N. Golrezaei, A. F. Molisch, A. G. Dimakis, and G. Caire, “Fem-
tocaching and device-to-device collaboration: A new architecture for
wireless video distribution,” IEEE Communications Magazine, vol. 51,
no. 4, pp. 142–149, 2013.

[9] E. Bastug, M. Bennis, and M. Debbah, “Living on the edge: The role
of proactive caching in 5g wireless networks,” IEEE Communications
Magazine, vol. 52, no. 8, pp. 82–89, 2014.

[10] Q. Li, L. Changlong, B. Cao, and Q. Zhang, “Caching resource man-
agement of mobile edge network based on stackelberg game,” Digital
Communications and Networks, vol. 5, 10 2018.

[11] S. Safavat, N. Sapavath, and D. B. Rawat, “Recent advances in mobile
edge computing and content caching,” Digital Communications and
Networks, vol. 6, 09 2019.

[12] Y.-L. Chen and C.-L. Chang, “Early prediction of the future popularity
of uploaded videos,” Expert Systems with Applications, vol. 133, pp.
59–74, 2019.

[13] R. Fares, B. Romoser, Z. Zong, M. Nijim, and X. Qin, “Performance
evaluation of traditional caching policies on a large system with
petabytes of data,” in Proc. IEEE Seventh International Conference on
Networking, Architecture, and Storage, 2012, pp. 227–234.

[14] Z. Yu, J. Hu, G. Min, H. Lu, Z. Zhao, H. Wang, and N. Georgalas,
“Federated learning based proactive content caching in edge computing,”
in Proc. IEEE Global Communications Conference (GLOBECOM),
2018, pp. 1–6.

[15] B. Blaszczyszyn and A. Giovanidis, “Optimal geographic caching in
cellular networks,” in Proc. IEEE international conference on commu-
nications (ICC), 2015, pp. 3358–3363.

[16] M. Ji, G. Caire, and A. F. Molisch, “Wireless device-to-device caching
networks: Basic principles and system performance,” IEEE Journal on
Selected Areas in Communications, vol. 34, no. 1, pp. 176–189, 2015.

[17] S. H. Chae, J. Y. Ryu, T. Q. Quek, and W. Choi, “Cooperative trans-
mission via caching helpers,” in Proc. IEEE Global Communications
Conference (GLOBECOM), 2015, pp. 1–6.

[18] J. Song, H. Song, and W. Choi, “Optimal caching placement of caching
system with helpers,” in Proc. IEEE International Conference on Com-
munications (ICC), 2015, pp. 1825–1830.

[19] H. J. Kang, K. Y. Park, K. Cho, and C. G. Kang, “Mobile caching
policies for device-to-device (d2d) content delivery networking,” in Proc.
IEEE conference on computer communications workshops (INFOCOM
WKSHPS), 2014, pp. 299–304.

[20] S. H. Chae and W. Choi, “Caching placement in stochastic wireless
caching helper networks: Channel selection diversity via caching,” IEEE
Transactions on Wireless Communications, vol. 15, no. 10, pp. 6626–
6637, 2016.

[21] D. Malak, M. Al-Shalash, and J. G. Andrews, “Optimizing content
caching to maximize the density of successful receptions in device-to-
device networking,” IEEE Transactions on Communications, vol. 64,
no. 10, pp. 4365–4380, 2016.

[22] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and
G. Caire, “Femtocaching: Wireless content delivery through distributed
caching helpers,” IEEE Transactions on Information Theory, vol. 59,
no. 12, pp. 8402–8413, 2013.

[23] Z. Zheng, L. Song, Z. Han, G. Y. Li, and H. V. Poor, “A stackelberg game
approach to proactive caching in large-scale mobile edge networks,”
IEEE Transactions on Wireless Communications, vol. 17, no. 8, pp.
5198–5211, 2018.

[24] K. Hamidouche, W. Saad, and M. Debbah, “Many-to-many matching
games for proactive social-caching in wireless small cell networks,” in
Proc. 12th International Symposium on Modeling and Optimization in
Mobile, Ad Hoc, and Wireless Networks (WiOpt), 2014, pp. 569–574.

[25] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
IEEE Transactions on Information Theory, vol. 60, no. 5, pp. 2856–
2867, 2014.

[26] A. C. Güngör and D. Gündüz, “Proactive wireless caching at mobile
user devices for energy efficiency,” in Proc. International Symposium
on Wireless Communication Systems (ISWCS), 2015, pp. 186–190.

[27] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching
and zipf-like distributions: Evidence and implications,” in Proc. IEEE
INFOCOM, vol. 1, 1999, pp. 126–134.

[28] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon, “I tube,
you tube, everybody tubes: analyzing the world’s largest user generated
content video system,” in Proc. 7th ACM SIGCOMM, 2007, pp. 1–14.

