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Abstract—Intelligent reflecting surface (IRS) is a promising 6G
technology that can improve wireless communication capacity
in a cost-effective and energy-efficient manner, by adjusting a
large number of passive reflectors to appropriately change the
signal propagation. In this study, we identified the achievable
rate region of a two-hop interference channel with distributed
multiple IRS relays. To do so, we formulated a non-convex
problem that characterizes the rate-profile, and found its solution
using successive convex approximation (SCA). We then proposed
an alternating direction method of multipliers (ADMM) and
alternating optimization (AO) based distributed and low-complex
IRS control that maximizes the achievable sum-rate, and proved
its convergence and optimality. We then compared the proposed
IRS control with semi-definite relaxation (SDR)-, random phase-
, deep reinforcement learning (DRL)- based IRS controls, and
optimal amplify-and-forward (AF)-, interference neutralization
(IN)-, and decode-and-forward (DF) based relaying schemes.
We demonstrated that the proposed control with multiple IRS
elements outperforms the benchmark controls in terms of the
achievable rate region, achievable sum-rate, and energy efficiency
under same power budget. We also confirmed that the discrete
phase approximation of the proposed control provides near-
optimal performance with fewer bits, and the proposed control
is robust under imperfect CSI condition. The proposed controls
can be efficiently applied to large-scale multi-pair multihop
device-to-device and machine-type device communications in the
interference-limited or low-powered dense networks of 5G and
6G environments.

Index Terms—Coordinated relay, intelligent reflecting surface,
interference channel, multihop multi-pair transmission

I. INTRODUCTION

THE unprecedented demands for high quality and ubiq-
uitous wireless services impose enormous challenges

to existing cellular networks. Applications such as rate-
centric enhanced mobile broadband (eMBB), ultra-reliable and
low-latency communications (URLLC), and massive machine
type communications (mMTC) services are the targets for
the design of fifth-generation (5G) communication systems.
However, the goals of sixth-generation (6G) wireless com-
munication systems are expected to be transformative and
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revolutionary encompassing applications such as data-driven,
instantaneous, ultra-massive, and ubiquitous wireless connec-
tivity, as well as connected intelligence [1]. To achieve this
goal, an intelligent reflecting surface (IRS) and its various
equivalents have emerged as a new and promising solution.
The advantages of an IRS are as follows [1]. First, such
a surface can easily be applied to building facades, indoor
walls, aerial platforms, roadside billboards, highway polls, and
vehicle windows. Second, an enhanced spectral efficiency en-
hancement is provided by forming line-of-sight (LoS) links be-
tween base stations (BSs) and mobile users and enhancing the
received signal-to-interference-plus-noise ratio (SINR). It is
also more energy-efficient and environment-friendly than con-
ventional amplify-and-forward (AF) and decode-and-forward
(DF) systems. Third, it can operate in a full-duplex (FD) and
full-band transmission without requiring additional power for
signal amplification/regeneration as well as a sophisticated
processing for self-interference cancellation. Finally, it can be
densely deployed in wireless networks at low cost and with a
low energy consumption because it mainly constitutes passive
devices without the need for active transmit RF chains.

There have been many recent studies on IRSs. Some initial
efforts have been focused on employing IRSs for realizing
smart radio environments in wireless networks: IRS prototype,
holographic multiple-input multiple-output (MIMO) surfaces
[2], [3], hardware architectures [4], [5], electromagnetic-based
communication-theoretic framework for analyzing and opti-
mizing metamaterial-based IRSs [4], and several application
scenarios under different assumptions [6], [7]. However, new
challenges keep arising in the design and implementation of
IRS-aided wireless systems. Moreover, there is an insufficient
number of studies on optimal IRS control in IRS-assisted
multihop networks.

A. Related Work

1) IRS in single-hop single-pair transmission: Many stud-
ies [8]–[14] have focused on IRS-assisted point-to-point com-
munications. J. Zhang et al. [8] studied a statistically robust
beamforming design for an IRS-assisted multiple-input single-
output (MISO) wireless system under imperfect channel state
information (CSI). This design aims at jointly optimizing
the transmit/receive beamformers and IRS phase shifts to
minimize the average mean squared error (MSE) at the user
side. H. Guo et al. [10] proposed a discrete IRS phase
control approach for an IRS-aided multiuser MISO system.
It maximizes the weighted sum-rate by jointly optimizing the



2

active beamforming at the base-station (BS) and the passive
beamforming at the IRS. In addition, S. Zhang et al. [11] and
N. Perovic et al. [12] characterized the fundamental capacity
limit and achievable rate of IRS-aided MIMO communication
systems by jointly optimizing the IRS reflection coefficients
and the MIMO transmit covariance matrix. Q. Wu et al. [9]
and Z. Yang et al. [13] proposed low-complexity distributed
algorithms where the access point (AP) and IRS independently
adjust the transmit beamforming and phase shifts in an alter-
nating manner. In [9], the total received signal power at the
user side is maximized, whereas in [13], the energy efficiency
of the network is maximized by dynamically controlling the
on-off status of each IRS as well as optimizing the reflection
coefficient matrix of the IRSs.

2) IRS in single-hop multi-pair transmission: Some stud-
ies [15]–[19] have considered the achievable rates in an
IRS-assisted multi-pair source-destination model with direct
source-to-destination channel. W. Huang et al. [15] investi-
gated the achievable rate region of an IRS-assisted MISO
interference channel, which exploits the additional design
degree-of-freedom (DoF) provided by the coordinated IRSs
to enhance the desired signal and to suppress interference,
thereby enlarging the achievable rate region of the interference
channel. To address the non-convex optimization problem,
an iterative algorithm was proposed to optimize the trans-
mit beamforming through the second-order cone program
(SOCP), and reflective beamforming through the semi-definite
relaxation (SDR). Z. Zhang et al. [16] proposed the concept
of an IRS-aided cell-free network to improve the network
capacity with low cost and power consumption. Then, for the
proposed IRS-aided cell-free network in a typical wideband
scenario, a joint precoding design problem at the BSs and
RISs is formulated to maximize the network capacity. Owing
to the non-convexity and high complexity of the formulated
problem, an alternating optimization algorithm is developed
to solve this challenging problem. Simulation results verify
that, compared with the conventional cell-free network, the
network capacity of the proposed scheme can be significantly
improved. S. Huang et al. [17] proposed a fully decentralized
cooperative beamforming in IRS-aided cell-free networks. It
first transforms the centralized weighted sum-rate maximiza-
tion problem into a tractable consensus optimization problem,
and an incremental ADMM algorithm is proposed to locally
update the beamformer. M. Hua et al. [18] proposed an IRS-
assisted joint processing coordinated multipoint (JP-CoMP)
transmission from multiple BSs to multiple cell-edge users.
By considering the fairness among cell-edge users, the authors
aim at maximizing the minimum achievable rate of such users.
Furthermore, the proposed JP-CoMP design significantly out-
performs the conventional coordinated scheduling/coordinated
beamforming coordinated multipoint (CS/CB-CoMP) design
in terms of the max-min rate. A. Bafghi et al. [19] studied
the DoF of the time-selective K-user interference channel
in the presence of an IRS. It is well known that the sum
DoF of the time-selective K-user interference channel without
IRS is K/2. However, it shows that an IRS-assisted K-user
interference channel is able to enlarge the DoF region and
provide the full K sum DoF, when the number of IRS elements

is sufficiently large.
3) IRS in multi-hop transmission: The direct communi-

cation links may be blocked by both thick walls in indoor
scenarios and trees and large buildings in outdoor scenarios,
particularly in high-frequency millimeter-wave communication
systems. Some studies [20]–[24] considered the achievable
rates in an IRS-assisted source-destination model with indirect
source-to-destination channel. In particular, Z. Peng et al.
[20] derived the achievable rate of the IRS-assisted single-
antenna transmitter and receiver system when considering the
statistical CSI, which is easier to obtain because it varies more
slowly. Using a genetic algorithm (GA) method, continuous
and discrete phase shift optimization problems were solved.
Assuming that one of multiple IRSs is selected to aid in the
communication process, L. Yang et al. [21] presented an exact
analysis for the outage probability, closed-form expressions for
the asymptotic outage probability, the asymptotic sum-rate,
and the capacity scaling law. H. Du et al. [22] proposed RIS-
aided and AF relay systems, which consider the fluctuating
two-ray (FTR) distribution to model the small-scale fading
within the mmWave frequency, whereas previous works used
Rayleigh or Rician fading. J. He et al. [23] proposed a
distributed IRS-empowered communication network architec-
ture, where multiple source destination pairs communicate
through distributed multiple IRSs. With this architecture, a
fractional programming based alternating approach to maxi-
mize the achievable sum-rates was developed. In particular, the
closed-form expressions are proposed for coordinated passive
beamforming at the IRSs. M. Zeng et al. [24] studied the
resource allocation for an IRS-assisted uplink system, where
the BS is equipped with multiple antennas. In this case, a
joint optimization of the transmit power of the users, active
beamforming at the base station, and passive beamforming at
the IRS are proposed to maximize the overall system energy
efficiency while maintaining the minimum rate constraints of
the users.