[29] B. Bharath, K. G. Nagananda, and H. V. Poor, “A learning-based
approach to caching in heterogenous small cell networks,” IEEE Trans-
actions on Communications, vol. 64, no. 4, pp. 1674–1686, 2016.

[30] K. N. Doan, T. Van Nguyen, T. Q. Quek, and H. Shin, “Content-aware
proactive caching for backhaul offloading in cellular network,” IEEE
Transactions on Wireless Communications, vol. 17, no. 5, pp. 3128–
3140, 2018.

[31] P. Yang, N. Zhang, S. Zhang, L. Yu, J. Zhang, and X. S. Shen, “Content
popularity prediction towards location-aware mobile edge caching,”
IEEE Transactions on Multimedia, vol. 21, no. 4, pp. 915–929, 2018.

[32] K. Thar, N. H. Tran, T. Z. Oo, and C. S. Hong, “Deepmec: Mobile edge
caching using deep learning,” IEEE Access, vol. 6, pp. 78 260–78 275,
2018.

[33] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[34] A. Sengupta, S. Amuru, R. Tandon, R. M. Buehrer, and T. C. Clancy,
“Learning distributed caching strategies in small cell networks,” in Proc.
11th International Symposium on Wireless Communications Systems
(ISWCS), 2014, pp. 917–921.

[35] M. S. ElBamby, M. Bennis, W. Saad, and M. Latva-Aho, “Content-
aware user clustering and caching in wireless small cell networks,”
in Proc. 11th International Symposium on Wireless Communications
Systems (ISWCS). IEEE, 2014, pp. 945–949.

[36] S. Müller, O. Atan, M. van der Schaar, and A. Klein, “Context-
aware proactive content caching with service differentiation in wireless
networks,” IEEE Transactions on Wireless Communications, vol. 16,
no. 2, pp. 1024–1036, 2016.

[37] S. Müller, O. Atan, M. van der Schaar, and A. Klein, “Smart caching
in wireless small cell networks via contextual multi-armed bandits,” in
Proc. IEEE International Conference on Communications (ICC), 2016,
pp. 1–7.

[38] Z.-H. Zhou, Ensemble methods: foundations and algorithms. CRC
press, 2012.

[39] N. Nguyen-Thanh, D. Marinca, K. Khawam, S. Martin, and
L. Boukhatem, “Multimedia content popularity: Learning and recom-
mending a prediction method,” in Proc. IEEE Global Communications
Conference (GLOBECOM), 2018, pp. 1–7.

[40] Y. Liu, M. Peng, G. Shou, Y. Chen, and S. Chen, “Toward edge
intelligence: multiaccess edge computing for 5g and internet of things,”
IEEE Internet of Things Journal, vol. 7, no. 8, pp. 6722–6747, 2020.

[41] P. Porambage, J. Okwuibe, M. Liyanage, M. Ylianttila, and T. Taleb,
“Survey on multi-access edge computing for internet of things realiza-
tion,” IEEE Communications Surveys & Tutorials, vol. 20, no. 4, pp.
2961–2991, 2018.

[42] D. Antonogiorgakis, A. Britzolakis, P. Chatziadam, A. Dimitriadis,
S. Gikas, E. Michalodimitrakis, M. Oikonomakis, N. Siganos, E. Tza-
gkarakis, Y. Nikoloudakis et al., “A view on edge caching applications,”
arXiv preprint arXiv:1907.12359, 2019.

[43] G. Ruggeri, M. Amadeo, C. Campolo, A. Molinaro, and A. Iera,
“Caching popular transient iot contents in an sdn-based edge infrastruc-
ture,” IEEE Transactions on Network and Service Management, 2021.

[44] L. Zanzi, F. Cirillo, V. Sciancalepore, F. Giust, X. Costa-Perez, S. Man-
giante, and G. Klas, “Evolving multi-access edge computing to support
enhanced iot deployments,” IEEE Communications Standards Magazine,
vol. 3, no. 2, pp. 26–34, 2019.

[45] A. Ndikumana, N. H. Tran, D. H. Kim, K. T. Kim, and C. S. Hong,
“Deep learning based caching for self-driving cars in multi-access edge
computing,” IEEE Transactions on Intelligent Transportation Systems,
vol. 22, no. 5, pp. 2862–2877, 2021.

[46] A. Dehghan, E. G. Ortiz, G. Shu, and S. Z. Masood, “Dager: Deep age,
gender and emotion recognition using convolutional neural network,”
arXiv preprint arXiv:1702.04280, 2017.

[47] X. Zhang, L. Liang, C. Luo, and L. Cheng, “Privacy-preserving incentive
mechanisms for mobile crowdsensing,” IEEE Pervasive Computing,
vol. 17, no. 3, pp. 47–57, 2018.