B. Motivation, Contribution, and Organization

IRS-aided multi-pair communication systems have recently
become a typical communication approach owing to the rapid
increase in the number of machine-type devices in future
networks. This work considers two-hop IRS-assisted relaying
networks with multiple single-antenna source-destination pairs
communicating through distributed multiple IRS modules,
which has yet to be sufficiently studied. Our main contribu-
tions can be summarized as follows:

• We identified the achievable rate region of a two-hop
interference channel with distributed and cooperative IRS
relays. To do this, we formulated a non-convex problem
that characterizes the rate-profile and found its solution
using successive convex approximation (SCA).

• We identified maximum achievable sum-rate. For this,
we also proposed an alternating optimization (AO) and
alternating direction method of multipliers (ADMM)
based distributed IRS control and proved rigorously the
solution’s convergence and optimality.
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• We analyzed that the proposed IRS control has polyno-
mial computation complexity and has lower complexity
than other conventional comparing schemes.

• We demonstrated that the proposed IRS control provides
an enhanced system performance when compared with
semi-definite relaxation (SDR)-, random phase-, deep
reinforcement learning (DRL)-based IRS controls, and
optimal amplify-and-forward (AF)-, interference neutral-
ization (IN)-, decode-and-forward (DF)-based relaying
schemes, in terms of the achievable rate region, achiev-
able sum-rate, and energy efficiency under same power
budget. We also confirmed that the discrete phase approx-
imation of the proposed control provides near-optimal
performance with 3-bit quantizations, and the proposed
control provides robust performance under imperfect CSI
condition.

• The proposed control can be efficiently applied to large-
scale multi-pair multihop device-to-device (D2D) and
machine-type device communications in interference-
limited or low-powered dense networks.

The rest of this paper is organized as follows. In Section II,
we introduce the system model. In Section III, we characterize
the achievable rate region and find the maximal sum rate for
a coordinated IRS system. In Section IV, numerical results
are provided to demonstrate the correctness of our analysis.
Conclusions are presented in Section V.

Notations: We denote the scalar quantities in lowercase
letters (e.g., x), vector quantities in lowercase boldface letters
(e.g., x), and matrix quantities in capital boldface letters (e.g.,
X). The operators (·)T and (·)∗ denote the transpose and
complex conjugate, respectively. C and CM×N denote the
space of complex numbers and space of M -by-N complex
matrices, respectively. For a complex number x, |x| represents
the modulus of x; arg (x), Re(x), and Im(x) represent the
argument, real, and imaginary parts of x, respectively; and
j =

√
−1 is the complex imaginary unit. For a vector x,

∥x∥2 denotes the Euclidean norm of x; and diag{x1, ..., xn}
denotes an n×n diagonal matrix, whose each diagonal entry is
xi. For a matrix A, the notations AH ,A∗, and A⋆ represent
the conjugate transpose, complex conjugate, and converged
solution, respectively; tr(A) represents the trace of A (if A
is a square matrix); and vec(A) represents a vector obtained
by stacking the columns of A. For two matrices A and B,
A ∗ B and A ⊗ B represent the Khatri-Rao and Kronecker
products, respectively. In addition, IN denotes an N -by-N
identity matrix, ιF (·) denotes the projection onto set F , and
CN (µ,Σ) denotes the circularly symetric complex Gaussian
(CSCG) distribution of a random complex vector with mean
vector µ and covariance matrix Σ.

II. SYSTEM MODEL: TWO-HOP INTERFERENCE CHANNEL
WITH MULTIPLE IRS RELAYS

In this study, we focused on two-hop multiple IRS based
relaying system. In the relaying system, the direct commu-
nication links may be blocked by both thick walls in indoor
scenarios and trees and large buildings in outdoor scenarios,
particularly in high-frequency millimeter-wave communication

systems. Here, the IRS can be easily installed at the desired lo-
cation as needed. Therefore, we assume there is no direct path
between sources and destinations. As shown in Fig. 1, a two-
hop interference channel with L IRSs is considered to aid the
communication between K pairs of sources and destinations.
Each pair is indexed by k ∈ K ∆

= {1, 2, ...,K}. For k ∈ K,
both the k-th source and its destination are equipped with
one antenna. Each IRS is indexed by i ∈ L ∆

= {1, 2, ..., L}.
For i ∈ L, the i-th IRS has Mi reflecting elements. For the
distributed multiple IRS, we also assume one central controller
which is deployed to coordinate the operation of all IRSs.
Each IRS module updates its local phase shift and the central
controller aggregates local phase shifts. Here, the global phase
aggregation can be efficiently computed using the recent over-
the-air-computation (AirComp) technique [25].

A. Channel Model

We denote ei,k ∈ CMi×1 to be the channel-coefficient
vector from the k-th source to the i-th IRS, and Ei

∆
=

[ei,1, ..., ei,K ] ∈ CMi×K to be the matrix that composes these
vectors. Let fk,i ∈ CMi×1 denote the channel coefficient
vector between the i-th IRS and the k-th destination. In
this work, we assume that the channels experience a block
fading and flat fading. Also, we assume perfect channel state
information (CSI). In practice, the IRSs are deployed on the
facade of a buiding, which are close to the users, therefore we
can assume that the line-of-sight path exists in the source-IRS
links and IRS-destination links. Thus, the channel ei,k can be
modeled as a Rician fading channel as follows:

ei,k =
√

η(di,k)

(√
κ1

1 + κ1
eLoS
i,k +

√
1

1 + κ1
eNLoS
i,k

)
, (1)

where η(di,k) is the large-scale path loss component of the
channel that depends on the distance di,k between the k-
th source and i-th IRS; (eLoS

i,k , eNLoS
i,k ) is the small-scale

component including LoS and NLoS components, respectively,
and κ1 is the Rician factor. Elements of the NLoS component
are i.i.d and follow the complex Gaussian distribution with
zero mean and unit variance. For the LoS components, we
consider that each IRS has uniform rectangular array (URA),
then the LoS component eLoS

i,k can be modeled as follows [26]:

eLoS
i,k = a

(
αAoA
i,k , βAoA

i,k

)
, (2)

where αAoA
i,k and βAoA

i,k are the azimuth angle of arrival (AoA)
and elevation AoA, respectively, at the i-th IRS from the k-
th source; a

(
αAoA
i,k , βAoA

i,k

)
is the steering vector, which is

expressed as:

a
(
αAoA
i,k , βAoA

i,k

)
= av

(
αAoA
i,k , βAoA

i,k

)
⊗ ah

(
αAoA
i,k , βAoA

i,k

)
∈ CMi×1, (3)

where av

(
αAoA
i,k , βAoA

i,k

)
∈ CMv

i ×1 and ah

(
αAoA
i,k , βAoA

i,k

)
∈

CMh
i ×1 represent the steering vector in the vertical and

horizontal directions, respectively. Here, Mv
i and Mh

i denote
the number of IRS elements along the vertical and horizontal
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Fig. 1. RIS-aided Multihop Multi-Pair Unicast Network

axes, respectively. Accordingly, each element of these vectors
are modeled as follows [26]:[

av

(
αAoA
i,k , βAoA

i,k

)]
n1

= ej
2πd
λ (n1−1) cos(βAoA

i,k ) cos(αAoA
i,k ),

∀n1 ∈ {1, 2, ...,Mv
i }, (4)[

ah

(
αAoA
i,k , βAoA

i,k

)]
n2

= e−j 2πd
λ (n2−1) cos(βAoA

i,k ) sin(αAoA
i,k ),

∀n2 ∈ {1, 2, ...,Mh
i }, (5)

where d and λ are the distance between the adjacent IRS
elements and carrier wavelength. For simplicity, we set d/λ =
1/2. Similarly, the channel fk,i can be modeled as follows:

fk,i =

√
η(d̃k,i)

(√
κ2

1 + κ2
fLoS
k,i +

√
1

1 + κ2
fNLoS
k,i

)
, (6)

where η(d̃k,i) is the large-scale path loss component and d̃k,i
is the distance between the i-th IRS and k-th destination; κ2

is the Rician factor; fNLoS
k,i are the NLoS components, whose

elements are i.i.d and follow the complex Gaussian distribution
with zero mean and unit variance; fLoS

k,i are the LoS compo-

nents, and fLoS
k,i = a

(
αAoD
k,i , βAoD

k,i

)
, where (αAoD

k,i , βAoD
k,i ) are

the azimuth angle of departure (AoD) and elevation AoD from
the i-th IRS to the k-th destination, respectively.

B. Discussion on Channel Estimation

In this work, in order to find the optimal phase shift, the
IRS-relay system requires accurate channel state information
including source-IRS, i.e., {ei,k} and IRS-destination channel
vectors, i.e., {fk,i}. Archiving high-accurate CSI is a chal-
lenge, due to the high dimension of those channel vectors with
large number of IRS elements. In addition, all IRS elements
are passive, which is not capable of signal processing, so it
is difficult to realize the channel estimation. However, some
recent practical channel estimation and acquisition techniques
can be used for obtaining the perfect CSI, such as the brute-
force method in [27], the discrete Fourier transform (DFT)-
matrix quantization in [28], the compressed sensing method
in [29], the efficient CSI acquisition method for RIS-aided
mmWave network [30], the fast channel estimation [31], and
the transforming fast fading channel to slow fading channel
[32]. With the help of those works, we assumed perfect CSI
and slow fading. In fact, the performance with perfect CSI can

be treated as an upper bound of the performance in the real
IRS networks.

C. Signal Model
Let sk denote the transmit symbol from the k-th source, for

k ∈ K. The transmit symbols are assumed to be independent
and identically distributed (i.i.d.) CSCG random variables with
zero mean and unit variance, i.e., E[sks∗k̃] = 0, for k ̸= k̃ and

sk ∼ CN (0, 1),∀k ∈ K. Denote s
∆
= [s1, ..., sK ]T ∈ CK×1

as the vector of the transmit symbols from all sources in K.
We assume that the IRSs can operate in FD mode with AF
protocol without self-interference. Hence, the received signal
at the k-th destination is written as

yk =

L∑
i=1

√
pkf

T
k,iΦiei,ksk︸ ︷︷ ︸

Desired signal (yS,k)

+

L∑
i=1

fT
k,iΦiĒi,kP̄

1
2

k s̄k︸ ︷︷ ︸
Interference signal (yI,k)

+ nk,

(7)

where Φi
∆
= diag{ejθi,1 , ..., ejθi,Mi} ∈ CMi×Mi is the

reflection-coefficient matrix of the i-th IRS, and θi,m is
the phase shift of the m-th element of the i-th IRS. For
each m ∈ {1, ...,Mi}, applying the change in variable
ϕi,m = ejθi,m yields Φi = diag{ϕi,1, ..., ϕi,Mi

}. We de-
note ϕi

∆
= [ϕi,1, ..., ϕi,Mi

]T ∈ CMi×1 as the collection
of diagonal entries of the matrix Φi, nk is the additive
noise at the k-th destination with distribution CN (0, σ2

d),
s̄k

∆
= [s1, . . . , sk−1, sk+1, . . . , sK ]T ∈ C(K−1)×1, P̄ k

∆
=

diag{p1, . . . , pk−1, pk+1, . . . , pK} ∈ C(K−1)×(K−1), and
Ēi,k

∆
= [ei,1, . . . , ei,k−1, ei,k+1, . . . , ei,K ] ∈ CMi×(K−1)

denote the vector of the transmit symbol targeting destina-
tions excluding the k-th destination, the corresponding power
matrix, and the matrix containing vectors of the channel
coefficients from the corresponding source to the i-th IRS,
respectively. Let yS,k and yI,k be the desired signal and
interference signal, respectively. Accordingly, PS,k and PI,k

are denoted as the desired signal power and interference signal
power at the k-th destination, respectively. They are expressed
in the closed forms given in the following proposition.

Proposition 1. The desired signal power and interference
signal power are as follows:
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(a) The desired signal power is given by

PS,k = E[|yS,k|2] = pk(ϕ
HSkϕ), (8)

where ϕ
∆
=

[
ϕT

1 , ...,ϕ
T
L

]T
∈ C

∑L
i=1 Mi×1,ak

∆
=

[(
eT1,k ∗

fT
k,1

)
, . . . ,

(
eTL,k ∗ fT

k,L

)]H
∈ C

∑L
i=1 Mi×1, and Sk

∆
=

aka
H
k ∈ C

∑L
i=1 Mi×

∑L
i=1 Mi .

(b) The interference signal power is given by

PI,k = E[|yI,k|2] = ϕHKkϕ, (9)

where Bk
∆
=

[(
Ē1,kP̄

1
2

k

)T
∗ fT

k,1, ...,
(
ĒL,kP̄

1
2

k

)T
∗ fT

k,L

]
∈

C(K−1)×
∑L

i=1 Mi , and Kk
∆
= BH

k Bk ∈ C
∑L

i=1 Mi×
∑L

i=1 Mi .

Proof. Please see appendix A.

From Proposition 1, the SINR at the kth destination in the
system is obtained as

SINRk =
pk(ϕ

HSkϕ)

ϕHKkϕ+ σ2
d

. (10)

The achievable rate at the k-th destination is given by

Rk(ϕ) = log2(1 + SINRk). (11)

In the following section, we propose two algorithms for finding
the achievable rate region and optimal sum-rate of the two-
hop interference channel with multiple coordinated IRSs.

III. PROPOSED ALGORITHMS

A. Characterization of Achievable Rate Region

The achievable rate region is defined as the set of rate-tuples
that are simultaneously achievable at all destinations under the
unit-modulus constraint on the phase shifts at the IRSs. This
is defined as follows:

R =
⋃

|ϕi,m|=1
∀m∈{1,...,Mi},∀i∈L

{
(r1, ..., rK) : 0 ≤ rk ≤ Rk(ϕ), k ∈ K

}
.

(12)

The outer boundary of R is called the Pareto boundary, which
consists of rate-tuples at which it is impossible to increase a
certain user’s rate without simultaneously decreasing that of
other users [33]. Based on the rate profile method [33], the
rate-tuple on the Pareto boundary is obtained by solving the
following problem:

max
R,ϕ

R (13a)

s.t. log2
(
1 + SINRk

)
≥ µkR, ∀k ∈ K, (13b)

|ϕi,m| = 1, ∀m ∈ {1, ...,Mi},∀i ∈ L, (13c)

where the given rate-profile vector µ = [µ1, ..., µK ]T satisfies
µk ≥ 0,∀k ∈ K, and

∑K
k=1 µk = 1. Here, µk specifies the

target ratio between the achievable rate of the k-th destination
and the sum rate of the destinations, which is denoted as R.

More specifically, our achievable rate region problem is as
follows:

max
R,ϕ

R (14a)

s.t. log2

(
1 +

pk(ϕ
HSkϕ)

ϕHKkϕ+ σ2
d

)
≥ µkR, ∀k ∈ K,

(14b)
(13c). (14c)

This problem can be solved by using Gaussian randomization-
based semidefinite relaxation (SDR) together with the bi-
section method [15]. However, the Gaussian randomization
cannot always guarantee to recover the rank-one SDR solution.
In addition, the computational complexity raises very high
with the large number of IRS elements. To address such
issues, we apply the successive convex approximation (SCA)
method, which is a method with performance guarantee and
lower complexity. Due to the non-convexity of the unit-
modulus constraint (13c), the problem can be hard to be
solved. To handle such difficulty, we first relax this con-
straint as |ϕi,m| ≤ 1, for all m ∈ {1, ..,Mi}, i ∈ L, then
the unit-modulus solution will be recovered by using the
projection. The relaxed problem can be solved as follows.
Inspired by [34], we apply SCA method to update (ϕ, R)
iteratively, which guarantees the achievable rate constraints.
In particular, at iteration t, we aim to find ϕ(t) such that
mink∈K{Rk(ϕ

(t))/µk} ≥ mink∈K{Rk(ϕ
(t−1))/µk}, where

ϕ(t−1) is found at the previous iteration t − 1. To do so, we
first define an auxiliary function as follows:

Fk(ϕ, R) = (2µkR − 1)(ϕHKkϕ+ σ2
d)− pkϕ

HSkϕ,∀k ∈ K.
(15)

At iteration t, we update ϕ(t) by solving the following
problem:

min
ϕ

max
k∈K

Fk(ϕ, R
(t−1)) (16)

s.t. |ϕi,m| ≤ 1,∀m ∈ {1, ..,Mi}, i ∈ L, (17)

where

R(t−1) = min
k∈K
{Rk(ϕ

(t−1))/µk} (18)

is the sum-rate obtained from previous iteration, with Rk(ϕ) =
log2(1 + SINRk) is defined in Section II-C. Because the
function Fk(ϕ, R

(t−1)) is not convex with respect to ϕ, hence
we apply SCA method to approximate this function by its
first-order Taylor expansion at previous local point ϕ(t−1), as
follows:

Fk(ϕ, R
(t−1)) ≤ (2µkR

(t−1)

− 1)(ϕHKkϕ+ σ2
d)

− pk

(
2Re{(ϕ(t−1))HSkϕ} − (ϕ(t−1))HSkϕ

(t−1)
)

∆
= F̃k(ϕ,ϕ

(t−1), R(t−1)) (19)

Besides, by introducing an auxiliary variable z, problem (16)
can be approximated as the following problem:

min
ϕ, z

z (20a)
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s.t. F̃k(ϕ,ϕ
(t−1), R(t−1)) ≤ z, ∀k ∈ K, (20b)

(17). (20c)

It can be seen that the above problem is a convex problem,
which can be easily solved by the CVX solver [35]. Notice that
(ϕ(t−1), z = 0) is a feasible solution to problem (20). There-
fore, we have z⋆ ≤ 0 and maxk{F̃k(ϕ̃

⋆
,ϕ(t−1), R(t−1))} ≤

0, which implies that maxk{Fk(ϕ̃
⋆
, R(t−1))} ≤ 0, or

mink∈K{Rk(ϕ̃
⋆
)/µk} ≥ mink∈K{Rk(ϕ

(t−1))/µk}. This
means that we always find ϕ̃

⋆
that leads to non-decreasing

sum-rate R at each iteration t. After the SCA-based algorithm
converges, the final phase shift solution ϕ̃

⋆
is projected onto

the set F = {ϕ : |ϕi,m| = 1,∀i,m} to recover the original
solution ϕ⋆ that satisfies (13c). The optimal achievable sum-
rate R⋆ is achieved as

R⋆ = min
k∈K

Rk(ϕ
⋆)

µk
. (21)

The algorithm for solving (14) is summarized in Algorithm 1.

Algorithm 1 SCA-based algorithm for solving (14)

Input: Initialize iteration index t = 0,ϕ(0), R(0), and toler-
ance ϵ > 0.

Output: R⋆,ϕ⋆.
1: Repeat
2: Given ϕ(t−1) and R(t−1), solve problem (20) to obtain

ϕ̃
⋆
, z⋆ and update ϕ(t) = ϕ̃

⋆
;

3: Given ϕ(t−1), update R(t) based on (18);
4: t← t+ 1;
5: Until The algorithm convergence is met with given toler-

ance ϵ.
6: Optimal phase shift vector ϕ⋆ is achieved by projecting

ϕ̃
⋆

onto the set F .
7: Optimal achievable sum-rate R⋆ is achieved by (21).

B. Sum-rate Maximization

In this subsection, we optimize the IRS beamforming to
maximize the sum rate at the destinations, subject to the phase
shift constraint at all IRSs. This problem is formulated as

max
ϕ

K∑
k=1

Rk(ϕ) (22a)

s.t. |ϕi,m| = 1, ∀m ∈ {1, ...,Mi},∀i ∈ L (22b)

1) Equivalent transformation: The sum-rate maximization
is written as

max
ϕ

K∑
k=1

log2

(
1 +

pk(ϕ
HSkϕ)

ϕHKkϕ+ σ2
d

)
(23a)

s.t. (22b) (23b)

Throughout the paper, the notation log(·) stands for the natural
logarithm function. By using the change-of-base rule, and

then omitting the factor log2(e) without affecting the problem,
problem (23) is equivalent to

max
ϕ

K∑
k=1

log

(
1 +

pk(ϕ
HSkϕ)

ϕHKkϕ+ σ2
d

)
(24a)

s.t. (22b) (24b)

To deal with the sum-of-logarithmic-of-ratios problem, we
apply the fractional programming approach [36], in which
the Lagrangian dual transform and quadratic transform are
employed to take the ratio out of the logarithm and decouple
the numerator and denominator of the resulting ratio term,
respectively. We proceed according to the following steps:
Step 1: Lagrangian dual transform
Introducing a vector of auxiliary variables α = [α1, ..., αK ]T ,
with αk ≥ 0,∀k ∈ K, the logarithm function in the objective
function is written as

log

(
1 +

pk(ϕ
HSkϕ)

ϕHKkϕ+ σ2
d

)
= max

αk≥0

{
log(1 + αk)− αk

+ (1 + αk)
pk(ϕ

HSkϕ)

ϕH(pkSk +Kk)ϕ+ σ2
d

}
.

(25)

Problem (24) is then reformulated as

max
ϕ,α

fS1(ϕ,α) (26a)

s.t. (22b), (26b)
αk ≥ 0, ∀k ∈ K, (26c)

where

fS1(ϕ,α)
∆
=

K∑
k=1

log(1 + αk)−
K∑

k=1

αk

+

K∑
k=1

pk(1 + αk)(ϕ
HSkϕ)

ϕH(pkSk +Kk)ϕ+ σ2
d

.

(27)

Step 2: Quadratic transform
For the given α, we focus on maximizing the sum-of-ratios
term in the objective function (27), as follows:

max
ϕ

K∑
k=1

pk(1 + αk)(ϕ
HSkϕ)

ϕH(pkSk +Kk)ϕ+ σ2
d

(28a)

s.t. (22b) (28b)

Using the quadratic transform technique [36], the above prob-
lem is equivalent to

max
ϕ,β

fS2(ϕ,β) (29a)

s.t. (22b), (29b)
βk ∈ C, ∀k ∈ K, (29c)
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where

fS2(ϕ,β)
∆
=

K∑
k=1

2
√
pk(1 + αk)Re{β∗

k(a
H
k ϕ)}

−
K∑

k=1

|βk|2
(
ϕH(pkSk +Kk)ϕ+ σ2

d

)
,

(30)

where β = [β1, ..., βK ]T is a vector of auxiliary variables, with
βk ∈ C,∀k ∈ K, and ak is the vector defined in (8). Thus,
according to this step, problem (26) is further transformed into
the following problem:

max
ϕ,α,β

fS3(ϕ,α,β) (31a)

s.t. (22b), (26c), (29c) (31b)

where

fS3(ϕ,α,β)
∆
=

K∑
k=1

log(1 + αk)−
K∑

k=1

αk

+

K∑
k=1

2
√

pk(1 + αk)Re{β∗
k(a

H
k ϕ)}

−
K∑

k=1

|βk|2
(
ϕH(pkSk +Kk)ϕ+ σ2

d

)
.

(32)

In the following, we iteratively update α,β, and ϕ in an
alternating manner. Specifically, at each iteration, the problem
is maximized with respect to one variable while the other
variables are fixed. Specifically, α and β are updated through
the following proposition.

Proposition 2. a) For the fixed (ϕ,β), and k ∈ K, optimal
solution α⋆

k is found in the following closed form:

α⋆
k =

ξ2k + |ξk|
√

ξ2k + 4

2
, (33)

where ξk =
√
pkRe{β∗

k(a
H
k ϕ)}.

b) For the fixed (ϕ,α), and k ∈ K, optimal solution β⋆
k is

found in the following closed form:

β⋆
k =

√
pk(1 + αk)(a

H
k ϕ)

ϕH(pkSk +Kk)ϕ+ σ2
d

. (34)

Proof. For the fixed (ϕ,β), fS3(ϕ,α,β) is a concave func-
tion of αk,∀k ∈ K, and the optimal α⋆

k is then obtained by
solving the equation ∂fS3(ϕ,α,β)

∂αk
= 0. Similarly, for the fixed

(ϕ,α), fS3(ϕ,α,β) is also a concave function of βk,∀k ∈ K.
The optimal β⋆ is then obtained by solving the equation
∂fS3(ϕ,α,β)

∂βk
= 0.

2) Optimizing phase shift of IRS: For the fixed (α,β),
problem (31) is reduced as

max
ϕ

fS4(ϕ) (35a)

s.t. (22b), (35b)

where

fS4(ϕ)
∆
=

K∑
k=1

2
√

pk(1 + αk)Re{β∗
k(a

H
k ϕ)}

−
K∑

k=1

|βk|2
(
ϕH(pkSk +Kk)ϕ

)
.