[48] Z. Duan, L. Tian, M. Yan, Z. Cai, Q. Han, and G. Yin, “Practical
incentive mechanisms for iot-based mobile crowdsensing systems,”
IEEE Access, vol. 5, pp. 20 383–20 392, 2017.

[49] GroupLens, “Movielens 100k dataset.” [Online]. Available:
https://grouplens.org/datasets/movielens/100k/

[50] GroupLens, “Movielens 1m dataset.” [Online]. Available:
https://grouplens.org/datasets/movielens/1m/

[51] R. J. Hyndman and G. Athanasopoulos, Forecasting: principles and
practice. OTexts, 2018.

19

[52] R. B. Cleveland et al., “STL: A seasonal-trend decomposition procedure
based on loess,” Journal of Official Statistics, pp. 3–73, 1990.

[53] M. Nelson, T. Hill, W. Remus, and M. O’Connor, “Time series fore-
casting using neural networks: Should the data be deseasonalized first?”
Journal of Forecasting, vol. 18, no. 5, pp. 359–367, 1999.

[54] S. Zhang, N. Zhang, X. Fang, P. Yang, and X. S. Shen, “Cost-effective
vehicular network planning with cache-enabled green roadside units,” in
Proc. IEEE International Conference on Communications (ICC), 2017,
pp. 1–6.

[55] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[56] S. Smyl and K. Kuber, “Data preprocessing and augmentation for
multiple short time series forecasting with recurrent neural networks,”
in Proc. 36th International Symposium on Forecasting, 2016.

[57] K. Bandara, C. Bergmeir, and S. Smyl, “Forecasting across time series
databases using recurrent neural networks on groups of similar series:
A clustering approach,” Expert Systems with Applications, vol. 140, p.
112896, 2020.

[58] M. Zinkevich, “Online convex programming and generalized infinitesi-
mal gradient ascent,” in Proc. 20th international conference on machine
learning (ICML), 2003, pp. 928–936.

[59] E. Hazan, A. Agarwal, and S. Kale, “Logarithmic regret algorithms for
online convex optimization,” Machine Learning, vol. 69, no. 2-3, pp.
169–192, 2007.

[60] T. Chen, Q. Ling, Y. Shen, and G. B. Giannakis, “Heterogeneous online
learning for “thing-adaptive” fog computing in iot,” IEEE Internet of
Things Journal, vol. 5, no. 6, pp. 4328–4341, 2018.

[61] H. B. McMahan, G. Holt, D. Sculley, M. Young, D. Ebner, J. Grady,
L. Nie, T. Phillips, E. Davydov, D. Golovin et al., “Ad click prediction:
a view from the trenches,” in Proc. 19th ACM SIGKDD international
conference on Knowledge discovery and data mining, 2013, pp. 1222–
1230.

[62] Y. Jiang, M. Ma, M. Bennis, F.-C. Zheng, and X. You, “User prefer-
ence learning-based edge caching for fog radio access network,” IEEE
Transactions on Communications, vol. 67, no. 2, pp. 1268–1283, 2018.

[63] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical
learning: data mining, inference, and prediction. Springer Science &
Business Media, 2009.

[64] H. B. McMahan, “A unified view of regularized dual averaging and
mirror descent with implicit updates,” arXiv preprint arXiv:1009.3240,
2010.

[65] “3GPP TR 23.791: Study of Enablers for Network Automation for 5G,”
3GPP Standard, 2019.

[66] F. M. Harper and J. A. Konstan, “The movielens datasets: History and
context,” ACM Transactions on Interactive Intelligent Systems, vol. 5,
no. 4, pp. 1–19, 2015.

[67] B. Yi, X. Shen, H. Liu, Z. Zhang, W. Zhang, S. Liu, and N. Xiong, “Deep
matrix factorization with implicit feedback embedding for recommen-
dation system,” IEEE Transactions on Industrial Informatics, vol. 15,
no. 8, pp. 4591–4601, 2019.

[68] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimiza-
tion of machine learning algorithms,” in Advances in neural information
processing systems, 2012, pp. 2951–2959.

[69] R. J. Hyndman and A. B. Koehler, “Another look at measures of forecast
accuracy,” International Journal of Forecasting, vol. 22, no. 4, pp. 679–
688, 2006.

[70] H. Ahlehagh and S. Dey, “Video caching in radio access network: Impact
on delay and capacity,” in Proc. IEEE Wireless Communications and
Networking Conference (WCNC), 2012, pp. 2276–2281.

[71] C. Aggarwal, J. L. Wolf, and P. S. Yu, “Caching on the world wide
web,” IEEE Transactions on Knowledge and data Engineering, vol. 11,
no. 1, pp. 94–107, 1999.