(36)

For simplicity, let a
∆
=
∑K

k=1 2
√

pk(1 + αk)βkak and A ∆
=∑K

k=1 |βk|2(pkSk + Kk), the function fS4(ϕ) becomes the
following:

fS4(ϕ) = Re{aHϕ} − ϕHAϕ. (37)

To solve problem (35), we employ the ADMM
method [37]–[39]. The main idea of this method is to
decompose the problem into parallel subproblems that can
be solved in closed form. Particularly, we first rewrite this
problem so that it can be fit into the ADMM framework

max
φ,ϕ

fS5(φ,ϕ)
∆
= fS4(ϕ)− ιF (φ) (38a)

s.t. φ− ϕ = 0, (38b)

where φ is an auxiliary variable for ϕ, ιF (·) is the indicator
function of the set (defined in Section III-A) F = {ϕ =
{ϕi,m} : |ϕi,m| = 1,m ∈ {1, ...,Mi}, i ∈ {1, ..., L}},
in which ιF (z) = 0 if z ∈ F ; otherwise ιF (z) = ∞.
The constraint (38b) is the consensus constraint. Then, the
augmented Lagrangian function is given by

Lρ(φ,ϕ,λ) = fS5(φ,ϕ) + Re{λH(φ− ϕ)} − ρ

2
∥φ− ϕ∥22,

(39)

where λ ∈ C
∑L

i=1 Mi×1 is the Lagrange multiplier vector
associated with the constraint φ − ϕ = 0, and ρ > 0 is a
penalty parameter for φ − ϕ ̸= 0. The dual function is then
given by

Gρ(λ) = max
φ,ϕ
Lρ(φ,ϕ,λ).

Thus, the dual problem is formulated as

min
λ

Gρ(λ). (40)

To solve the primal problem (38), we apply the ADMM which
consists of the following iterations:

φt+1 = arg max
φ∈F

Lρ(φ,ϕ
t,λt), (41)

ϕt+1 = argmax
ϕ
Lρ(φ

t+1,ϕ,λt), (42)

λt+1 = λt − ρ(φt+1 − ϕt+1). (43)

Solving the maximization problem with respect to φ in (41)
given (ϕt,λt) implies that

φt+1 = PF (ϕ
t +

1

ρ
λt), (44)

where PF is the projection onto set F . Therefore, the image
of φt+1 through this projection is specified in closed form as
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follows:

φt+1
i,m =


ϕt
i,m+ 1

ρλ
t
i,m

|ϕt
i,m+ 1

ρλ
t
i,m| if ϕt

i,m + 1
ρλ

t
i,m ̸= 0,

φt
i,m otherwise,

(45)

where ϕt
i,m, φt

i,m, and λt
i,m are the (i,m)-th components of

ϕt,φt, and λt, respectively. It can be seen that the maximiza-
tion problem in (42) given (φt+1,λt) is concave; hence, the
solution ϕt+1 can be obtained by setting the first derivative
with respect to ϕ to zero. This implies that

ρ(ϕt+1 −φt+1) = a− 2Aϕt+1 − λt. (46)

This is equivalent to

ϕt+1 =

(
2A+ ρI∑L

i=1 Mi

)−1(
a− λt + ρφt+1

)
. (47)

The algorithms for solving problems (35) and (31) are pre-
sented in Algorithm 2 and Algorithm 3, respectively.

Algorithm 2 ADMM algorithm for solving problem (35)

Input: Initialize a feasible primal-dual point (φ0,ϕ0,λ0),
choose the penalty parameter ρ > 2

√
2λmax(A), and set

the iteration index t = 0.
Output: Locally optimal phase shift vector ϕ̃

⋆
.

1: Repeat
2: Compute φt+1

i based on (45) in parallel, ∀i ∈ L;
3: Compute ϕt+1 based on (47);
4: Compute λt+1

i based on (43) in parallel, ∀i ∈ L;
5: t← t+ 1;
6: Until Convergence is reached.

Algorithm 3 Alternating optimization (AO) algorithm for
solving problem (31)

Input: Initialize a feasible point (α0,β0,ϕ0), and set the
iteration index s = 0.

Output: Locally optimal phase shift vector ϕ⋆.
1: Repeat
2: Compute αs+1

k based on (33) in parallel, ∀k ∈ K;
3: Compute βs+1

k based on (34) in parallel, ∀k ∈ K;
4: Apply Algorithm 2 with ϕ0 = ϕs to obtain the

solution ϕ̃
⋆
.

5: Set ϕs+1 = ϕ̃
⋆
;

6: s← s+ 1;
7: Until Convergence is reached.

Next, we discuss the convergence of Algorithm 2 through
the following propositions.

Proposition 3. Supposing that ρ > 2
√
2λmax(A), where

λmax(A) is the maximum eigenvalue of A, the sequence
{Lρ(φ

t,ϕt,λt)} is convergent.

Proof. This proof is inspired by [40] with certain
modifications. To prove the convergence, we need to
prove that: Lρ(φ

t,ϕt,λt) is monotonically increasing and
bounded above.

• Lρ(φ
t,ϕt,λt) is monotonically increasing:

From the update in (41), we obtain the following:

Lρ(φ
t,ϕt,λt)− Lρ(φ

t+1,ϕt,λt) ≤ 0. (48)

Furthermore, we can check the strong concavity of func-
tion Lρ(φ

t+1,ϕ,λt) (please see Appendix B). Thus,
from [41], we have

Lρ(φ
t+1,ϕt,λt)− Lρ(φ

t+1,ϕt+1,λt) ≤

− ρ

2
∥ϕt+1 − ϕt∥22.

(49)

In addition, from (39) and (43), we have

Lρ(φ
t+1,ϕt+1,λt)− Lρ(φ

t+1,ϕt+1,λt+1)

= Re{(λt)H(φt+1 − ϕt+1)}
− Re{(λt+1)H(φt+1 − ϕt+1)}

= Re{(λt − λt+1)H(φt+1 − ϕt+1)}

=
1

ρ
∥λt − λt+1∥22.

(50)

Moreover, from (43) and (46), we obtain

λt+1 = a− 2Aϕt+1, (51)

or

λt = a− 2Aϕt. (52)

Combining (48) to (50), we have

Lρ(φ
t,ϕt,λt)− Lρ(φ

t+1,ϕt+1,λt+1)

= Lρ(φ
t,ϕt,λt)− Lρ(φ

t+1,ϕt,λt) + Lρ(φ
t+1,ϕt,λt)

− Lρ(φ
t+1,ϕt+1,λt) + Lρ(φ

t+1,ϕt+1,λt)

− Lρ(φ
t+1,ϕt+1,λt+1)

≤ −ρ

2
∥ϕt+1 − ϕt∥22 +

1

ρ
∥λt − λt+1∥22

= −ρ

2
∥ϕt+1 − ϕt∥22 +

4

ρ
∥A(ϕt − ϕt+1)∥22

≤ −ρ

2
∥ϕt+1 − ϕt∥22 +

4

ρ
∥A∥2∥ϕt − ϕt+1∥22

≤ −ρ

2
∥ϕt+1 − ϕt∥22 +

4

ρ
λ2

max(A)∥ϕt − ϕt+1∥22

= η∥ϕt − ϕt+1∥22, (53)

where η
∆
= 4

ρλ
2
max(A) − ρ

2 and the second equality is
obtained by using (51) and (52). According to the choice
of ρ, i.e., ρ > 2

√
2λmax(A), and thus η < 0. As a result,

we obtain Lρ(φ
t,ϕt,λt) ≤ Lρ(φ

t+1,ϕt+1,λt+1).

• Lρ(φ
t,ϕt,λt) is upper bounded:

We have

Lρ(φ
t,ϕt,λt) = Re{aHϕt} − (ϕt)HAϕt

+ Re{(λt)H(φt − ϕt)} − ρ

2
∥φt − ϕt∥22, for φt ∈ F .

(54)

Substituting the expression in (52) into (54) yields

Lρ(φ
t,ϕt,λt) = Re{aHϕt} − (ϕt)HAϕt
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+ Re{(a− 2Aϕt)H(φt − ϕt)} − ρ

2
∥φt − ϕt∥22

= Re{aHφt} −
(
(ϕt)H(A− 2

ρ
AA)ϕt

)
− ρ

2
∥2
ρ
Aϕt + (φt − ϕt)∥22

≤ Re{aHφt}, (55)

where the last inequality holds because A − 2
ρAA ⪰

0 for ρ > 2λmax(A). In addition, applying the
Cauchy–Schwarz inequality implies that |Re{aHφt}| ≤
∥φt∥2∥a∥2 =

√∑L
i=1 Mi∥a∥2 < ∞, for φt ∈ F .

Hence, Lρ(φ
t,ϕt,λt) is bounded from above.

Therefore, the sequence {Lρ(φ
t,ϕt,λt)} is guaranteed to

converge. This completes the proof.

The following proposition states that every limit point
generated by the ADMM in Algorithm 2 is a Karush-Kuhn-
Tucker (KKT) point of problem (35).

Proposition 4. Every limit point generated by the ADMM
method in Algorithm 2 is a Karush-Kuhn-Tucker (KKT) point
of problem (35).

Proof. This proof is inspired by [40] with certain modifica-
tions. From (53), we have

Lρ(φ
t+1,ϕt+1,λt+1)− Lρ(φ

t,φt,λt) ≥ −η∥ϕt+1 − ϕt∥22.
(56)

By summing over t from 0 to T − 1, we obtain

Lρ(φ
T ,ϕT ,λT )− Lρ(φ

0,ϕ0,λ0) ≥ −η
T−1∑
t=0

∥ϕt+1 − ϕt∥22.

(57)

Letting T → ∞ and using the fact that {Lρ(φ
t,ϕt,λt)} is

convergent (by Proposition 3), it is implied that the series∑∞
t=0 ∥ϕ

t+1 − ϕt∥22 is convergent. Thus,

lim
t→∞

∥ϕt+1 − ϕt∥2 = 0. (58)

In addition, from (51), (52), and (43), we have

lim
t→∞

∥λt+1 − λt∥2 = 0, lim
t→∞

∥ϕt+1 −φt+1∥2 = 0. (59)

Let ϕ† denote the limit point of the sequence {ϕt}. Then,
there exists a subsequence {ϕtj} of the sequence {ϕt} that
converges to ϕ†. It follows from (58) and (59) that

lim
tj→∞

ϕtj+1 = lim
tj→∞

ϕtj = ϕ†, (60)

lim
tj→∞

λtj+1 = lim
tj→∞

λtj = lim
tj→∞

(a− 2Aϕtj ) = a− 2Aϕ†,

(61)

lim
tj→∞

φtj+1 = lim
tj→∞

ϕtj+1 = ϕ†. (62)

From (62), we obtain

ϕ† ∈ F . (63)

In addition, from (41) we have Lρ(φ
t+1,ϕt,λt) ≥

Lρ(φ,ϕ
t,λt),∀φ ∈ F . Thus

lim
tj→∞

Lρ(φ
tj+1,ϕtj ,λtj ) ≥ lim

tj→∞
Lρ(φ,ϕ

tj ,λtj ),∀φ ∈ F .

(64)

This is equivalent to

Lρ(ϕ
†,ϕ†,a− 2Aϕ†) ≥ Lρ(φ,ϕ

†,a− 2Aϕ†),∀φ ∈ F .
(65)

This means that ϕ† = argmaxφ∈F Lρ(φ,ϕ
†,a − 2Aϕ†).

Thus, it satisfies the first-order optimality condition

a− 2Aϕ† + νTϕ† = 0, (66)

where ν is the dual variable vector associated with unit-
modulus constraint of problem (35). It can be verified that
(63) and (66) constitute the KKT conditions for problem (35).
This completes the proof.

Remark. From Proposition 4, it is worth mentioning that
although Algorithm 2 is convergent, its solution need not to
be a global solution owing to the non-convexity of problem
(35).

The following proposition guarantees the convergence of
Algorithm 3.

Proposition 5. By applying Algorithm 3, the value of the
objective function in problem (31) is nondecreasing if the
solution ϕs+1 in the (s+1)-th iteration satisfies the following
constraint

fS3(ϕ
s,αs,βs) ≤ fS3(ϕ

s+1,αs,βs), (67)

for the given (αs,βs).

Proof. We can verify that the objective value of fS3(ϕ,α,β)
is non-decreasing after each iteration. Indeed, we have

fS3(ϕ
s,αs,βs)

(a)

≤ fS3(ϕ
s+1,αs,βs)

(b)

≤ fS3(ϕ
s+1,αs+1,βs+1),

(68)

where (a) holds owing to condition (67) for the given
(αs,βs), and (b) holds because (αs+1,βs+1) is the optimal
solution to problem (31) for the given ϕs+1.

C. Complexity Analysis

In Algorithm 1, in each iteration, the complexity for
computing ϕHSkϕ and ϕHKkϕ for k ∈ K is O(M2),
where M =

∑L
i=1 Mi. In step 2, we solve problem (20)

by using the interior-point method (in CVX solver) with the
complexity of O(M3.5) [26]. Therefore, the total complexity
is O(I(M3.5 +KM2)), where I is the number of iterations
required for convergence of Algorithm 1. For Algorithm 3, in
each iteration, the complexity for computing αk (step 2) and
βk (step 3) for k ∈ K are O(M) and O(M2), respectively. In
step 4, we adopt Algorithm 2 to solve the phase shift vector ϕ.
In each iteration of Algorithm 2, the complexity for updating
φ is O(M), for updating λ is O(M), and for updating ϕ
is O(M3 + M2) [42]. Here, the complexity of O(M3) is
due to the computing the inversion for updating ϕ in (47),
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which is computed at once and stored in subsequent ADMM
iterations. In addition, the computing of maximum eigenvalue
of A results in the complexity of O(M3). Therefore, the total
complexity Algorithm 3 is O(I2(KM2+I1M

2+M3)), where
I1, I2 are the number of iterations required for convergence
of ADMM and AO algorithm, respectively. More importantly,
Algorithm 3 can be accelerated by parallel updating {αk, βk}
and {φi,m, λi,m} at the sources and the IRS controllers,
respectively. On the other hand, SDR-based schemes can
be applied to Algorithm 1 and Algorithm 2, which will be
used as comparing schemes in the simulation part. In the
first comparing scheme for Algorithm 1, [15] solves the
problem (14) by a series of feasibility problems together
with a bisection search over the sum-rate R. Here, each
feasibility problem is solved by applying the SDR technique.
It’s complexity is O

(
(M6 +KM2) log2

(
Rup−Rlow

ϵ

))
, where

Rup and Rlow are respectively the upper and lower values
of R initialized for the bisection search, ϵ is the predefined
accuracy for bisection search. In the second comparing scheme
for Algorithm 2, in place of ADMM method, the conventional
SDR technique can be applied to find the phase shift solution.
This can be done by reformulating problem (35) as an SDP
problem by relaxing the rank-one constraint, followed by the
Gaussian randomization to reconstruct the rank-one solution.
However, the complexity is O(M6) [43] resulting in the total
complexity of Algorithm 3 being O(I2(KM2 + M6)). In
general, the complexity of SDR-based algorithms is very high
when the number of IRS elements M increases. Moreover,
the Gaussian randomization cannot guarantee to generate a
rank-one solution. Therefore, we can say that the proposed
algorithms have lower complexity than the other conventional
approaches, and have polynomial complexity.

IV. EVALUATIONS

A. Simulation Parameters and Comparing Schemes

In this section, the proposed scheme is evaluated in terms
of the achievable rate region, achievable sum-rate, and energy
efficiency. All channel coefficients are generated from channel
model as described in Section II-A. Resulting achievable rates
were averaged over 100 independent and random channel
realizations. According to [44], [45], the simulation parameters
are summarized in Table I. In this evaluation, the comparing
schemes can be summarized as follows:

• SDR-based IRS [15], [46]: For the achievable rate region
characterization, as in [15], we solved problem (14) by
solving a feasibility problem together with a bisection
search over the sum-rate R. Here, the feasibility problem
is solved by applying the SDR technique, which is
reformulating the problem as an SDP problem by relaxing
the rank-one constraint, followed by the Gaussian ran-
domization to reconstruct the rank-one solution. For the
sum-rate maximization, as in [46], the SDR technique
was also applied to solve problem (35).

• Random-phase-shift-based IRS: The phase shifts are ran-
domly generated within [0, 2π).

• DRL-based IRS [47]: We transformed the sum-rate max-
imization problem (23) into a deep reinforcement learn-

ing optimization problem by explicitly constructing the
state space, action space, and reward. Particularly, the
state is determined by the channel information, i.e.,
{ei,k}, {fk,i}, the action is determined by the phase shift
vector ϕ, and the reward is determined as the achieved
sum-rate. Next, we applied the deep deterministic policy
gradient (DDPG) algorithm [47] to obtain the phase shifts
by gradually maximizing the sum-rate via observing the
reward and adjusting the DRL algorithm’s parameters.

• Optimal AF-Relaying [48]: It considers a half-duplex
AF relay. Here, second-order cone programming (SOCP)
and SDP problem are formulated, and bisection method
is employed. Without decoding the received signals, AF
relays require no knowledge of the codebooks used by the
transmitters and likely have a lower baseband complexity
and fast signal processing.

• Interference Neutralization (IN) [48]: It is an near-
optimal half-duplex AF relaying scheme that allows the
interference to be canceled over the air in the last hop.

• DF-relaying (selective): The best one among the half-
duplex DF relays is selected based on the achievable
rate. Here, the achievable rate is computed by applying
maximum ratio combining (MRC) and maximum ratio
transmission (MRT) scheme for the data reception and
transmission at each DF relay, respectively.

• DF-relaying (cooperative): All half-duplex DF relays
fully cooperate, i.e. data, channel information, and an-
tenna sharing. This means that all DF relays are treated
as one big DF relay. Likewise above, MRC and MRT
schemes are applied.