[72] D. Ralph, Y. Li, G. Wills, and N. Green, “Recommendations from cold
starts in big data,” Computing, January 2020.

The-Vi Nguyen received the B.S. degree in Math-
ematics from University of Science, Ho Chi Minh
City, Viet Nam in 2016, and M.S. degree in Com-
puter Science and Engineering from Chung-Ang
University, South Korea in 2021. He is currently
pursuing Ph.D. in Big Data at Chung-Ang Univer-
sity, South Korea. His research interests include ma-
chine learning, optimization, and their applications
in wireless communications.

Nhu-Ngoc Dao received the B.S. degree in elec-
tronics and telecommunications from the Posts and
Telecommunications Institute of Technology, Hanoi,
Vietnam, in 2009, and the M.S. and Ph.D. degrees
in computer science from the School of Computer
Science and Engineering, Chung-Ang University,
Seoul, Republic of Korea, in 2016 and 2019, respec-
tively. From 2019 to 2020, he was a Postdoctoral
Researcher with the Institute of Computer Science,
University of Bern, Switzerland. He is currently an
Assistant Professor with the Department of Com-

puter Science and Engineering, Sejong University, Seoul. His research inter-
ests include intelligent systems, network softwarization, mobile cloudization,
and the Internet of Things.

Van Dat Tuong received the B.S. degree in Mecha-
tronics from Hanoi University of Science and Tech-
nology, Vietnam, in 2012, and M.S. degree in Com-
puter Science and Engineering from Chung-Ang
University, South Korea, in 2021. From 2012 to
2018, he was a Software Engineer with the Mobile
R&D Center, Samsung Electronics Vietnam, Hanoi,
Vietnam. From 2018 to 2021, he was a recipient
of the Global Korea Scholarship sponsored by the
Korean Government. He is currently pursuing his
Ph.D. degree in Big Data at Chung-Ang University,

South Korea. His research interests include wireless communication, mobile
edge computing, reinforcement learning, and Internet of Things.

Wonjong Noh received the B.S., M.S., and Ph.D.
degrees from the Department of Electronics Engi-
neering, Korea University, Seoul, South Korea, in
1998, 2000, and 2005, respectively. From 2005 to
2007, he conducted the Postdoctoral Research with
Purdue University, West Lafayette, IN, USA, and the
University of California at Irvine, Irvine, CA, USA.
From 2008 to 2015, he was a Principal Research
Engineer with the Samsung Advanced Institute of
Technology, Samsung Electronics, South Korea. Af-
ter that, he worked as an Assistant Professor with

the Department of Electronics and Communication Engineering, Gyeonggi
University of Science and Technology, South Korea, and since 2019, he
has worked as an Associate Professor with the School of Software, Hallym
University, South Korea. He received the Government Postdoctoral Fellowship
from the Ministry of Information and Communication, South Korea, in 2005.
He was also a recipient of the Samsung Best Paper God Award in 2010,
the Samsung Patent Bronze Award in 2011, and the Samsung Technology
Award in 2013. His current research interests include fundamental analysis and
evaluations on machine learning-based 5G and 6G wireless communications
and networks.

20

Sungrae Cho received B.S. and M.S. degrees
in Electronics Engineering from Korea University,
Seoul, South Korea, in 1992 and 1994, respectively,
and Ph.D. degree in Electrical and Computer Engi-
neering from the Georgia Institute of Technology,
Atlanta, GA, USA, in 2002. He is a Professor with
the School of Computer Science and Engineering,
Chung-Ang University (CAU), Seoul, South Korea.
Prior to joining CAU, he was an Assistant Professor
with the Department of Computer Sciences, Georgia
Southern University, Statesboro, GA, USA, from

2003 to 2006, and a Senior Member of Technical Staff with the Samsung
Advanced Institute of Technology (SAIT), Kiheung, South Korea, in 2003.
From 1994 to 1996, he was a Research Staff Member with Electronics and
Telecommunications Research Institute (ETRI), Daejeon, South Korea. From
2012 to 2013, he held a Visiting Professorship with the National Institute
of Standards and Technology (NIST), Gaithersburg, MD, USA. His current
research interests include wireless networking, ubiquitous computing, and ICT
convergence. He has served as the Organizing Committee Chair for numerous
international conferences, such as IEEE SECON, ICOIN, ICTC, ICUFN,
TridentCom, and the IEEE MASS, and as a Program Committee Member for
conferences such as IEEE ICC, MobiApps, SENSORNETS, and WINSYS.
He has been a Subject Editor for IET Electronics Letter since 2018 and an
Editor for Ad Hoc Networks Journal (Elsevier) from 2012 to 2017.