B. Achievable Rate Region

In this subsection, we evaluated the proposed SCA-based
approach described in Algorithm 1 for characterizing the
achievable region of the IRS-based system, as well as the
benchmark schemes described in Subsection IV-A. Particu-
larly, we considered an IRS-relaying network in Fig. 2(a),
in which K = 2 source-destination pairs are randomly
and uniformly distributed in a circle centered at (0, 0) with
radius of 10 meters and another one centered at (100, 0)
with the same radius, respectively. Two IRSs are placed at
(50, 30) and (60, 30), respectively to assist the communication
between two pairs. We assume that the transmit powers at all
sources are the same, i.e., pk = 10 dBm, for k ∈ {1, 2};
the noise variance at the AF/DF relays and destinations are
σ2
r = σ2

d = σ2. For the sake of comparison with AF/DF
relay networks, two AF/DF relays with two antennas each are
used to assist the communication. Here, the transmit power
at each AF/DF relay is set to be the same as the source
transmit power, i.e., pAF,i = pDF,i = 10 dBm, for i ∈ {1, 2}.
In addition, to ensure the fair comparison among the IRS-
based and conventional relaying systems (AF/DF), we used
the same power budget, denoted as Pbudget, which is set to
be 22 dBm. In the following evaluation, IRS-(m,n) denotes
m IRSs, each of which is equipped with n IRS elements,
and relay-(m,n) denotes m AF/DF relays, each of which is
equipped with n active antennas. In Fig. 2(b), when the IRSs
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TABLE I
TABLE OF SIMULATION PARAMETERS

Parameters Values

Bandwidth B 1 MHz

Noise power σ2 −94 dBm

Path loss model at distance d η(d) = 30 + 22 log10(d) dB

Rician factors κ1, κ2 10

Power amplifier efficiency of source, AF, and DF relay ν, νAF, νDF 0.8

Signal processing power of each DF relay P proc
DF,i 10 dBm

Circuit power of k-th source and destination PS,k, PD,k 10 dBm

Circuit power of each AF and DF relay antenna P ant
AF , P

ant
DF 10 dBm

Circuit power of each IRS element PI 10 dBm

(a) IRS-relaying network.
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Fig. 2. (a) IRS-relaying network, (b) Achievable rate region with IRS-(2,2), IRS-(2,3), and relay-(2,2).

are equipped with M1 = M2 = 2 reflecting elements each, it
can be observed that the achievable rate region of the proposed
scheme is larger than other benchmarks except the DF-relaying
(cooperative) scheme. However, when increasing the number
of IRS elements M1 and M2 to above 3, the achievable rate
region of the proposed IRS-based transmission becomes larger
than the DF-relaying (cooperative) scheme. In comparison
with SDR-based IRS scheme, it can be seen that the proposed
scheme achieves higher achievable rate over different numbers
of IRS elements, e.g., Mi ∈ {2, 3}. We should notice that
larger number of IRS elements always leads to higher energy
consumption. In our simulation, the increasing number of IRS
elements only results in 10 dBm higher in power consumption.
In this case, the total consumption power is 20.9 dBm, which
is still guaranteed to be lower than the provided total power
budget with Pbudget = 22 dBm.

C. Achievable Sum-Rate

In this subsection, we demonstrated the effectiveness of the
proposed Algorithm 3 for the achievable sum rate maximiza-
tion, as compared with the benchmark schemes described in
Subsection IV-A. We consider K sources-destination pairs,
which are randomly and uniformly distributed in the same
circle areas as in the simulation of the achievable rate region.
In addition, there are L = 4 IRSs, which are placed at (40, 30),
(50, 30), (60, 30), and (70, 30), respectively. We assume that
the transmit powers at all sources are the same. The noise
variance at the AF/DF relays and destinations are assumed as
σ2
r = σ2

d = σ2. For the setup of AF/DF relay systems, four
AF/DF relays with six antennas each are used to assist the
communication, and the transmit power at each relay is set to
be the same as the source transmit power. For fair comparison,
the power budget for each system is set to be 42 dBm.

In this simulation, we set the number of source-destination
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Fig. 3. Maximum sum-rate with K = 3 under two settings of IRS and AF/DF relay: (a) IRS-(4, 6) and AF/DF relay-(4, 6); (b) IRS-(4, 10) and AF/DF
relay-(4, 6).
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Fig. 4. Maximum sum-rate with K = 4 under three settings of IRS and AF/DF relay: (a) IRS-(4, 6) and AF/DF relay-(4, 6); (b) IRS-(4, 10) and AF/DF
relay-(4, 6).

pairs as K ∈ {3, 4}, and considered the two settings: i) IRS-
(4,6) and AF/DF relay-(4,6); ii) IRS-(4,10) and AF/DF relay-
(4,6). In the following, Fig. 3 and Fig. 4 show performance
comparison with K = 3 and K = 4, respectively. First, in
Figs. 3(a) and (b), the proposed algorithm provides a higher
sum-rate than the compared benchmark schemes over all SNR
regions. When we increase the number of IRS elements in
each IRS modules as in Fig. 3(b) (satisfying total power
budget), the proposed control provides 3%, 3%, 484%, and
588% higher performance than SDR-based IRS, RL-based
IRS, DF-relaying (cooperative), and AF-relaying (optimal) at
low SNR (around 0 dB) and 16%, 78%, 109%, and 108%

gain at high SNR (around 30 dB). The proposed IRS scheme
has competitive performance with SDR- and RL-based IRS
schemes in low SNR region, but the performance gap increases
as SNR becomes higher or the number of IRS elements
increases. Second, in Figs. 4(a) and (b), when the number
of source-destination pairs increases, the proposed control
also achieves the best performance. On the other hand, in
Fig. 4(a), we can observe that the proposed control achieves
lower sum-rate than that in Fig. 3(a). The reason is that
the more user pairs, the more interference, and the IRS
only reflects incident signal passively by adjusting its phase
shift without actively processing as AF/DF relaying. However,
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increasing the number of IRS reflecting elements as in Fig.
4(b) is able to compensate such weakness. In Fig. 4(b), the
proposed control provides 0.2%, 23%, 386%, and 605% higher
performance than SDR-based IRS, RL-based IRS, DF-relaying
(cooperative), and AF-relaying (optimal) at low SNR (around
0 dB) and 29%, 95%, 104%, and 114% gain at high SNR
(around 30 dB). Here, comparing Fig. 3, we can see that the
performance gap between the proposed scheme and SDR- and
RL-based IRS schemes becomes also larger as the number of
source-destination pairs increases.

D. Energy Efficiency

1) Power consumption model: In our simulation, we con-
sidered power consumption model for the IRS-relaying and
conventional relaying systems, i.e., AF and DF relaying. All
related parameter values can be referred from Table I. Also,
to ensure the fair comparison among those relaying systems,
we used the same power budget. For the IRS-based relaying
system, the total power consumption consists of transmit
power at the sources, the circuit power of all sources and
destinations, and the circuit power of all IRSs. Mathematically,
the total power consumption can be modeled as [49]:

P IRS
total =

K∑
k=1

(
1

ν
pk + PS,k + PD,k

)
+

L∑
i=1

MiPI , (69)

where ν is the power amplifier efficiency of each source, PS,k

and PD,k are the circuit power of k-th source and destination,
respectively, and PI is the circuit power of each IRS element.
Next, for the AF-relaying case, we consider L AF relays,
where the i-th relay is equipped with Mi antennas. The total
power consumption consists of transmit power at the sources
(active only half of the time due to half duplexing) and AF
relays, the circuit power of all sources and destinations, and
the circuit power of all relay antennas. Mathematically, the
total power consumption can be modeled as [44]:

PAF
total =

K∑
k=1

(
1

ν
pk +

1

2
PS,k + PD,k

)

+

L∑
i=1

(
1

νAF
PAF,i +MiP

ant
AF

)
,

(70)

where νAF is the power amplifier efficiency of each AF relay,
PAF,i is the transmit power of the i-th AF relay, and P ant

AF is
the circuit power of each AF-relay antenna. Finally, for the
DF-relaying case, we consider transmit power at the sources
and each DF relay, the circuit power of all sources and
destinations, the circuit power of all relay antennas, and the
signal processing power (decode and encode received signal)
at the relay. Mathematically, the total power consumption can
be modeled as [49]:

PDF
total =

K∑
k=1

(
1

ν
pk +

1

2
PS,k + PD,k

)

+

L∑
i=1

(
1

νDF
PDF,i + P proc

DF,i +MiP
ant
DF

)
,

(71)

where νDF is the power amplifier efficiency of each DF relay,
PDF,i is the transmit power of the i-th DF relay, P proc

DF,i is the
signal processing power of the i-th DF relay, and P ant

DF is the
circuit power of each DF-relay antenna.
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Fig. 5. Energy efficiency with K = 4 under two settings of IRS and AF/DF
relay: (a) IRS-(4, 6) and AF/DF relay-(4, 6); (b) IRS-(4, 10) and AF/DF
relay-(4, 6).

2) Results of energy efficiency: In this subsection, we
illustrated the achievable energy efficiency (EE) as a function
of the SNR in dB. The energy efficiency is defined as
EE = (B×R)/Ptotal, where B is the transmission bandwidth,
which is set to 1 (MHz); R is the achievable sum rate at the
destinations obtained from subsection IV-C; and Ptotal is the
total consumption power of a specific system (IRS-based or
AF/DF relaying system), which was modeled in the previous
subsection. In this simulation, we used the same settings as
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those in subsection IV-C and the number of source-destination
pairs is K = 4.

As shown in Figs. 5(a) and (b), the energy efficiency of
the proposed control is a quasi-concave function of SNR,
i.e., increases as the SNR increases within the interval [0, 15]
dB, then decreases as SNR is larger than 15 dB. However,
the proposed scheme provides higher energy efficiency than
the benchmark schemes over all SNR region. Typically, each
proposed IRS-(4,6), IRS-(4,10) enhances the energy efficiency
by up to 28%, 125%, 207%, 2788% and 29%, 95%, 285%,
3621% compared to SDR-based IRS, RL-based IRS, DF-
relaying (cooperative), and AF-relaying (optimal) schemes, re-
spectively. The proposed control’s energy efficiency increases
as the number of IRS elements increases.

E. Discrete Phase Shift and Imperfect CSI

In this subsection, we evaluate the impact of the discrete
phase shift and imperfect CSI on the performance of the
proposed algorithm in the sum-rate maximization problem.
First, to investigate the effects of discrete value of phase shift,
it is practical to consider that θi,m can take a discrete value
in the set C ∆

=
{
0, 2π

τ , . . . , 2π(τ−1)
τ

}
, where τ = 2b, and b is

denoted as the number of bits used to uniformly quantize the
continuous phase shift in [0, 2π). The quantized solution θ̃i,m
is then obtained as

θ̃i,m = argmin
θ∈D
|ejθ − ϕ⋆

i,m|,∀m ∈ {1, ...,Mi},∀i ∈ L (72)

by mapping the obtained solution ϕ⋆
i,m to the nearest value

in set C. For the discrete case of the IRS-based system, we
considered 3-bit phase shifters, which is known to be an
efficient number of bits providing less performance degrada-
tion with fewer bits [50], [51]. As shown in Fig. 6, when
the quantized discrete control is applied, the maximum loss
of performance gain for two cases (a) and (b) are 33%,
29%, respectively. However, the performance gap between the
proposed continuous control and the discrete approximation
based controls becomes smaller, as the SNR decreases or
the number of IRS element increases. In low SNR region,
the discrete phase approximation can achieve near-optimal
performance.

Next, we investigate the effects of the imperfect CSI in
our proposed IRS-based performance. Following [52], the
estimated channel for ei,k is modeled as êi,k =

√
1− δei,k+√

δ△ei,k, where δ ∈ [0, 1] is the level of reliability of
the estimation, △ei,k ∼ CN (0, σ2

△ei,k
I) is the estimation

error, with σ2
△ei,k

is the error variance of channel estimation.
Similarly, the estimated channel for fk,i are also modeled
as f̂k,i =

√
1− δfk,i +

√
δ△fk,i. As shown in Figs. 6(a),

and (b), the performance gap between the proposed control
and imperfect CSI based control becomes smaller with lower
value of δ, i.e., maximally 4.3% and 17.3% degradation for
δ = 0.1 and δ = 0.5, respectively. The same observation holds
for the discrete phase approximation of the proposed control,
i.e., maximally, 4% and 17.2% degradation for δ = 0.1 and
δ = 0.5, respectively.
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Fig. 6. The effects of imperfect CSI and discrete phase shift with K = 3:
(a) IRS-(4,6) and relay-(4,6); (b) IRS-(4,10) and relay-(4,6).

V. CONCLUSIONS

In this paper, we proposed optimal distributed IRS controls
for a multi-hop interference channel. We first identified the
achievable rate region of two-hop coordinated IRS relaying
network using the proposed SCA approach. Then, we found
maximum sum-rate using the proposed AO and ADMM based
distributed IRS control, and proved its convergence and op-
timality. Finally, we demonstrated that the proposed controls
provide higher performance than SDR-, random-phase-, DRL-
based IRS controls and AF-, DF-, IN-based relaying controls,
in terms of achievable rate region, achievable sum-rate, and
energy efficiency. We also confirmed that the discrete phase
approximation of the proposed control provides near-optimal
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performance with fewer bits, and the proposed control is robust
under imperfect CSI condition. The proposed controls can be
efficiently applied to large-scale multi-pair multihop device-
to-device (D2D) and machine-type device communications in
interference-limited or low-powered dense networks of 5G
and 6G environments. In future studies, we will investigate
distributed hybrid models that exploit various multi-antenna
relaying schemes and the proposed IRS control opportunisti-
cally or jointly under practical channel conditions in various
multi-hop environments.

APPENDIX A
PROOF OF PROPOSITION 1

Proof. (a) The desired signal power, i.e., E[|yS,k|2], is decom-
posed as follows:

PS,k = E[|yS,k|2] = E
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where ϕi = diag(Φi)
1,ϕ =

[
ϕT

1 , . . . ,ϕ
T
L
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eT1,k ∗ f
T
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)
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(
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H
k .

In the above decomposition, (1) is due to the
fact that sk ∼ CN (0, 1),∀k are independent
from each other; (2) is obtained by applying

Tr(AB) =
(

Vec(BT )
)T

Vec(A); and (3) is obtained

by applying Vec(ABC) =
(
CT ∗A

)
diag(B) [53].

1diag(A) = [a11, ..., ann]T , where aii are the diagonal entries of an
n× n matrix A.

(b) Similarly, by applying the same identities as in (a), the
interference signal power is decomposed as follows:

PI,k = E[|yI,k|2] = E

∣∣∣∣∣
L∑

i=1

fT
k,iΦiĒi,kP̄
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and Kk = BH
k Bk. In the above decomposition, (1) is due

to the fact that s̄k = [s1, ..., sk−1, sk+1, ..., sK ]T , where sk ∼
CN (0, 1),∀k are independent from each other. This completes
the proof of Proposition 1.

APPENDIX B
PROOF OF STRONG CONCAVITY OF Lρ(φ

t+1,ϕ,λt)

Proof. For the sake of simplicity, let φ̄
∆
= φt+1, λ̄

∆
= λt.

We prove that for the given φ̄, λ̄, the function g(ϕ)
∆
=

−Lρ(φ̄,ϕ, λ̄) is strongly convex. Indeed, we have

g(ϕ) = ϕHAϕ− Re{aHϕ}+ ιF (φ̄)− Re{λ̄H
(φ̄− ϕ)}

+
ρ

2
∥φ̄− ϕ∥22

= ϕHĀϕ− Re{āHϕ}+ c,
(73)

where Ā
∆
= A + ρ

2I, ā
∆
= a − ρφ̄ + λ̄, and c

∆
= ρ

2 φ̄
Hφ̄ +

ιF (φ̄) − Re{λ̄H
φ̄}. For φ1,φ2 ∈ C

∑L
i=1 Mi×1,γ1,γ2 ∈

[0, 1],γ1 + γ2 = 1, we have

g(γ1ϕ1 + γ2ϕ2) = (γ1ϕ1 + γ2ϕ2)
H
Ā(γ1ϕ1 + γ2ϕ2)

− Re{āH(γ1ϕ1 + γ2ϕ2)}+ c

≤ γ1g(γ1) + γ2g(γ2)−
ρ

2
γ1γ2∥ϕ1 − ϕ2∥22.

(74)
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The last inequality holds because of using Ā = A+ ρ
2I , and

based on the fact that A is positive semidefinite, we obtain
the following:

ϕ1
HĀϕ1 + ϕ2

HĀϕ2 − ϕ1
HĀϕ2 − ϕ2

HĀϕ1

= (ϕ1 − ϕ2)
HA(ϕ1 − ϕ2) +

ρ

2
∥ϕ1 − ϕ2∥22

≥ ρ

2
∥ϕ1 − ϕ2∥22.

(75)

The inequality in (74) implies that

g(γ1ϕ1 + γ2ϕ2) ≤ γ1g(γ1) + γ2g(γ2)

− ρ

2
γ1γ2∥ϕ1 − ϕ2∥22,

(76)

which means that g(ϕ) is strongly convex, or equivalently, the
function Lρ(φ

t+1,ϕ,λt) is strongly concave. This completes
the proof.
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